
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2021

Bayesian Reinforcement Learning
Methods for Network Intrusion
Prevention

ANTONIO FREDERICO NESTI LOPES

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Bayesian Reinforcement
Learning Methods for
Network Intrusion Prevention

ANTONIO FREDERICO Nesti Lopes

Master’s Programme, Machine Learning, 120 credits
Date: October 11, 2021

Supervisor: Kim Hammar
Examiner: Dr. Rolf Stadler

School of Electrical Engineering and Computer Science

© 2021 Antonio Frederico Nesti Lopes

Abstract | i

Abstract
A growing problem in network security stems from the fact that both attack
methods and target systems constantly evolve. This problem makes it difficult
for human operators to keep up and manage the security problem. To deal
with this challenge, a promising approach is to use reinforcement learning
to adapt security policies to a changing environment. However, a drawback
of this approach is that traditional reinforcement learning methods require a
large amount of data in order to learn effective policies, which can be both
costly and difficult to obtain. To address this problem, this thesis investigates
ways to incorporate prior knowledge in learning systems for network security.
Our goal is to be able to learn security policies with less data compared to
traditional reinforcement learning algorithms. To investigate this question,
we take a Bayesian approach and consider Bayesian reinforcement learning
methods as a complement to current algorithms in reinforcement learning.
Specifically, in this work, we study the following algorithms: Bayesian Q-
learning, Bayesian REINFORCE, and Bayesian Actor-Critic. To evaluate our
approach, we have implemented the mentioned algorithms and techniques and
applied them to different simulation scenarios of intrusion prevention. Our
results demonstrate that the Bayesian reinforcement learning algorithms are
able to learn more efficiently compared to their non-Bayesian counterparts but
that the Bayesian approach is more computationally demanding. Further, we
find that the choice of prior and the kernel function have a large impact on the
performance of the algorithms.

Keywords
Network Security, Reinforcement Learning, Bayesian Q-Learning, Bayesian
Policy Gradient, Bayesian Actor-Critic, Markov Security Games

ii | Abstract

Sammanfattning | iii

Sammanfattning
Ett växande problem inom cybersäkerhet är att både attackmetoder samt
system är i en konstant förändring och utveckling: å ena sidan så blir
attackmetoder mer och mer sofistikerade, och å andra sidan så utvecklas
system via innovationer samt uppgraderingar. Detta problem gör det svårt för
mänskliga operatörer att hantera säkerhetsproblemet. En lovande metod för
att hantera denna utmaning är förstärkningslärande. Med förstärkningslärande
kan en autonom agent automatiskt lära sig att anpassa säkerhetsstrategier
till en föränderlig miljö. En utmaning med detta tillvägagångsätt är dock att
traditionella förstärkningsinlärningsmetoder kräver en stor mängd data för att
lära sig effektiva strategier, vilket kan vara både kostsamt och svårt att erskaffa.
För att lösa detta problem så undersöker denna avhandling Bayesiska metoder
för att inkorporera förkunskaper i inlärningsalgoritmen, vilket kan möjliggöra
lärande med mindre data. Specifikt så studerar vi följande Bayesiska
algoritmer: Bayesian Q-learning, Bayesian REINFORCE och Bayesian Actor-
Critic. För att utvärdera vårt tillvägagångssätt har vi implementerat de nämnda
algoritmerna och utvärderat deras prestanda i olika simuleringsscenarier
för intrångsförebyggande samt analyserat deras komplexitet. Våra resultat
visar att de Bayesiska förstärkningsinlärningsalgoritmerna kan användas för
att lära sig strategier med mindre data än vad som kravs vid användande
av icke-Bayesiska motsvarigheter, men att den Bayesiska metoden är
mer beräkningskrävande. Vidare finner vi att metoden för att inkorporera
förkunskap i inlärningsalgoritmen, samt val av kernelfunktion, har stor
inverkan på algoritmernas prestanda.

Nyckelord
Nätverkssäkerhet, förstärkningslärande, Bayesian Q-Learning, Bayesian
Policy Gradient, Bayesian Actor-Critic, Markov Security Games

iv | Sammanfattning

Acknowledgments | v

Acknowledgments
I would like to thank the examiner Dr. Rolf Stadler for the shared expertise
in research and all the feedback brought to this work. I would like to thank
my supervisor Kim Hammar for the numerous inputs and clarifications made
to the concretion of this work, in particular, with respect to the Bayesian Q-
learning implementation and all the technical support. I would like also to
thank the School of Electrical Engineering and Computer Science of KTH,
and in particular to the Division of Network and Systems Engineering, where
the resources for running the experiments were used.

vi | Acknowledgments

Contents

1 Introduction 1
1.1 Use Case . 2
1.2 Research Questions . 2
1.3 Approach . 3
1.4 Contributions . 4
1.5 Structure of the Thesis . 4

2 Background 7
2.1 Network Security . 7

2.1.1 Intrusion Detection Systems 7
2.1.2 Intrusion Prevention Systems 8
2.1.3 Machine Learning Problems in Network Security . . . 8

2.2 Reinforcement Learning . 9
2.2.1 Reinforcement Learning Preliminaries 9
2.2.2 Self-play . 12
2.2.3 Temporal Difference Learning with Eligibility Traces

(TD(λ)) . 13
2.2.4 Q-Learning . 13
2.2.5 Policy Gradient Methods 14

2.3 Bayesian Learning . 17
2.3.1 Bayesian and Bayes-Hermite Quadratures 17
2.3.2 Kernel Methods and Gaussian Processes 18
2.3.3 Sparsification procedures 19

2.4 Bayesian Reinforcement Learning 20
2.4.1 Bayesian Q-learning 21
2.4.2 Bayesian Policy Gradient 22
2.4.3 Gaussian Process Temporal Difference 24
2.4.4 Bayesian Actor-Critic 26

vii

viii | CONTENTS

2.5 Theoretical Pairwise Comparison of Bayesian Reinforcement
Learning Methods . 27

3 Related Work 29

4 Modeling the Intrusion Prevention Game 33
4.1 The Intrusion Prevention Game 33
4.2 Environment Instantiation of the Game Model 35

4.2.1 Reconnaissance Activities 36
4.3 Static Opponents’ Policies 37
4.4 Risk Averse Agents . 38
4.5 Theoretical Win Probability 39

4.5.1 Upper and Lower Bounds on the Hack Probability . . 39
4.5.2 Evaluation Methods 43

4.6 Experiments . 44

5 Bayesian Q-Learning for Network Intrusion Prevention 47
5.1 Experiments’ Configuration 47

5.1.1 Model Configurations for the Attacker Agent Training 48
5.1.2 Model Configurations for the Defender Agent Training 48
5.1.3 Baselines and Hyperparameters 48

5.2 Experimental Results . 49
5.2.1 Analysis of Attacker Win Probability for Attacker and

Defender Training 49
5.3 Discussion of the Results . 50

6 Bayesian REINFORCE for Network Intrusion Prevention 51
6.1 Experiments’ Configuration 51

6.1.1 Model Configurations for the Attacker Agent 51
6.1.2 Model Configurations for the Defender Agent 53
6.1.3 Baselines and Hyperparameters 54

6.2 Experimental Results . 55
6.2.1 Analysis of Attacker Win Probability for Attacker

Training . 55
6.2.2 Analysis of Attacker Win Probability for Defender

Training . 56
6.2.3 Kernel Representations 59
6.2.4 Working Time Profiling 62

6.3 Discussion of the Results . 62

Contents | ix

7 Bayesian Actor-Critic for Network Intrusion Prevention 65
7.1 Experiments’ Configuration 65

7.1.1 Model Configurations for the Attacker Agent 65
7.1.2 Model Configurations for the Defender Agent 66
7.1.3 Baselines and Hyperparameters 66

7.2 Experimental Results . 67
7.2.1 Analysis of Attacker Win Probability for Attacker

Training . 67
7.2.2 Analysis of Attacker Win Probability for Defender

Training . 67
7.2.3 Kernel Representations 70
7.2.4 Working Time Profiling 70

7.3 Discussion of the Results . 73

8 Discussion of the Results 75
8.1 The Experimental Results in Relation to the Research Questions 75

8.1.1 Efficiency of Exploration 75
8.1.2 Sample Efficiency 76

8.2 Trade-off Evaluation Summarizing 78
8.2.1 Computational Complexity 78
8.2.2 Kernels’ Trade-offs 79

9 Conclusion & Future Work 83
9.1 Discussion . 83

9.1.1 Summary of Findings for Each Method 83
9.1.2 Conclusion . 84

9.2 Future Work . 84
9.3 Experiences . 85
9.4 Ethical Consideration . 85

References 87

A Key Algorithms 93

B Key Theorems 95

x | Contents

List of Figures

1.1 Computer Infrastructure Example 2

2.1 Agent-Environment Interface 11
2.2 Schematization of Actor-Critic methods with respect to the

Environment. 15
2.3 A graphical model that illustrates conditional independencies

for GPTD learning. 25

4.1 Modeling intrusion prevention as a Markov Game. 34
4.2 Graph Model sample for Env2. 37
4.3 An illustration of an attack strategy, evolving from left to right. 37
4.4 Some examples of how an attribute type could be filled with

attack and defense attributes for Env1. 43
4.5 Some examples of how an attribute type could be filled with

attack and defense attributes for Env2. 44

5.1 Attacker win ratio against the number of training iterations. . . 49
5.2 Attacker win ratio against the number of training iterations. . . 50

6.1 Random sample of a normalized Kernel initialization. 52
6.2 Attacker win ratio against the number of training iterations. . . 55
6.3 Attacker win ratio for training and evaluation. 57
6.4 Attacker win ratio of attacker agent against

DefendMinimal agent. 58
6.5 Attacker win ratio against the number of training iterations. . . 59
6.6 Attacker win ratio of defender agent against

AttackMaximal agent. 60
6.7 Kernel matrices produced by a trained attacker agent against

DefendMinimal agent. 61

xi

xii | LIST OF FIGURES

6.8 Kernel matrices produced by a trained defender agent against
AttackMaximal agent. 62

6.9 Profiling of time required for different tasks our Bayesian
REINFORCE algorithm. 63

7.1 Attacker win ratio of attacker agent against
DefendMinimal agent. 68

7.2 Attacker win ratio of attacker agent against
DefendMinimal agent. 68

7.3 Attacker win ratio against the number of training iterations;
the graph show the results from training the defender for
environment v19. 69

7.4 Attacker win ratio of defender agent against
AttackMaximal agent. 69

7.5 Attacker win ratio of defender agent against
AttackMaximal agent. 70

7.6 Kernel representation from the attacker training under model
type Vanilla BAC 1. 71

7.7 Profiling of the time required to perform different tasks of
Bayesian Actor-Critic algorithm. 72

8.1 Best mean performance for attacker training. 76
8.2 Best mean performance for defender training. 76
8.3 Best mean performance evolution for attacker training. 77
8.4 Best mean performance evolution for defender training. 78
8.5 Best mean performance evolution for attacker training. 79
8.6 Best mean performance evolution for defender training. 80
8.7 Computational Trade-offs for Attacker training. 80

List of Tables

4.1 Differences between environments Env1 and Env2. 36

5.1 Hyperparameters for TabularQ and BQL. 49

6.1 Hyperparameters for RL algorithms. 54

7.1 Hyperparameters for RL algorithms. 67

8.1 Summary of magnitude relation for Kernel matrices in BPG
and BAC algorithms. 81

xiii

xiv | LIST OF TABLES

List of acronyms and abbreviations | xv

List of acronyms and abbreviations
A2C Advantage Actor-Critic

AC Actor-Critic

ALD Approximate Linear Dependent

BAC Bayesian Actor-Critic

Ber Represents the Bernoulli distribution

BPG Bayesian Policy Gradient

BQL Bayesian Q-Learning

CVaR Conditional Value at Risk

DBQPO Deep Bayesian Quadrature Policy Optimization

DDoS Distributed Denial of Service

DQN Deep Q Network

GPTD Gaussian Process Temporal Difference

HMM Hidden Markov Model

IDS Intrusion Detection System

idsgame Intrusion Detection System Game

IPS Intrusion Prevention System

IT Information Technology

KL Kullback-Leibler

MDP Markov Decision Process

PG Policy Gradient

POMDP Partially Observed Markovian Decision Process

xvi | List of acronyms and abbreviations

PPO Proximal Policy Optimization

PPO-AR Proximal Policy Optimization Auto regressive

RBF Radius Basis Function

RL Reinforcement Learning

SDG Sustainable Development Goal

SGD Stochastic Gradient Descent

SKI Structured Kernel Interpolation

SVM Support Vector Machine

TD Temporal Difference or Time Difference

TRPO Trust Region Policy Optimization

UN United Nations

VaR Value at Risk

Chapter 1

Introduction

While the requirements for network security—confidentiality, integrity, and
availability—might appear straightforward to the novice, the mechanisms
to achieve those requirements are often complex [1]. Moreover, evolving
attack vectors make network security an endless challenge. From the evolving
dynamics between attackers and defenders, an artificial arms race can emerge.
In the arms race, new network attacks are developed in response to improved
network defense.

Reinforcement learning is the science of sequential decision making under
uncertainty [2]. In recent times, reinforcement learning has achieved super-
human performance in games [3, 4]. As a consequence of the contemporary
breakthroughs in reinforcement learning, there is a growing interest to use
reinforcement learning in practical domains, such as robotics control [5],
networking [6], and network security [7].

One can think of many applications in network security that could benefit
from reinforcement learning. For example, the evolving nature of network
attacks testifies to a need for adaptive defense policies. Moreover, many
applications in security could gain from decision making in computer time-
scales—milliseconds or seconds—rather than human time-scales—minutes or
hours. Consequently, although still in its infancy, the study of autonomy and
self-learning in network security is an active area of research (Fig. 1.1) [8, 9].

However, a drawback of current state-of-the-art reinforcement learning
methods is the large data requirement. To give an example, the AlphaGo
Zero system used over 4 million games of self-play to reach superhuman
performance in the game of Go [10]. For this reason, reinforcement learning
is generally run in simulated environments where data can be gathered in
a scalable manner. While the use of abstract simulations is appealing as it

1

2 | Introduction

takes little effort to simulate a wide range of scenarios, this approach does
not, however, provide a reasonable indication of the validity of the method in
industrial settings. Consequently, to be able to use reinforcement learning for
practical intrusion prevention use cases, we must first develop reinforcement
learning methods that can work with smaller amounts of data, which is the
topic of this thesis.

Policy π
Observations Actions

IT Infrastructure

Figure 1.1 – A computer infrastructure that is controlled by an automatic
policy that takes control actions based on measured observations from the
infrastructure.

1.1 Use Case
We consider the use case of intrusion prevention. This use case considers
a defender that owns an infrastructure that consists of a set of connected
components (e.g. a communication network), and an attacker that seeks
to intrude on the infrastructure. The defender’s objective is to protect
the infrastructure from intrusions by monitoring the network and patching
vulnerabilities. Conversely, the attacker’s goal is to compromise the
infrastructure and gain access to a critical component. To achieve this, the
attacker must explore the infrastructure through reconnaissance and attack
components along the path to the critical component.

1.2 Research Questions
Automatic intrusion prevention involves a policy that uses infrastructure
measurements to take actions for preventing network intrusions (Fig. 1.1).
To find such policies, one approach is reinforcement learning. Reinforcement

Introduction | 3

learning is a general technique to produce effective control policies for
different tasks by learning from data. Consequently, reinforcement learning
systems are dependent on data to produce effective policies. To collect this
data, a reinforcement learning system needs to take actions in the environment
and evaluate the outcomes of the actions. This process of taking actions and
evaluating the outcomes is called exploration. In the domain of intrusion
prevention, the exploration process of reinforcement learning can be both
costly and difficult to execute. For example, a single action (e.g. a network
scan) can take up to an hour to run on a computing infrastructure. This
presents an important challenge for intrusion prevention systems that are based
on reinforcement learning.

One approach for reducing the amount of data required by reinforcement
learningmethods is the Bayesian approachwhere prior knowledge is combined
with data collected through the exploration process. This approach contrasts
with traditional reinforcement learning methods which do not use any prior
knowledge. By using prior knowledge, the amount of data that needs to be
collected with exploration can be reduced, which can allow to find effective
intrusion prevention policies through reinforcement learning with less data.
However, the Bayesian approach requires newmethods for combining the prior
knowledge about intrusion prevention with traditional reinforcement learning
algorithms in an effective way, which is the topic of this thesis. Specifically,
we aim to answer the following research questions:

• Is it possible to improve the efficiency of exploration in reinforcement
learning algorithms by incorporating prior knowledge in the algorithm
with a Bayesian approach and learn intrusion prevention policies with
less data? To answer this question, we implement and evaluate three
Bayesian reinforcement learning algorithms for intrusion prevention.

• How should prior knowledge of intrusion prevention be encoded in
reinforcement learning algorithms to make exploration more efficient?
We evaluate this question by developing several priors for intrusion
prevention that we evaluate through extensive simulations.

1.3 Approach
Currently, most organizations’ intrusion prevention rules are defined manually
or by static rules or models, which puts a large burden on human operators. In
this thesis, we investigate a learning-based approach to intrusion prevention.

4 | Introduction

Specifically, we model intrusion prevention as a game and use reinforcement
learning to develop automated strategies that can co-evolve with a changing
environment. We study Bayesian reinforcement learning methods where
prior knowledge can be incorporated into learning-based intrusion prevention
systems to learn strategies with less data.

1.4 Contributions
With this thesis, we make three main contributions. First, we implement
three Bayesian RL algorithms and apply them to an intrusion prevention
use case—Bayesian Q-Learning (BQL), Bayesian Policy Gradient (BPG) and
Bayesian Actor-Critic (BAC). Second, we design two priors for both attacker
and defender that can be incorporated with the BQL algorithm, four linear
attacker priors and one risk-averse defender prior that can be incorporated
with the BPG algorithm, as well as three attacker priors and one defender
prior for the BAC algorithm. Third, we present extensive simulation results
that evaluate the implemented algorithms and priors. Our results demonstrate
that, by using the Bayesian reinforcement learning algorithms, we are able to
learn more efficiently compared to the non-Bayesian counterparts (such as Q-
Learning, Policy Gradient and Actor-Critic) and that the Bayesian approach
is more computationally demanding per iteration. Further, we find that the
choice of prior and the kernel function have a large impact on the efficiency of
the algorithms.

Replication and Open Source: The implementation of the studied
algorithms as well as the code for running the simulation used to produce the
results in this thesis is open source and publicly available. In particular, we
have constructed a Bayesian parity for the models in the repository github.
com/Limmen/gym-idsgame which is available in the following GitHub
repository: github.com/FredericoNesti/idsgame.

1.5 Structure of the Thesis
This thesis is organized as follows. Chapter 2 presents the theoretical
background on reinforcement learning and Bayesian reinforcement learning.
Related literature to this work is introduced and discussed in Chapter 3.
Chapter 4 presents our formal game model of intrusion prevention. Chapters
5, 6 and 7 present our evaluation of three different Bayesian reinforcement

https://github.com/Limmen/gym-idsgame
github.com/Limmen/gym-idsgame
https://github.com/Limmen/gym-idsgame
github.com/Limmen/gym-idsgame
https://github.com/FredericoNesti/idsgame
github.com/FredericoNesti/idsgame

Introduction | 5

learning algorithms for the use case of network intrusion prevention. Chapter
8 presents an evaluation of our results to address and discuss the research
questions. Finally, Chapter 9 presents our conclusions and future work as
well as experiences and limitations from the implementation and ethical
considerations.

6 | Introduction

Chapter 2

Background

This chapter covers the necessary theoretical background on network security,
reinforcement learning, and Bayesian reinforcement learning.

2.1 Network Security
Cyber security can be divided into several sub-fields: (1) computer security,
(2) network security, (3) web security, (4) software and system security, and
(5) cryptography. Network security refers to the branch of cyber security that
is concerned with ensuring the confidentiality (assures that confidential data
is not disclosed), integrity (assures that data is only changed in a specified
and authorized manner), and availability (assures that systems work promptly
and service is not denied to authorized users) of networked systems and
applications [1]. There is no single approach to achieve confidentiality,
integrity, and availability, rather it depends on the type of network security
problem. Common mechanisms used in network security are: firewalls,
access control policies, network monitoring, intrusion detection systems, and
intrusion prevention systems.

2.1.1 Intrusion Detection Systems
The purpose of intrusion detection systems is to "identify, preferably in real
time, unauthorized use, misuse and abuse of computer systems by both system
insiders and external penetrators" (Mukherjee et al. (1994)). Specifically,
an Intrusion Detection System (IDS) serves as a first line of defense against
network attacks. An IDS uses operational data such as log files and network
traffic to diagnose the health of the system. Given the operational data, two

7

8 | Background

general methods are used to detect intrusions: signature-based detection and
anomaly-based detection [7, 11].

Signature-based detection

Signature-based detection, (also called misuse detection) detects attack by so-
called attacks signatures, i.e., patterns of network traffic or activity that could
indicate a possible malicious intent [12]. For example, a pattern of bits in
an IP packet (that indicates a buffer overflow attack), or the number of recent
failed login attempts (related to identification and authentication problems) are
examples of attack signatures.

Anomaly-based detection

Anomaly-based detection (also referred as to statistical anomaly detection or
behaviour-based detection), uses statistical techniques to detect intrusions.
This approach establishes the normal operation of the system and triggers an
alarm whenever the system diverges from normal operation.

2.1.2 Intrusion Prevention Systems
Intrusion Prevention Systems (IPSs) extend IDSs by adding functionality to
respond to detected intrusions, e.g. throttling a suspected distributed denial
of service (DDoS) attack. Moreover, IPSs are often built around IDSs. For
example, it is common that an IPS is a combination of an access control
component (e.g. a firewall) and an IDS [13, 14].

2.1.3 Machine Learning Problems in Network
Security

The application of machine learning to network security problems can be
divided in two categories: detection problems and control problems. The first
problem is usually tackled by means of supervised or unsupervised learning,
while the latter is usually tackled with a reinforcement learning approach.

There are two major types of detection problems in network security,
namely detection of network intrusions and detection of malware [11]. In
both of these detection problems, there are patterns that can be learned and
used to detect network intrusions and malware. Thus, standard machine
learning techniques based on pattern recognition can be applied. Even though
there has been a lot of research on applying machine learning to detection

Background | 9

problems in network security [15, 16, 17, 18, 19, 20, 21, 22], many intrusion
detection systems and anti-malware programs are still rule-based [23, 24].
One reason for this is that using machine learning for security is inherently
more difficult than using machine learning in other domains. This difficulty
in applying machine learning to network security is due to the existence of an
adversary. For example, an adversary could deliberately adjust the intrusion
method to evade an intrusion classifier. This breaks the assumption of machine
learning models that the training data and the operational data share the
same data distribution [25]. In addition, another challenge with applying
machine learning for security is the trade-off between false-positives and false-
negatives. A machine learning system that has a high false-positive rate will
quickly become ignored [11]. On the other hand, a system that has a high
false-negative rate will be useless in its intended purpose [11].

In addition to detection problems in network security, there are also control
problems. For example, the problem of intrusion prevention, which is the
problem studied in this thesis. In the problem of intrusion prevention it is not
sufficient to just detect an attack but it is also required to take active decisions,
such as updating firewall policies or introducing rate-limiting. Another type of
control problem in network security is the problem of automatically patching
a found vulnerability in a system [26, 27]. To approach these problems with
machine learning, the main method is reinforcement learning. The research
on reinforcement learning methods for control problems in network security
is in its infancy, some early works are [8, 28, 29].

2.2 Reinforcement Learning
In this section, we cover the theoretical background on Markov Decision
Processes (MDPs), Markov games, and traditional reinforcement learning
methods. We start by introducing the framework of MDPs, which provide
a formal framework to define reinforcement learning problems.

2.2.1 Reinforcement Learning Preliminaries
This section defines the reinforcement learning objective and the formal model
used to model reinforcement learning problems.

10 | Background

Markov Decision Processes

AMarkov Decision process (MDP) is a controlled Markov reward process. In
other words, consider a stochastic process∗ {St}t through time with stationary
transition probabilities dependent only on the last realization, i.e., it obeys the
Markov property P(St+1|St, St−1, ..., S0) = P(St+1|St). Further, associated
with each state transition St → St+1 is a reward Rt+1.

MDPs are defined by a tuple {S,A,P,R}, that is, a state space S, a
action space A, a transition probability distribution P = P(st ∈ S|st−1 ∈
S, at−1 ∈ A), which represent the controlled transition probabilities of the
Markov reward process, and a reward functionR : S × A or S2 × A→ R.

The objective is to maximize the expected reward under a given policy π.
For this goal formulation, there are three different classes of MDPs, depending
on the time horizon of the problem. These are: finite-time horizon MDPs (Eq.
2.1), stationary MDPs with terminal state (Eq. 2.2) or infinite-time horizon
MDPs (Eq. 2.3).

max
T∑
t=1

E[Rt(s
π
t , a

π
t)] (2.1)

max E[

T∅−1∑
t=1

Rt(s
π
t , a

π
t)] (2.2)

max E[
∑
t≥1

γt−1Rt(s
π
t , a

π
t)] (2.3)

Here T∅ represents the time necessary to reach the terminal state. In
addition, any MDP with a terminal state can be generalized into an infinite-
time horizon MDP by redesigning some of the specified elements, such as
the reward function. For the infinite-time horizon case, a discount factor γ is
used to keep the sum of rewards finite and to give more importance to earlier
rewards.

The Reinforcement Learning Problem

Reinforcement Learning (RL) problems are those concerned of finding
a policy π∗ that can maximize the expected cumulative (and possibly
discounted) reward over a time-horizon T , that can be either finite or infinite.
Formally, this problem can be modeled as the problem of finding a policy π∗

∗ A sequence of random variables.

Background | 11

Figure 2.1 – Agent-Environment Interface; the image expresses the order for
the dynamics of information flow for the state, action and rewards with respect
to the Agent and the Environment. Image extracted from [2].

that maximizes the expected reward in an MDP:

π∗ = argmax
π

Eπ[
T∑
t=0

γtRt+1] (2.4)

where π∗ is the optimal policy, Rt+1 is the reward at time-step t + 1, Eπ is
the expectation under policy π, and γ is the discount factor∗. In this context,
a policy is a function π : S→ A that controls the MDP and that associates an
action from the action spaceA of the MDP to a state from the state space S of
the MDP. The optimal policy π∗ is a policy that is better than or equal to any
other policy with respect to the objective in Eq.2.4.

Figure 2.1 describes the main components of a RL problem. Starting
from the Agent’s node, which is currently in state St with reward Rt, it takes
an action At that leads to a new state and reward St+1, Rt+1, respectively.
Through interaction with the environment, the agent can learn by experience
to reinforce sequences of actions that lead to larger rewards.

Depending on how the loop in Fig. 2.1 is realized, reinforcement learning
algorithms can be categorized as on-policy, off-policy, model-based, ormodel-
free. On-policy reinforcement learning algorithms are algorithms where
the learning agent is updating the exact same policy as is used to take
actions and trigger state-transitions in the environment. Conversely, off-policy
reinforcement learning algorithms are algorithmswhere the policy used to take
actions in the environment (the behavior policy) differs from the policy that is
learned.
∗ Depending on the time-horizon and the formulation of the problem this discount factor
could either be present or not.

12 | Background

Model-based algorithms are reinforcement learning algorithms that use a
dynamics model of the environment to learn a policy. Model-free algorithms,
on the other hand, are reinforcement learning algorithms that do not use an
explicit model of the environment but rather learns through a trial-and-error
method.

Markov Games: A Generalization of the MDP Model for Multi-Agent
Reinforcement Learning Littman proposes Markov games as a model to
generalize reinforcement learning problems to a multi-agent framework [30].
As opposed to MDPs that only contain one action space, Markov games
include one action space for each agent, i.e. A = {Ai}i<k. Moreover, while
MDPs contain only one reward function, Markov games include one reward
function per agent, i.e. R = {Ri}i<k, in particularRi : S×A1×...×Ak → R.

Formally, a Markov game can be defined as a generalization of an MDP.
Considering the case with two agents—A and D—a Markov game is defined
by the tuple {AA,AD, T ,S,RA,RD}, where AA is the action space of agent
A andAD is the action space of agentD. Similarly,RA, is the reward function
of agent A andRD is the reward function of agent D.

2.2.2 Self-play
In the context of reinforcement learning, self-play is a method where two
reinforcement learning agents learn by interacting with each other in a game.
Specifically, in self-play, two agents play a game against each other with
their current strategies and based on the outcome of the game, both agents
update their strategies using a reinforcement learning method. This process of
playing games and updating the agents’ policies continues until both policies
sufficiently converge. An example of the use of Self-play is AlphaGo Zero
[31], where an agent is trained to reach superhuman performance in the game
of Go by using self-play. Further, an example of using self-play for learning
intrusion prevention strategies can be found in [8].

Although self-play often converges in practice, as reported in [31], [8]
and [32], no formal guarantees for policy convergence in self-play have been
established.

Background | 13

2.2.3 Temporal Difference Learning with Eligibility
Traces (TD(λ))

This class of methods is one of the oldest in RL theory [2]. It will serve as
a basis for most of the upcoming algorithms in this section. Time Difference
methods is known to be an asynchronous version of stochastic approximation
algorithms.

When updating estimates, the TD(λ) algorithm makes use of eligibility
traces to weight the importance of rewards based on the temporal structure.
Specifically, TD(λ) uses the weighted n-step λ return, which is defined as
follows:

Gt:t+n := γnv̂(St+n,wt+n−1) +
n−1∑
i=0

γiRt+i+1 , t ∈ 0, ..., T − n (2.5)

2.2.4 Q-Learning
Q-learning is an off-policy TD control algorithm [2]. It leverages the stochastic
approximation framework and updates the estimated Q-value of each state-
action pair based on the difference in value between two successive time-
steps. Further, Q-learning is an off-policy algoirithm which means that it uses
a separate behavior policy to explore the environment. Due to the nature of
the Q-function, Q-learning is restricted to discrete state-action spaces. The
update in Q-learning is defined as follows:

Q(t+1)(st, at) = Q(t)(st, at) + αn(t)(Rt + λmax
b∈A

Q(t)(st+1, b)−Q(t)(st, at))

(2.6)

ε-soft policies

The Q-function allows for the implementation of ε-soft policies. Specifically,
the ε-soft policy using the Q-function as defined as follows:

π(st) =

argmax
a∈A

Q(t)(st, a) with prob. 1− ε

Unif(A) with prob. ε
(2.7)

14 | Background

2.2.5 Policy Gradient Methods
Policy Gradient methods are based on the Policy Gradient Theorem (see
Appendix B). The different methods introduced here - such as REINFORCE,
REINFORCE with baseline, actor-critic methods and trust tegion methods
(e.g PPO) —are all based on the policy gradient theorem but differs in
the derivation of the gradient of the policy with respect to the objective of
maximizing the expected cumulative reward.

Williams’ REINFORCE Algorithm

REINFORCE algorithm was first introduced by Williams (1992). Its
name originates from "REward Increment = Nonnegative Factor x Offset
Reinforcement x Characteristic Eligibility" [33]. The central equation of
REINFORCE is as follows:

∆wij = αij(R− bij)eij (2.8)

where eij =
∂lngi
∂wij

REINFORCE is an on-policy algorithm based on the policy gradient. In
this algorithm, a policy is parameterized with a set of parameters that are
updated using stochastic approximation (e.g. SGD) and the gradient defined
by the policy gradient theorem is estimated by sampling from the environment.
One problemwith this method is that the gradient estimate tends to have a high
variance. Because of this problem, research efforts have been made to reduce
the variance of the gradient estimates. One common technique to reduce the
variance of the gradient estimates is to subtract a baseline from the sample
returns.

Actor-Critic Algorithms

Actor-critic algorithms are a combination of actor-only methods and critic-
only methods [34, 35]. In the context of actor-critic methods, the role of the
critic is to approximate the value function of the policy implemented by the
actor. The critic can either estimate the standard value function V π or the
so-called advantage function Aπ(s, a) = Qπ(s, a) − V π(s), as done in the
Advantage Actor-Critic (A2C) algorithm.

Both the critic and the actor is assumed to be implemented by

Background | 15

parameterized functions whose parameters can be modified using gradient-
based updates.

Figure 2.2 illustrates a general actor-critic algorithm and its relation to the
environment. In particular, the agent is represented by the policy and value
function. A time-difference error is used to update both the policy and the
value function. The actor decides which action to take, whereas the critic
gives a feedback about the "goodness" of the action.

Figure 2.2 – Schematization of Actor-Critic methods with respect to the
Environment. Image extracted from Towards Data Science website∗.

When estimating the policy gradient, actor-critic methods can either use
the standard sample returns or the n-step returns weighted by eligibility traces.
The policy gradient with n-step returns can be formulated as:

∇J(θt) = E[(Rt+1 + γv̂(St+1,w)− v̂(St,w))∇logπ(At|St, θ)] (2.9)

In the above formulation, the critic network is parameterized by w and
the actor network is parameterized by θ. For example, Rt+1 + γv̂(St+1,w)−
v̂(St,w) comes from the critic, whereas∇logπ(At|St, θ) is maintained by the
actor.
∗ https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f

16 | Background

Proximal Policy Optimization (PPO)

The Proximal Policy Optimization (PPO) algorithm is a policy gradient
algorithm that is a successor to the TRPO algorithm [36]. While PPO and
TRPO are policy gradient algorithms just like e.g. REINFORCE, they use
the policy gradient differently. StandardMonte-Carlo policy gradient methods
(e.g. REINFORCE) use the estimated policy gradient that is defined in Eq. 2.8
and Eq. 2.9 directly in the stochastic gradient ascent update of the policy (e.g.
either vanilla SGD or Adam). PPO and TRPO on the other hand are trust-
region methods. Thus, once a gradient estimate ∇̂J(θ) has been obtained,
PPO and TRPO solves a constrained optimization problem to update θt. This
additional complexity to the policy gradient update can in theory provide
faster convergence as the gradients are used more efficiently. The idea of
trust region methods is to approximate the objective f indirectly by optimizing
some simpler objective, f̃ , that is an approximation of f .

To enforce the trust region in TRPO and PPO we use a constraint on the
KL-difference between successive updates to the policy parameters θold, θ, e.g.
DKL(θold, θ) < δ. However since πθ(a|s) is a distribution over the entire state
space S it becomes impractical to solve the constrained optimization problem
due to the large number of constraints. Instead, TRPO and PPO use a heuristic
approximation to the constrained optimization problem by adding a penalty
term c·DKL(θold, θ) to the objective function (a form of regularization), where
c is a coefficient term.

J(θ) = Eπθ

[(
T∑
u=t

rt

)
− c ·DKL(θold, θ)

]
(2.10)

By having this constraint, it becomes possible to make multiple updates using
a single gradient estimate, as the constraints (in theory) ensures that the policy
does not diverge too much. In vanilla policy gradient methods, doing multiple
updates using the same gradient is not recommended as the trust region is not
enforced it is likely that using the same gradient for multiple optimization steps
will lead to divergence and too large parameter updates.

PPO implements the constraint to the policy update by using a clipped
surrogate objective. This objective corresponds to the expectation of
the minimum between the conservative policy Iteration component from
TRPO objective and an objective that clips the reward with respect to a
hyperparameter ε [37], i.e., by doing Rt(θ) ∈ [1 − ε, 1 + ε]. The role of this
new objective function is to penalize changes to the policy that do not retrieve
a better reward. This objective is a lower bound on the objective from TRPO.

Background | 17

Its formulation is given as:

LCLIP (θ) = Êt[min(Rt(θ)Ât,1[1−ε,1+ε](Rt(θ))Ât)] (2.11)

≤ Êt[Rt(θ)Ât] := Êt[
πθ(at|st)
πθold(at|st)

Ât] (2.12)

The min operation inside the expectation ensures that LCLIP (θ) is, at
most, the TRPO objective (referred before as Conservative Policy Iteration
component). To account for the fact that the advantage function could
assume both positive and negative values, the clipping is defined to be
1[1−ε,1+ε](Rt(θ)). In addition, PPO’s objective can often be combined with
an entropy bonus to incentivize extra exploration.

2.3 Bayesian Learning
This seciton contains an overview of Bayesian learning with a focus on
methods that are related to the Bayesian Reinforcement Learning approaches
described in the next section.

2.3.1 Bayesian and Bayes-Hermite Quadratures
Integral computation is key when handling marginal distributions and
expectations, two concepts with rich applications in Bayesian learning. One
approach for doing such computations is to use Monte-Carlo methods.
However the Monte-Carlo methods have some drawbacks, such as higher
variance and high sample quantity requirement. O’Hagan (1991) addresses a
generic integral computation by leveraging the use of a Bayesian formulation.
His technique is called Bayes-Hermite Quadrature, which is the correspondent
problem of computing an integral of the form

∫
f(x)g(x)dx by establishing a

prior to one of the functions f or g. In this work, as will be seen later, these
techniques are used to incorporate prior knowledge to RL algorithms.

Consider the following integral as our computation problem: k =∫
h(x)dx. In order to formulate it statistically, one would like to consider

a model that links k to the various h(x). Treating each of the h(·) as a random
variable, it is possible to assign a prior knowledge to it which in turn would
yield a posteriori computation of k.

One could rewrite the integral as k =
∫
g(x)dµ(x), where µ(x) is the

measure associated with g(x). If one consider the probabilistic property

18 | Background

that the density distribution should sum up to 1, then we can consider that
f(x) = g(x)

k
is a density, since 1 =

∫
f(x)dµ(x). The sequence of variables

g(x) is generally modeled as a linear regression with a Gaussian process of
white noises. The posteriori is then obtained by combining, via Bayes rule,
the previous described priors with the "designed points".

Bayes-Hermite algorithm, on the other hand, aims at joining Gauss-
Hermite quadrature with the previous described Bayesian quadrature. The
estimation of Bayesian quadrature is itself dependent on the estimation of other
integrals and therefore there is the risk of degeneration into infinite regress in
case some of these base integrals are not analytically feasible [38]. To address
this issue, the author explores the analytical viability of the formulation to the
Bayesian quadrature to leverage the use of normal distribution specifications
so as to derive closed expressions to all of the updates.

2.3.2 Kernel Methods and Gaussian Processes
Kernel methods aims to detect stable patterns from a finite data sample [39].
It relies on a correspondence between the data space and the feature space by
leveraging inner products as a part of a mapping called kernel function. When
the solution is given explicitly by solving the problem equations and finding
the weights that satisfy a given relation, then this approach is called the primal
solution. On the other hand, when one is interested in obtain a solution by
leveraging only the information that comes from the data, that is "letting the
data explain by itself", and, therefore finding an indirect solution, that is called
as a dual solution. The point is that by transferring the focus of the techniques
to find for a solution, it is possible to achieve a different complexity for the
same task, that is O(n3) for the primal and O(l3) for the dual, where n is the
number of data points and l is the dimension of them. Hence, if the number of
data points is greater than the number of dimensions, then it is more efficient
to find the dual solution. If that is not the case it is more efficient to find the
primal solution.

An example to illustrate those concepts could be the linear regression
case given in Shawe-Taylor et al. (2004). Consider that one is interested
in solving y = Xw, which in linear regression typically has the solution
w = (XTX)−1XTy. Assuming that the inverse (XTX)−1 exists, a dual
representation could be expressed in the following way∗:
∗ Note that each column of X represents a data-point and that X is a nxl matrix.

Background | 19

w = (XTX)−1XTy = XTX(XTX)−2XTy = XTα (2.13)

In the above formulation w stands for the primal solution and α stands for
the dual solution. The prediction function is then generally given as g(x) =

〈w, x〉 = 〈
∑l

i=1 αixi, x〉 =
∑l

i=1 αi〈xi, x〉. The matrix G = XXT is called
the Gram matrix.

Non-linear solutions can be considered as well. In that case, an embedding
map φ is used to convert nonlinear relations into linear. The Gram matrix is
then generally defined asGij = 〈φxi, φxj〉. The kernel function is then defined
to be the function that leverages the nonlinear mapping φ to an inner product
feature space, such that k(x, z) = 〈φ(x), φ(z)〉.

Kernels can be designed to deal with very different nonlinear behaviours
by utilising the feature space under the formulation of the inner product. An
important aspect is that the use of the kernel method is particularly interesting
whenever we have n > l. For the construction of the feature space it is
desirable for it be separable and complete, and thus it is defined upon Hilbert
spaces.

There are some properties to construct new kernels, where the reader can
find more in the Appendix. As we will see later, these techniques will be
important as a specification of a kernel matrix and can help in assigning a
prior under a Bayesian quadrature formulation.

Gaussian Processes

Gaussian Processes are intimately related to kernel methods as the kernel
matrix is used to specify a covariance structure of a modeling choice for
data, in this case a Gaussian distribution. This is called a process in the
sense that each of the data-points in time are defined to be a realization of
a Gaussian distribution that correlates each time-step by a specification of the
mean and the covariance is incorporated in its Kernel matrix, which translates
the similarity of target points in its chosen structure (polynomial, linear, RBF,
...).

2.3.3 Sparsification procedures
The use of kernel methods can be quite demanding depending on its
dimensions. When it comes to practical applications, it could be the case

20 | Background

that it is sometimes required to make the inversion of this matrix to compute
Bayesian updates, for instance.

For this purpose, Ghavamzadeh and Engel∗ bring in their extensive work
within Bayesian policy gradients, ways to sparsify the kernel computation, so
as to achieve a better computational performance.

Engel’s sparsification technique differs from the one brought by SVM
algorithms. Instead of allowing the use of error-tolerant cost functions, which
are often notmaximally sparse, the author seeks tomake use of the Representer
Theorem and Mercer’s Theorem to allow the use of a kernel trick that will aid
the construction of a rate that is submitted to an if-clause and will allow for the
choice of sparsification for a given sample. His idea is related to the feature
space basis expansion by making use of the concept of linear independence
from linear algebra. The reader can find descriptions of both algorithms in the
Appendix.

The sparsification is achieved by considering a threshold ν to be
determinant to "set linearly independent feature vectors that approximately
span" [40] the feature space. Therefore, one is interested in finding coefficients
a = (a1, ..., amt−1)

′ such that, for a given dictionary of samples Dt−1 =

{x̃j}mt−1

j=1 and a new sample xt:

‖
mt−1∑
j=1

ajφ(x̃j)− φ(xt)‖2 ≤ ν (2.14)

2.4 Bayesian Reinforcement Learning
State-of-the-art in Bayesian RL include both model-free and model based
formulations. According to [41], under the model-free formulation, key
algorithms are Bayesian Q-learning, Gaussian Process Temporal Difference
(which are value-function based methods), Bayesian policy gradient, and
Bayesian actor-critic. Under the model-based formulation we have the
POMDP and Dynamic programming formulation of Bayesian RL. The
Bayesian approach has also been resourceful to handle partial observable and
multi-agent scenarios.
∗ In particular, Engel’s PhD thesis has an extensive analysis for this matter [40].

Background | 21

2.4.1 Bayesian Q-learning
Bayesian Q-learning (BQL) [42] maintains an explicit distribution over the Q-
values. This contrasts with Watkins’ Q-learning (Watkins 1989) that does not
maintain explicit distributions over theQ-values but rather use point-estimates.
In BQL, the distribution over Q-values is initialized with a known prior and
combined, using Bayes’ theorem, with the likelihood function that comes from
the specification of the modeling choice for Q-values data.

Below, we begin by explaining how prior and likelihood information could
be combined to generate a posterior using Bayes’ theorem. Then, we briefly
address the assumptions of BQL derivation to motivate modeling choices.

Bayes’ rule (equation 2.15) is useful for defining a posterior distribution
as a function of the likelihood and the prior distributions, as the following
equations 2.16 and 2.17 illustrate:

Posterior(µ, σ|D) =
P(µ, σ,D)

P(D)
(Bayes′ rule) (2.15)

=
Likelihood(D|µ, σ)Prior(µ, σ)

P(D)
(2.16)

∝ Likelihood(D|µ, σ)Prior(µ, σ) (2.17)

This technique aims to learn the Q-function by reducing the uncertainty
about the expectation of a distribution over the sum of discounted rewards
[41]. In the following we will assume the following three assumptions.

Assumption 1: The rewards, as a function of the states and actions, are
normally distributed. This means that it suffices to specify the mean and
precision∗ µs,a and τs,a.

Assumption 2: The priors over µs,a and τs,a are independent for different
states and actions.

Assumption 3: The prior p(µs,a, τs,a) is a normal-gamma distribution with
hyperparameters 〈µ0, λ, α, β〉, i.e., p(µ, τ) ∝ τ

1
2 e−

1
2
λτ(µ−µ0)2τα−1eβτ .

The dynamic of the Bayesian Q-learning algorithm is given as follows.
At each iteration it is given a prior to the agent regarding the parameters of
∗ The inverse of the variance.

22 | Background

the Q-distribution. Then, an action is sampled considering the information
that comes from this prior. Finally, an update to the prior distribution of the
parameters is made and the new posterior is the prior of the next iteration.

In summary, the BQL algorithm uses Likelihood(D|µ, σ) as the target
for action samples, which is defined with respect to the current values of µ
and σ∗. The Posterior(µ, σ|D) is computed to update the parameters of
the Q-distribution and Priort+1(µ, σ) = Posteriort(µ, σ|D). For example,
considering the assumptions in the beginning of this subsection, we have:

• Prior(µ, σ) ∼ Normal −Gamma(µp, σp, αp, βp);

• Likelihood(D|µ, σ) = Normal(·|µ, σ);

• Posterior(µ, σ|D) ∼ Normal − Gamma(µP , σP , αP , βP) such that
the tuple (µP , σP , αP , βP) depends on D.

Practical issues

Since the integral of the posterior above does not have a closed form we
approximate the posterior using some variational Bayes technique, e.g. by
minimizing the KL-divergence:

G(D(s, a)|d) , P[D(s, a)|d] (2.18)
G(D(s, a)|d) ≈ Q(D(s, a)) (2.19)

DKL(Q||G) ,
∑
s,a

Q(D(s, a))log
Q(D(s, a))

G(D(s, a), d)
(2.20)

2.4.2 Bayesian Policy Gradient
By leveraging the techniques of Bayes Quadrature, a posterior reward can be
combined with the score function to compute a posterior of the gradient of
the expected reward. The prior over the reward leverages the dual space of
the data and it is given a Gaussian distribution with a covariance term that is
proportional to a kernel matrix depending on the size of the data.

A further step on this approach would be to establish a prior on one of the
components of the gradient of the loss function upon which the REINFORCE
algorithm is defined in (as described in the beginning of this section). The key
∗ i.e., from the previous computed posterior

Background | 23

formulations are as follows for the prior of the rewards, the posterior of the
rewards and the posterior for the gradient of the loss function.∗

Reward Prior
f(·) ∼ N(f0(·), k(·, ·)) (2.21)

Reward Posterior

E(f(x)|DM) = f0(x) + kM(x)TCM(yM − f0) (2.22)

Loss-Gradient Posterior

E(ρ|DM) = ρ0 + zM(x)TCM(yM − f0) (2.23)

with ρ0 =

∫
f0(x)p(x)dx (2.24)

An additional element to introduce is the the kernel function k(·, ·). Given
the modeling choice of putting a prior over the rewards, the Fisher kernel
can be used to make the following formulation: k(εi, εj) = u(εi)

TG−1u(εj),
where G is the Fisher Information matrix and u(εi) is the score function of
for path i [43]. In practice, the Fisher kernel can also be given as k(εi, εj) =

u(εi)
Tu(εj) [39].

Alternatively, it is possible to use other kernel functions such as the
Gaussian kernel or the Cauchy kernel that make use of the score function.
Cauchy kernel, on the other hand, has a heavier tail and, therefore, gives more
importance to smaller values if the gradients have very small components.

Finally, the sparsification procedure described in [40] allows for a faster
Bayesian algorithm implementation with the cost of a low loss in performance.
M paths are sampled, where an Approximate Linear Dependence (ALD)
condition check for linearly independent feature vectors. Hence, for a new
path be accepted and incorporated into the training procedure we check the
threshold δt > ν, where δt = ktt − k̃t−1(xt)

T K̃−1t−1k̃t−1(xt). As the kernel
can be interpreted as a covariance matrix, the ALD condition states that the
variance of the current path minus the normalized covariance of the current
path with the previous ones must be greater than a given threshold ν. This
means if the new path xt can provide with new relevant information for the
algorithm or not.
∗ Formulations (1), (2), (3) and (4) are extracted from [43]

24 | Background

2.4.3 Gaussian Process Temporal Difference
Temporal Difference methods, use updates with respect to the successive gains
of information. In other words, they minimize the TD error. On the other
hand, Gaussian Processes use a Normally-distributed prior over consecutive
realizations of a random variable, often by leveraging kernel methods and
data’s dual space. Consequently, Gaussian Process Temporal Difference
methods (GPTD) [44, 45, 40, 41, 46] unify these two methods to define a
Gaussian independent prior for the random variable for each time-step.

Engel et al. (2005) propose an approach which implements GPTD by
modeling the value via discounted return. The objective we are interested to
maximize is the total discounted rewards D(x), given as:

D(x) =
∞∑
i=0

γiR(xi)|x0 = x with xi+1 ∼ pµ(·|xi) (2.25)

That is, the total discounted reward is given the policy-dependent state
transition probability distribution pµ. In this sense, the authors refer to the
MDP problem as having an intrinsic source of randomness. This is because
the randomness ofD(x) is both dependent on the following states from x and
the randomness in the rewards.

By using the definition that V (x) = Eµ[D(x)] and using the stationarity
assumption of the MDP it is possible to write D(xi) = R(xi) + γD(xi+1).
From this, one can define three different stochastic processes. One for the
rewards {Rt}t, one for the value functions {Vt}t∗ and another for a noise
process {Nt}t, such that Rt−1 = HtVt +Nt, where:

Ht =

1 −γ 0 ... 0

0 1 −γ ... 0
...
0 0 ... 1 −γ

 (2.26)

In equation 2.26, Ht represents a matrix that "produces" the temporal
difference. Our prior choices are then with respect to the value function, since
the rewards can be re-written as R(x) = V (x)− γV (x′) +N(x, x′). Finally,
to define the prior and the posterior for the value function, consider Kt as the
kernel matrix andΣt = σ2HtH

T
t . We can then specify the prior, the likelihood

and the posterior for the value function as follows:
∗ It is also possible to model the Q-function instead, as illustrated in [41].

Background | 25

• A Priori: Vt ∼ N(0, Kt);

• Likelihood: V (x) = Eµ[D(x)];

• A Posteriori: V post
t ∼ N(v̂t(x), pt(x)).

Where: v̂t(x) = kt(x)Tαt, pt(x) = k(x, x) − kt(x)TCtkt(x), αt =

HT
t (HtKtH

T
t + Σt)

−1rt−1 and Ct = HT
t (HtKtH

T
t + Σt)

−1Ht. The
online sparsification is applied similarly to the application described for BPG
algorithm. Finally, next we address some assumptions brought by the authors
when deriving the method.

Figure 2.3 exemplifies the recursive relations of GPTD learning. The
noise variables ∆V are defined as ∆V (s) := D(s) − V (s). The observed
variables are only the rewards. Given that the formulation of the value
function is dependent on previous rewards by the Markovian property of
the latent values, the prior to be defined over the rewards is, therefore,
well-defined.

Figure 2.3 – A graphical model that illustrates conditional independencies
GPTD learning. V represents the latent value variables, R represents the
observable rewards and ∆V represents the noise variables. All the V (st)
variables should point to each other by arrows. This is represented by the
dashed line box to avoid cluttering the diagram. Source of the figure: [46].

In order for GPTD be implemented by taking advantage analytical
constructions of Bayesian learning it may requires several assumptions to be
satisfied. Much of other work of Ghavamzadeh and Engel is to generalize
GPTD to frameworks with more relaxed assumptions so as to drive to practical
applications. These assumptions are the following:

Assumption 1: Residuals of the value-function must be possible to be
modeled as a Gaussian Process.

26 | Background

Assumption 2: Each of the residuals of the value-function must be
generated independently from each other.

2.4.4 Bayesian Actor-Critic
The Bayesian Actor-Critic (BAC) method [47, 46, 48, 40, 41] is an actor-critic
method with a GPTD prior over the critic. As a policy gradient method, the
objective is to maximize the total discounted reward by applying gradient
ascent methods. Given that BAC models the critic in a Bayesian way, a
prior is put over the Q-function. As the goal is to optimize the objective
∇η(θ) =

∫
dsdaν(s; θ)∇µ(a|s; θ)Q(s, a; θ), one can consider the following

equations as key steps to make a Bayesian optimization of the objective:
Q Prior

Q(z) ∼ N(·, k(·, ·)) (2.27)

Q Posterior
Q̂t(z) = E[Q(z)|Dt] = kt(z)Tαt (2.28)

Loss-Gradient Posterior

E[∇η(θ)|Dt] =

∫
dzg(z; θ)kt(θ)

Tαt (2.29)

Where αt = HT
t (HtKtH

T
t +Σt)

−1rt−1 with rt−1 representing an observed
reward, z = (s, a) and g(z; θ) = ν(s; θ)∇µ(a|s; θ). The kernel Kt consists
of two components: k(z, z

′
) = ks(s, s

′
) + kF (z, z

′
). The first component

ks(s, s
′
) is a kernel constituted from the states and the second component is

the Fisher kernel. In this work we have decided to model both of them together
with an RBF kernel (also inspired by the work of [49]). Note that the recursive
relations of the Q-function posterior leads to a prior defined over the rewards.
For that reason, in the following experiments’ chapter we will define the prior
by setting a "customized reward"∗.

Complexity Tej et al. (2020) report that Bayesian Actor-Critic algorithms
have complexity O(m2n + m3) for time and O(mn + m2) for storage
complexity, where m stands for the dictionary size and n for the number of
parameters.
∗ This customized reward is a predefined heuristic upon which the agent might bias its
decisions.

Background | 27

2.5 Theoretical Pairwise Comparison of
Bayesian Reinforcement Learning
Methods

Below we provide a summary of the differences between the Bayesian
reinforcement learning algorithms under study.

BQLandBPG Even though policy gradient and tabularmethods are notably
different in nature, [50] shows a correspondence between policy gradient
methods and soft Q-learning.

BQL and BAC Both the BQL algorithm and the BAC algorithm put a prior
over the Q-function and model it as a normal distribution. The BQL algorithm
models the prior over the Q-function for each state-action pair whereas the
BAC algorithm models the prior over the Q-function as a multivariate normal
distribution with covariance matrix given by the kernel function computed
over the score functions of the dictionary of samples. The difference between
the two algorithms is that BPG uses a parameterized function and relies on
gradient-based learning techniques for optimization. The benefits of using
policy gradient methods rely mainly on being able to handle larger state-action
spaces and more complex scenarios.

BPG and BAC Both BPG and BAC are policy gradient methods that
incorporate the Bayesian framework by using Bayes Quadrature and Gaussian
Processes. However, they differ in the sense that BPG considers the trajectories
as a basic observable unit, whereas BAC considers the system as being
Markovian , i.e., the basic observable unit is the one-step system transition
[46].

28 | Background

Chapter 3

Related Work

In this section, we describe the related work. This thesis extends prior work
on reinforcement learning applied to network security, Bayesian reinforcement
learning, and game theoretic modeling of security.

Reinforcement Learning For Intrusion Prevention For an overview of RL
methods applied to network security problems, see the survey by Nguyen and
Reddi (2020). Belowwe discuss the pior work on using reinforcement learning
for intrusion prevention that most relate to this thesis.

Elderman et al. (2017) use a reinforcement learning approach to learn
attack and defense policies in a cyber security simulation consisting of two
agents —one defender and one attacker. This problem formulation is close
to what is proposed in this work. To find policies, they evaluate several
algorithms, namely: Monte-Carlo RL, combined with ε-greedy strategy,
Softmax and upper confidence bounds (UCB); and Q-learning and MLPs
applied together with stochastic approximation algorithms. To learn the
policies, the agents play against each other and update their policies using
one of the mentioned algorithms (but not necessarily the same). The results
demonstrate that Monte-Carlo Softmax RL performs best as the defender
and Monte-Carlo Softmax RL and UCB-based RL methods perform best as
the attacker. Further, the authors explicitly mention that algorithms based
on neural networks peform worse than tabular algorithms when training the
defender.

Ridley (2018) introduces the concept of cyber resilience as being the
capability of being able to maintain a certain level of performance despite
the presence of adversaries. The author then poses a series of challenges
for achieving such system performance, such as being capable of detecting

29

30 | Related Work

movement and presence of attacker, automating the reaction speed to high
volume of alerts and mitigate imbalances in workload. Similar to the approach
taken in this thesis, [9] also uses graph-based model and a RL-method to
compute policies.

Our work differs from the above mentioned works by studying
Bayesian reinforcement learning algorithms and by applying state-of-the-art
reinforcement learning algorithms, e.g. PPO and BAC, rather than traditional
ones like Q-learning.

Hammar and Stadler (2020) define a Markov game model of intrusion
prevention and develop a self-play reinforcement learning method that
automatically finds effective attack and defense strategies starting from zero
prior knowledge [8]. The algorithm that they propose for the problem is PPO-
AR (autoregressive action-sampling version of PPO). In this case, the policy
π(a, n|o) is implemented using two sub-policies by using two different neural
networks, one for π(a|n, o) and another for π(n|o), the first for choosing the
action and the second for choosing the node. Further, an extension to their
approach is provided in [29], where intrusion prevention is modeled as an
optimal stopping problem. The work in this thesis can be seen as a direct
extension to the work by [8] as we use the same game model for our study.
The work in this thesis differs from [8] in the following ways. First, we take
a Bayesian approach, where we incorporate prior knowledge into the agents
policies rather than starting from zero. Second, we focus primarily on learning
against static opponents rather than self-play learning. Finally, we leverage the
use of Bayes quadrature to allow for the incorporation of the prior knowledge
with several extra samples taken from a same policy network.

Bayesian Reinforcement Learning: Deep Bayesian Quadrature Policy
Optimization Tej et al. (2020) comment on Ghavamzadeh and Engel
work on Bayesian policy gradients. In particular, the scalability problem
is studied. An argument is put forward in favor of a lack of stochasticity
treatment for gradient estimation. Therefore, their contribution is towards a
distinctive kernel choice and implementation to account for a universal and
faster Bayesian framework that is reproducible when combining the method
with deep neural networks. Their technique is claimed to achieve significant
improvement in complexity and return for vanilla and natural policy gradients
and trust region policy optimization (TRPO) on 7 diverse MuJoCo domains
[49].

Related Work | 31

Game-theoretic approaches A different game-model than the model used
in this thesis is FlipIt. FlipIt is a two-player game played in continuous time
where any player can take actions independently of rounds. The goal is defined
as to take control of a resource. To symbolize this, a button is pushed to
represent the transfer of the ownership. Subsequently, any player can remain
several time-steps without knowing if it is keeping the ownership to itself.
Pushing the button has a cost, which can define a utility function.

In the work by [51], the optimal strategies in the FlipIt game is studied
under different scenarios. Examples of strategy-types considered are: non-
adaptative, renewal, periodic, exponential, adaptative and no-play strategies.
Feedback-types considered are: non-adaptative, last move and full history.
Other information taken into consideration are: the initial information to be
incorporated as the rate of play or knowledge of strategy, gains and benefits
and views and history.

32 | Related Work

Chapter 4

Modeling the Intrusion
Prevention Game

In this chapter, we describe our method. First, we describe the Markov
game model that we use to model the intrusion prevention use case. Second,
we describe how we run simulations of the game and how we evaluate our
Bayesian reinforcement learning approach.

4.1 The Intrusion Prevention Game
We use the Markov game model defined in [8] to model intrusion prevention
as a game. The game is one of two players—an attacker and a defender —that
is played on a computer infrastructure. The right side of Fig. 4.1 shows the
infrastructure underlying our use case. It is depicted as a graph that includes
four network components.

The component Nstart represents the attacker’s computer and the
remaining components represent the defender’s infrastructure, where Ndata

is the component that the attacker wants to compromise. To achieve this,
the attacker must explore the infrastructure through reconnaissance and
compromise components on the path toNdata. At the same time, the defender
monitors the network and increases its defenses to prevent the attacker from
reaching Ndata. In this adversarial process, both the attacker and the defender
have a partial view of the network.

At the beginning of the game, the attacker knows neither the topology of
the infrastructure nor its vulnerabilities. In contrast, the defender has complete
knowledge of the network’s topology and the vulnerabilities of its components,
but cannot observe the status of attacks.

33

34 | Modeling the Intrusion Prevention Game

Graph Model Network Model

Ndata

Nstart

Ndata

Nstart

Figure 4.1 – Modeling intrusion prevention as a Markov Game. On the left
the graph representation of the IT infrastructure on the right. Image extracted
with permission from [8].

The described adversarial process evolves as a round-based game. In each
round, the attacker and the defender perform actions on components in the
network, continuing until either the attacker wins the game by compromising
Ndata, or the defender wins the game by detecting the attacker.

The nodes, denoted by N , of the graph represent the components of the
infrastructure. Similarly, the edges of the graph, denoted by E , represent
connectivity between components. The graph has two special nodes, Nstart

andNdata, representing the attacker’s starting position and target, respectively.
Moreover, each node Nk ∈ N has an associated node state, Sk = 〈SAk , SDk 〉.
The node’s defense status SDk is only visible to the defender and consists of
m + 1 attributes, SDk,1 . . . , SDk,m+1. Likewise, the node’s attack status SAk is
only visible to the attacker and consists of m attributes, SAk,1, . . . SAk,m. The
attribute values are natural numbers in the range 0, . . . , w, where w > 0.

The values of the attack attributes SAk,1, . . . , SAk,m represent the strength of
m different types of attacks against node Nk, e.g. denial of service attacks,
cross-site scripting attacks, etc. Similarly, the values of the defense attributes
SDk,1, . . . , S

D
k,m represent the strength of the nodes’ defenses against the m

attack types and encodes the node’s security mechanisms, such as firewalls
and encryption functions. Additionally, each node Nk has a special defense
attribute SDk,m+1, whose value represents the node’s capability to detect an
attack.

The attacker can perform two types of actions on a visible node Nk: a

Modeling the Intrusion Prevention Game | 35

reconnaissance action, which renders the defense status SDk visible to the
attacker, or an attack of type j ∈ 1 . . .m, which increases the attack value
SAk,j by 1.

The detection of an unsuccessful attack is determined by a Bernoulli
trial Ber(S

D
k,m+1

w+1
). If the output of the distribution is 0, then this means

that the attack haven’t been detected and the corresponding attack attribute
is incremented by 1. If the attack value exceeds the node’s defense value,
i.e. SAk,j > SDk,j , then the attacker has compromised the node and the node’s
neighbors become visible to the attacker. Conversely, if the attacker performs
an attack that does not compromise a node, then the attack is detected by
the defender with probability p =

SDk,m+1

w+1
, defined by the node’s detection

capability SDk,m+1.
Just like the attacker, the defender can perform two types of actions on a

node Nk: either a monitoring action, that improves the detection capability of
the node and increments the detection value SDk,m+1, or a defensive action, that
improves the defense against attacks of type j ∈ 1 . . .m and increments the
defense value SDk,j .

The actions are performed on a round-by-round basis in the game. In
each round, the attacker and the defender perform one action each, which
brings the system into a new state. The game ends either when the attacker
compromises the target node, Ndata (attacker wins), or when the attacker is
detected (defender wins). The winner of a game is rewarded with a utility of
+1 whereas the opponent receives a utility of −1.

The game evolves as a stochastic game with the Markov property,
P [st+1|st] = P [st+1|s1, . . . , st], which follows trivially from the game
dynamics defined above. The size of the state space S of the Markov game
is (w+ 1)|N |·m·(m+1). Finally, the size of the action spacesA1 andA2 for both
the attacker and the defender is |N | · (m+ 1).

4.2 Environment Instantiation of the Game
Model

In this section, we describe the instantiations of the Markov game model
defined in the previous section. We use the instantiations of the game to
evaluate our approach. We denote one instantiation of the model by an
environment.

For the set of experiments of this work, we have considered two versions
of environments, namely environment Env1 and environment Env2. The

36 | Modeling the Intrusion Prevention Game

differences between the two versions are defined in Table 4.1. The main
differences between the two environments are: i) the randomization of the
starting node of the attacker (with no randomization, the attacker always starts
at Nstart; ii) the initial detection capability; iii) the distribution of the defense
attributes per node; iv) the number of vulnerabilities; v) vulnerability value;
vi) the number of attributes per node; vii) the reward function used (which is
not illustrated in the figure) and viii) the account for reconnaissance activities.

We consider two different reward functions: sparse rewards and dense
rewards. Both reward functions have the same structure but differ in the
density of the rewards. The sparse reward function only give the agents a
reward at the end of every episode which depend only on the outcome of the
game whereas the dense reward function give rewards that depend on the final
state of the game (the defense and attack attributes) and not only about the
outcome of the game. For example, using the dense reward function, the
defender receives a lower reward when winning a game if the attacker has
compromised some nodes compared to the case when the defender wins the
game and the attacker did not compromise any node.

Table 4.1 – Differences between environments Env1 and Env2.

Env1 Env2
i) Random start No Yes
ii) Detection capability 2 1
iii) Defense attribute distr. Unif{2} Unif{7, 8, 9}
vi) # Vulnerabilities 1 per node 1 per layer
v) Vulnerability value 0 1
vi) # Attributes 10 4
vii) Reward Sparse Dense
viii) Reconnaissance No Yes

An example instantiation of Env2 is shown in Fig. 4.2. Another example
can be obtained by changing the initial attack and defense attributes, for
example: SD1 = [0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], SD2 = [0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

and SD3 = [2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2].

4.2.1 Reconnaissance Activities
In Env2, the attacker may play with one of its four attributes or the
reconnaissance activity, which consists of recognizing the defender attributes

Modeling the Intrusion Prevention Game | 37

SA
3 = [0, 0, 0, 0]

SD
3 = [8, 8, 8, 1, 1]

SA
1 = [0, 0, 0, 0]

SD
1 = [9, 8, 7, 8, 1]

SA
2 = [0, 0, 0, 0]

SD
2 = [1, 8, 9, 8, 1]

Figure 4.2 – Graph Model sample for Env2. The attacker may start in any
of the nodes with exception to the server (grey node). The figure presents
an example of typical defense values randomly sampled from a configuration
distribution. Figure template used with permission from [8].

from a chosen node. This process is illustrated in Figure 4.3.

?/0 ?/0 ?/0 ?/0?/0?/0

?/0 ?/0 ?/0

4/0 0/0 8/0 ?/0?/0?/0

?/0 ?/0 ?/0

4/0 0/1 8/0 ?/0?/0?/0

?/0 ?/0 ?/0

4/0 0/1 8/0 ?/0?/0?/0

0/0 9/0 8/0

4/0 0/1 8/0 ?/0?/0?/0

0/1 9/0 8/0

Attacker Attack path Nstart NiNdata Attack type (D/A)

2/0

Attack action Reconnaissance action

State t0 State t1 State t2 State t3 State t4

Figure 4.3 – An illustration of an attack strategy, evolving from left to
right. The attacker first scans a neighboring node for vulnerabilities (low
defense attributes) (state t1). Then exploits the found vulnerability (state t2),
compromises the node, and scans the target node Ndata (state t3). Finally, the
attacker completes the intrusion by attacking Ndata (state t4). Image extracted
with permission from [8].

4.3 Static Opponents’ Policies
For evaluating policies, we define two baseline policies, one baseline defender
and one baseline attacker, as follows.

Definition 1 (Minimal Defender): A static opponent against the attacker
which is a heuristic policy that updates the attribute with the minimal defense
value across all nodes.

38 | Modeling the Intrusion Prevention Game

Definition 2 (Maximal Attacker orGreedyAttacker): A static opponent
against the defender. It is a heuristic policy that updates the attribute with the
maximal attack value across all nodes that are visible to the attacker. If several
choices exist, then it makes a random choice.

4.4 Risk Averse Agents
One general principle that can used to incorporate prior knowledge in
reinforcement learning policies for intrusion prevention is the principle of
risk aversion. Risk Aversion is the tendency to prefer outcomes with low
uncertainty to those outcomes with high uncertainty, even if the average
outcome of the latter is equal to or higher in utility than the more certain
outcome. In the context of intrusion prevention, risk aversion of the
defender may take the form of a preference for strategies that minimizes the
maximum likelihood of a successful intrusion over a strategy that minimizes
the minimum likelihood of a successful intrusion against a particular attack
strategy, for example. In this section, we define risk aversion for our game
model of intrusion prevention and explain how this can be used to define a
risk averse prior to learn intrusion prevention strategies in a Bayesian way.

In this context, risk aversion is a preference to increment the minimum
attribute (Definition 3). Note that a risk averse defense strategy is not
necessarily optimal as the optimal defense strategy depends on the attacker’s
strategy. However, assuming that the defender has not learned the strategy of
the attacker, to be risk averse can be considered as the rational behavior of a
defender, hence it can serve as a better starting point of a defender policy than
starting from a random policy.

Definition 3 (Risk Averse Defender): Consider each node to have m
attributes and |N | to be the number of nodes. We say that an intrusion
prevention strategy a = π(o) of a defender in the intrusion prevention game
of Hammar and Stadler (2020) is risk averse iff

π(o) = argmin
i,k

SDi,k , for i ∈ {1, ..., |N |} and k ∈ {1, ...,m+ 1} (4.1)

where SDi,k refers to the k-th defensive attribute of node Ni ∈ N . That
is, an intrusion prevention strategy is risk averse if, given an observation of
the state of the infrastructure, the strategy selects the action that increments
the currently lowest defense attribute among all nodes and attributes in the

Modeling the Intrusion Prevention Game | 39

infrastructure.

4.5 Theoretical Win Probability
To be able to quantify the quality of policies, we are interested in specifying
theoretical upper bounds on the hack probability for the attacker and the
defender. These upper bounds will be compared to the policies found
with reinforcement learning techniques, which are presented in subsequent
chapters.

To define a theoretical upper bound on the hack probability, consider the
graph model in Fig. 4.1. In this model, we are interested in specifying a joint
distribution for the time it takes for the attacker to compromise of each node
under an optimal policy, which then will be used to compute an upper bound
on the hack probability. Note that, in the model, the attacker cannot move
backwards in the node chain∗.

4.5.1 Upper and Lower Bounds on the Hack
Probability

The Hack Probability is also referred as the Attacker Win Probability in our
plots and in the subsequent results’ chapters.

For the Attacker Agent

Our goal is to compute the probability that the attacker will breach every node
along the way up to the server. P(SAk,j > SDk,j) for a given node k. Assume
that the time-step when the attacker is detected at node k while performing an
attack in attribute type j is geometrically distributed with probability SDk,m+1

10
.

Assume also that the policy for the attacker is known and the probability for
each action is equal to 1.0 for the considered nodes and attributes. This is the
reason why it will be omitted in our formulations†. In addition, consider the
∗ From [52] this could be considered as a Bayes’ network, since we are assuming that the
attacker must only move forward in order to achieve the goal. It is also possible to consider
the agent moving backwards. In this case, one would have a Markov network instead.
† For the purpose of deriving an upper bound, the actions are deterministic, because we do
the calculation for the scenarios that are interesting for us to consider. So, only these are taken
into account.

40 | Modeling the Intrusion Prevention Game

detection capabilities to be fixed for both environments. Therefore:

P(Hack Nk) = P(SAk,j > SDk,j) = (1−
SDk,m+1

10
)S

D
k,j (4.2)

Under the aforementioned considerations one could say that, for Env1,
P(Hack Nk) = (1 − 2

10
)0 = 1.0∗ for node k = 1 or k = 2†. The nodes Nk

are represented as white circles in the Graph Model of Figure 4.1.
It is reasonable to expect the defender to increase the defense

attribute with value equal to zero in the node Ndata, once we are
considering the DefendMinimal opponent - a static opponent.
Therefore, the hack probability for node Ndata would be given by
P(Hack Ndata) = (1 − 2

10
)1 = 0.8. The joint hack probability,

which corresponds to the attacker win probability, will be given as
P(Attacker Win) = P(Hack Ndata)P(Hack Nk) = 0.8 × 1.0 = 0.8, for
both k = 1 or k = 2. Moreover, as both intermediate nodes present the same
level of vulnerability, we consider as equally probable for the attacker choose
between them.

Now, consider the case for the computation of the hack probability for
Env2 and take into account the assumptions from Table 4.1. Assume as an
example the environment sample from Figure 4.2‡. If the attacker starts from
the node Nk, then one should have P(Hack NData) = (1 − 1

10
)2 = 0.81.

As the defender would have time to place an extra defense on the vulnerable
attribute, while the attacker performs the reconnaissance.

However, if one starts fromNstart, then with probability 1
2
we can perform

a reconnaissance activity in the node with the vulnerability. This accounts for
the fraction of the hack probability corresponding to 0.5 × 0.91. Meanwhile
the reconnaissance activity is conducted, the DefendMinimal opponent
would ideally be placing an extra defense on the vulnerability of node Ndata.
This, in turn, would account with the fraction of 0.93 to be multiplied to the
previous component. Thus, so far we have the following hack probability
P(Hack NData) = 0.93 × (0.5 × 0.91 + p2), where the computation of p2 is
∗ Here we omit the condition of P(Hack Nk) on the starting node, since this breaching
probability is independent of the previous nodes attributes.
† In our case both nodes k = 1 and k = 2 has the same hack probability since both admits at
least one attribute with respective defense value zero.
‡ As the vulnerabilities are considered to have a fixed value, this could be considered as a
representative sample.

Modeling the Intrusion Prevention Game | 41

described as follows.

For the computation of p2 we will present two main forms to achieve
this result. First, the agent could merely perform a reconnaissance activity
on the remaining node, to find out the vulnerability. In this case, the
defender would have extra steps to improve in one more unity the vulnerable
defense of the vulnerable node. This would yield the following probability:
P(Hack NData) = 0.5× 0.93 × 0.91 + 0.5× 0.93 × 0.92 ≈ 0.62.

Secondly, if the agent insists in attempting to breach the node it is currently
in, then we must consider the expectation for the minimal attribute value∗.
As Env2 is defined to have defense attributes uniformly distributed in the
set {7, 8, 9}, as a simplification one could use the minimum possible defense
attribute value, i.e., 7. Hence, P(Hack NData) = 0.93 × (0.5× 0.91 + 0.5×
0.97) ≈ 0.50.

Finally, we should take into consideration a uniform distribution for the
starting node. Therefore for the two cases considered above one could compute
the hack probability for the attacker as: P(Hack NData) = 1∗0.62

3
+ 2∗0.81

3
≈

0.75 and P(Hack NData) = 1∗0.50
3

+ 2∗0.81
3
≈ 0.70, respectively. Those

are upper-bounds for the attacker win probability against DefendMinimal
opponent regarding Env2 and under the considered assumptions.

For the Defender Agent

In this case we are interested in finding a lower bound for the attacker win
probability. Now we are computing the hack probability with respect to the
defender agent. As we wish the defender agent to win over the attacker, we
want it to be a better player then DefendMinimal. Thus, this would set
lower bound for the attacker win ratio.

The assumptions used here are similar to those of the previous subsection.
We begin with illustrating two possible scenarios for both environments, the
best one and a bad one. Those are: one where the defender attribute is to be
the vulnerability and another where it is minimal but not the vulnerability.

The intuition for deriving a lower bound for the attacker win probability for
the defender case is pretty simple and works for both environments Env1 and
Env2. As we consider an opponent that is static and attacks accordingly to
a maximal attribute type, we can basically work with two simplified scenarios.
∗ This formulation could be trickier to formulate once it would require that we define the
distribution for theminimum in a given node. Thus it might suffice to substitute by theminimal
possible for defense value distribution (disregarding vulnerability).

42 | Modeling the Intrusion Prevention Game

The first scenario considers that the attacker chooses the attribute type
with the vulnerability. In this case the defender can choose to defend the
vulnerability of the sensible node and buy time to increase the vulnerability of
other defense attributes or the detection capability.

In a second scenario, one could consider that the attacker does not
start attacking the vulnerable attribute type and, instead, it starts randomly
distributed through the other types. As the other types has a higher initial
defense value, the defender could instead focus in increasing the detection
capability. In addition, this could be combined with the increase of some
attribute types.

Even though the second scenario is more harmful to Env1, this problem
could aggravate for Env2 if one consider the randomization of the attacker
starting node. A lower bound considered to be zero (which take first scenario
into account) is a reasonable safer bound for both environments. In addition
to our set of experiments, we inspect the learned policies so as to derive good
conclusions from the learned environments.

In order to illustrate some possibilities of attribute types’ realizations
Figure 4.4 and 4.5 present some cases for both environments. Figure
4.4a illustrates the case for the MaximalAttacker agent starting in the
vulnerable attribute type. The red arrows represent a possible realization of a
sequence of states which would lead to the winning of the attacker (marked
with a green check). Figure 4.4b illustrates the case for a non-vulnerable
attribute type. One can notice that a realization of a winning scenario is
sparser.

Figure 4.5a illustrates the case for the MaximalAttacker agent starting
in the vulnerable attribute type for environment Env2. The sequence of
realization of a attacker win event shows that, at each time-step, the defender
has a possibility to remain one step-ahead of the attacker. On the other hand,
in Figure 4.5b one could notice the same effect of sparsification for the event of
"attacker winning". In particular, since attribute types are higher for this case,
the effect of this sparsification is stronger. The blue arrows illustrate a possible
sequence of states that could potentially lead to an "attacker win" scenario.

These considerations of possible scenario draws and deriving a lower
bound for attacker win probability are particularly interesting for us to: i)
derive a reasonable theoretical baseline, so as to study the performance of our
algorithms; ii) facilitate the inspection of learned policies and help to draw
conclusions; iii) motivate and help the formulation of possible different risk

Modeling the Intrusion Prevention Game | 43

averse agents.

(0,0)

(1,0)

(1,1)

(a) The case with vulnerability.

(0,2)

(1,3)

(1,2)

(2,4)

(2,3)

(2,2)

...

...

...

(b) The case without vulnerability.

Figure 4.4 – Some examples of how an attribute type could be filled with attack
and defense attributes for Env1. The red arrows indicate the sequence of states
that leads to the attacker to win, indicated as a green check.

4.5.2 Evaluation Methods
To evaluate the studied algorithms with respect to the research questions, we
train attacker and defender policies in simulation and measure the average win
ratio (hack probability) of the attacker over time.

Additionally, for the cases of the models trained on Env2, we evaluate
the algorithms by running evaluation episodes using the latest version of the
model, which is presented in boxplots. These boxplots accounts for two
different evaluation cases: one regarding sampling from the policy distribution
and another by doing an argmax operation. They are evaluated for 1000

44 | Modeling the Intrusion Prevention Game

(0,1)

(1,1)

(1,2)

(2,3)

(2,2)

(3,3)

...

(a) The case with vulnerability.

(0,7)

(1,8)

(1,7)

(2,9)

(2,8)

(2,7)

...

...

...

...

(b) For theminimal attribute type case,
excluding vulnerability.

Figure 4.5 – Some examples of how an attribute type could be filled with attack
and defense attributes for Env2. The red arrows indicate the sequence of states
that leads to the attacker to win, indicated as a green check. The blue arrows
indicate a possible sequence of states that could eventually lead to an attacker
win.

games for three different training seeds. These two approaches aim to indicate
whether the agent has learned a deterministic or a stochastic policy.

4.6 Experiments
In the following chapters, we investigate the performance of the studied
Bayesian reinforcement learning algorithms for the two environments: Env1
and Env2.

In Chapter 5, we apply Bayesian Q-Learning to the simpler environment
version Env1. In Chapter 6, Bayesian REINFORCE is applied to the more
challenging environment Env2 which includes reconnaissance activities and
random initializations, making the BQL algorithm impractical. Finally,

Modeling the Intrusion Prevention Game | 45

Chapter 7 presents the evaluation of our implementation of Bayesian Actor-
Critic in environment Env2.

46 | Modeling the Intrusion Prevention Game

Chapter 5

Bayesian Q-Learning for
Network Intrusion Prevention

This chapter investigates the Bayesian Q-learning algorithm for training
attacker and defender policies against a static opponent. Since Bayesian
Q-learning is a tabular algorithm, we focus here on a the simplest version
of our game model: Env1, as described in the previous chapter. We
begin by explaining our method, including the priors, the baselines and the
hyperparameters. Then, we present the results of our experiments.

5.1 Experiments’ Configuration
Defining a prior for the Bayesian Q-learning algorithm corresponds to define,
a priori, values for the parameters of the Normal-Gamma distribution.
Specifically, for each prior, we define a Gaussian mean and covariance matrix
for the values of the Q-table and the α and β hyperparameters to define the
shape and the rate of the gamma distribution that models the variance of the
Q-table distribution.

As explained in Section 2.4.1, the Bayesian Q-Learning algorithm models
the reward as a normal distribution. To incorporate prior knowledge in the
BQL algorithm, we explore the relation between the rewards and the Q-
distribution. Specifically, we use a Q-distribution and a reward for each
state-action pair. In order to prioritize the state-actions that would trigger a
higher expected reward, we want to select hyperparameters for the Normal-
Gamma distribution such that it will produce posterior parameters for the Q-
distribution (for each state-action pair) that will lead to a particular mean value
over the rewards distribution. In the following subsections we define three

47

48 | Bayesian Q-Learning for Network Intrusion Prevention

priors, two for the attacker and one for the defender.

5.1.1 Model Configurations for the Attacker Agent
Training

BQL Prior 1 (attacker case): This prior achieves the best possible
theoretical reward. The hyperparameter µ is chosen in such a way to enforce
a prior associated to the best possible reward on the attribute’s configuration
over the possible nodes. It sets the Normal-Gamma parameters as µ = −10,
σ2 = 0.25, α0 = 3.0 and β0 = 4.0. The variance and Gamma parameters are
chosen so that the model can account for minimal exploration.

BQL Prior 2: This prior enforce a zero-knowledge of the advantageous
actions to take. Moreover, given the higher uncertainty we enforce a more
inflated variance. The parameters of the Gamma distribution for the variance
are chosen in a way such that the mean of the Gamma distribution is zero
and its variance is 100.0∗. Thus, one should consider for this prior: µ = 0,
σ2 = 1.0, α0 = 0.1 and β0 = 0.1†.

5.1.2 Model Configurations for the Defender Agent
Training

BQL Prior 1 (defender case): This prior enforce a zero-knowledge of the
advantageous actions to take. It sets the Normal-Gamma parameters as µ =

0.0, σ2 = 5.0, α0 = 0.2 and β0 = 0.2.

5.1.3 Baselines and Hyperparameters
As Bayesian Q-Learning is an extension from Tabular Q method, it is natural
to consider this as a baseline. Moreover, the theoretical bounds introduced in
Chapter 4 were also considered as baselines.

TabularQ: This baseline is the non-Bayesian version of Q-learning,
introduced in Section 2.2.4.

Table 5.1 presents critical parameters for the implementation of BQL, as
the discount factor, learning rate and exploration range used.
∗ Consider that E(Gamma(α, β)) = α

β and Var(Gamma(α, β)) = α
β2 .

† Note that the Gamma distribution domain is defined to be strictly positive, so we can only
consider a mean value approximately zero to have a finite β.

Bayesian Q-Learning for Network Intrusion Prevention | 49

Table 5.1 – Hyperparameters for TabularQ and BQL.

Discount Factor Learning Rate ε
0.999 0.0005 [0.01, 1.0]

5.2 Experimental Results
In this section, we outline the evaluation results of the BQL algorithm on
Env1.

5.2.1 Analysis of AttackerWin Probability for Attacker
and Defender Training

Figure 5.1 illustrates the training of the attacker agent against static baseline
under model configurations BQL Prior 1 and 2. Prior 1 places an optimal
mean value for the reward with a moderate variance to account for precision
and a small level of exploration. It can be observed that this prior converges
faster to values close to the theoretical bound whereas prior 2 performs worse
than the Tabular-Q baseline.

Figure 5.1 – Attacker win ratio against the number of training iterations; the
graph show the results from training the attacker for Env1; the results are
averages over three training runs with different random seeds; the shaded
regions show the standard deviation.

50 | Bayesian Q-Learning for Network Intrusion Prevention

Figure 5.2 illustrates the training of the defender agent against static
baseline. As one can observe, defender training under BQL Prior 1 has not
succeeded to converge faster than Tabular Q baseline. In fact, a grid search
over the defender distribution parameters was done. This has demonstrated
that the defender learning usually achieves attacker win ratio performances
above 0.2 and often converging to a similar level as the one illustrated in the
figure.

Figure 5.2 – Attacker win ratio against the number of training iterations;
the graph show the results from training the defender agent against
AttackMaximal opponent for Env1; the results are averages over three
training runs with three different random seeds; the shaded regions show the
standard deviation.

5.3 Discussion of the Results
As one can observe in Fig. 5.1, the Bayesian approach converges with
significantly less amount of data, depending on the specification of the prior,
compared to the non-Bayesian counterpart. Prior 1, which corresponds to
the optimal initial value of the distribution parameters performs best and is
close to the optimal hack probability of 0.8. Prior 2, on the other hand, is
less efficient than the non-Bayesian approach. This indicates that the choice
of prior determines the peformance of BQL.

Chapter 6

Bayesian REINFORCE for
Network Intrusion Prevention

We begin by explaining the interpretation for the kernel and how a typical
initialization look like. Then, we present several different configurations for
our model. Lastly, we present the baselines, hyperparameters’ definitions,
experimental results and the discussion of the results.

6.1 Experiments’ Configuration
In our experiments, we use model type 2 from [46] and consider different
priors with respect to the reward function. This leads to the definition of a
posterior over the prior by a Gaussian process that observes the true data that
comes from it and a prior that is given by a kernel function.

Figure 6.1 illustrates a random sample of a kernel from a non-trained
model. This kernel is represented as a heatmap with its correspondent scale
indicated on the right side. The figure presents a matrix with 50 rows and 50
columns, which corresponds to the kernel function of paired combinations of
the gradients of the policy networks with respect to the sampled games. In
practice, the kernel matrix works as a covariance matrix for the underlying
model.

6.1.1 Model Configurations for the Attacker Agent
In this section, four different priors are formulated and six different
configurations for the attacker are provided to support the analysis. The priors

51

52 | Bayesian REINFORCE for Network Intrusion Prevention

Figure 6.1 – Random sample of a normalized Kernel initialization. The matrix
represents the kernel of all pairs of gradients fro the sampled games’ policies.

are defined over the rewards in the environment and exploit different types of
heuristics and domain knowledge about the environment:

Vanilla BPG: This model is the default configuration that follows directly
fromGhavamzadeh’s algorithm. Its prior is defined according to the derivation
of the Bayesian Policy Gradient algorithm and uses a zero mean for the reward
distribution. This model configuration accounts for kernel and noise variance
of 10.0. The discount factor considered for this case is equal to 1.0. For the
attacker case, we also consider a version of this model with discount factor
equal to 0.999.

Prior Type 1: This prior checks for past reconnaissance activities. If they
are available, then this prior associates a higher reward to the smallest defense
attribute with the following rule:

R(a) = 1−
min({SDk,j(a)}j)

10
(6.1)

In this formula, {SDk,j(a)}j is the set of the defender attributes (for each
attribute j) for node k, reconstituted from past reconnaissance activities. It
depends on the action a to compute the target node. This formulation is then
divided by the distance from the current node to the final one (i.e., the server).

Bayesian REINFORCE for Network Intrusion Prevention | 53

In case the past reconnaissance activities are not available, then the
prior associates a higher reward to the maximum attack attribute (consider
{SAk,j(a)}j the attacker attributes function defined from the action a), i.e.,

R(a) =
max({SAk,j(a)}j)

10
(6.2)

Noise variance used is equal to 1.0.

Prior Type 2: This prior seeks to penalize the fact that the attacker has not
yet performed a reconnaissance activity. Thus, in this case R(a) = −0.9999.

R(a) = 1−
min({SDk,j(a)}j)

10
(6.3)

Noise variance used is equal to 1.0.

Prior Type 3: This prior uses the information of the current state and
disregard the current action. By doing this, a reward is given to the best action
that might not be the current one. This approach may introduce extra noise to
the attributed reward and it might perform worse. Moreover, it uses the same
formulation as Prior Type 2. Noise variance used is equal to 1.0.

Prior Type 4: This prior does not consider reconnaissance activities and it
was first designed to handle Env1. Its formulationmimics equation 6.2. Noise
variance used is equal to 1.0.

Note that all priors and models specified under this subsection are also
multiplied by the inverse of the distance of the attacker from the server node.
This intends to ensure the attacker finds an strategy according to the shortest
path.

6.1.2 Model Configurations for the Defender Agent
In this section, we define the model configurations for the customized prior of
the defender.

Vanilla BPG This model configuration is the default model from the
algorithm. It uses kernel and noise variance equal 10.0.

54 | Bayesian REINFORCE for Network Intrusion Prevention

Risk Averse This model configuration does not use the kernel, it accounts
for noise variance of 1.0 and uses the risk averse framework described in 4.4.

6.1.3 Baselines and Hyperparameters
PPO This baseline is the state-of-the-art for the given problem in this work
under the same environment scenario [8].

REINFORCE This baseline is also used in the seminal work of [8].
Bayesian Policy Gradient is an extension upon this type of algorithm and,
therefore, it is a natural baseline for comparison.

Theoretical Bound This baseline follows the reasoning in Section 4.5.
Regarding the attacker training against DefendMinimal opponent, we
consider 0.7 as an upper bound. Regarding the defender training against
AttackMaximal opponent, we consider 0.0 as a lower bound.

The baselines will not only offer a performance reference for our
algorithms, but also serve as a training behaviour comparison as it is possible
to inspect the policies learned along the training episodes.

Our approach for the parameterized policy considers a feed-forward
network with two layers with hidden dimension specified as in Table 6.1.
The following table summarizes the relevant hyperparameters for training.
Moreover, we have investigated the performance with two different values for
the discount factor: 0.999 and 1.0.

Table 6.1 – Hyperparameters for RL algorithms.

Parameter BPGs REINFORCE PPO
Batch Size 1 32 2000
Hidden Dim 128 128 128
Hidden Layers 2 2 2
Discount Factor 0.999 or 1.0 1.0 0.999
Learning Rate 0.0001 0.0001 0.0001

Learning Rate Decay No No No
Optimizer Adam Adam Adam

Dictionary Size 50 - -

Bayesian REINFORCE for Network Intrusion Prevention | 55

6.2 Experimental Results

6.2.1 Analysis of AttackerWin Probability for Attacker
Training

The attacker’s performance is measured in terms of the attacker win
probability. Figure 6.2 illustrates the performance of Vanilla BPG against
the baselines. The BPG algorithm was able to achieve higher values for the
attacker performance.

Figure 6.2 – Attacker win ratio against the number of training iterations; the
graph show the results from training the attacker for Env2; the results are
averages over three training runs with different random seeds; the shaded
regions show the standard deviation. These trials make use of noise variance
of 10.0 with kernel learning with RBF kernel variance of 10.0. These results
consider a discount factor of γ = 1.0.

Figure 6.3 illustrates the results when we consider the training strictly in
relation to the information that comes from the Prior Types defined in Section
6.1.1 for the case of discount factor equal to 1.0. At the bottom, the boxplot
illustrates statistical summaries for the evaluation of those priors with respect
to the latest version of the trained model. This evaluation accounts for 1000
runs for each of the three different seeds used during training. For each prior
type there are two boxplots, one for sampling action during evaluation and
another for the action with maximal probability. The statistical summaries that
the boxplots provide are: the quantiles (marked by the different segmentation
parts), the mean (small green triangle), the median (thicker black horizontal

56 | Bayesian REINFORCE for Network Intrusion Prevention

line inside the box).
One can observe that prior types 1 and 4 performed worse during

training. However, prior type 1 performed much worse during evaluation as
is demonstrated in the boxplot. It can also be seen that prior type 3 has the
best performances for both training and evaluation. Prior type 2 demonstrates
much smaller variance during evaluation.

The median line in the boxplots indicates the level that splits the
distribution in 50%. For prior types 3 and 4, for instance, half of the attacker
win ratios were registered above the median value line. Lastly, the boxplots
exhibit similar behaviour for both evaluation methods.

When using a discount factor equal to 0.999, Figure 6.4 illustrates the same
prior types’ case for the attacker agent as the previous graph. For this case, we
are interested in distinguishing the performance between prior types 3 and 4
only. For the top figure, the mean values were plotted by using a running mean
of window size 10 in order to aid the distinction between priors’ performances.

The first thing one can observe is the reduced variance for prior types 3
and 4 under the two evaluation methods. In addition, despite the fact that
prior type 4 has a slightly better performance during training, it performs
worse than prior 3 during evaluation. Lastly, the Vanilla BPG demonstrates
the same behaviour for both evaluation methods.

6.2.2 Analysis of Attacker Win Probability for
Defender Training

Figure 6.5 illustrates the training for the Vanilla BPG model against the
baseline under configuration for discount factor equal to 1.0. One can observe
that BPG converges as to the same performance as the REINFORCE baseline
and also achieve a better performance after a fewer number of training steps.

Figure 6.6 illustrates Vanilla BPG and Risk Averse cases for the defender
training against the static opponent for the scenario where the discount factor
is equal to 0.999. The top figure shows the attacker win probability for 10000
training episodes with three different random seeds. The bottom figure shows
the evaluation under the two described methods (sampling and argmax) for
1000 games with each of the random seeds used for training.

It is shown that, with a smaller discount factor, the agent does not achieve
as good performance in training as the previous case for γ = 1.0.. In fact,

Bayesian REINFORCE for Network Intrusion Prevention | 57

Figure 6.3 – Attacker win ratio for training and evaluation; top and middle
figures illustrates the training of attacker agent against static opponent; bottom
figure illustrates the evaluation distribution the for the latest trained model
version. S-PX: sampled actions for prior X. A-PX: argmax of actions for prior
X.

58 | Bayesian REINFORCE for Network Intrusion Prevention

Figure 6.4 – Attacker win ratio of attacker agent against DefendMinimal
agent. The top figure shows the training attacker win ratio for three different
seeds withmean values under a rollingmeanwith window size 10. The bottom
figure shows the boxplot distribution for the last trainedmodel. Discount factor
γ = 0.999. S-PX: sampled actions for prior X. A-PX: argmax of actions for
prior X. VBPG: Vanilla BPG.

the REINFORCE baseline performs better for this value of the discount
factor. However, it can be observed from the corresponding boxpĺots that
the two evaluation cases present distinct behaviour for both models, but with
opposite trends. While the risk averse model has achieved a higher variance
for the argmax evaluation case, the vanilla model has higher variance for the
sampling case.

Bayesian REINFORCE for Network Intrusion Prevention | 59

Figure 6.5 – Attacker win ratio against the number of training iterations; the
graph show the results from training the defender for environment v19; the
results are averages over three training runs with different random seeds; the
shaded regions show the standard deviation. These trials make use of noise
variance of 10.0 with kernel learning with RBF kernel variance of 10.0. These
results consider a discount factor of γ = 1.0.

6.2.3 Kernel Representations
In this section, we analyze the kernel representation from the training process.
In addition, we investigate what kind of kernel would be produced considering
a model that have only trained by means of heuristic specification, with no
account for the kernel learning.

Figure 6.7 shows the case for Prior Type 3, which did not use the kernel
formulation during training and instead only used the information that comes
from the prior. By investigating how the kernel responds in this case we obtain
insights about how the kernel works. The top left figure shows how the kernel
looks like if it were to consider the full kernel matrix, i.e., to disregard the
sparsification procedure and consider all the sampled states. In particular, the
top left case of Figure 6.7 is the same case for the bottom left, which accounts
for the sparsification.

By tuning an accuracy parameter ν, one can control the dictionary
of sampled game states by avoiding repeated information that are linearly
dependent up to this accuracy parameter. In fact, one can observe that the
represented matrix heatmap on top left of Figure 2.3.3 repeat very similar
patterns across its columns and rows.

As the variance of the Gaussian kernel function is tuned, for the cases of

60 | Bayesian REINFORCE for Network Intrusion Prevention

Figure 6.6 – Attacker win ratio of defender agent against AttackMaximal
agent. The top figure shows training results for Risk Averse and Vanilla
Defender. The bottom figure shows the boxplot for the evaluation of the latest
model. S: Sampled. A: argmax. VBPG: Vanilla BPG. RA: Risk Averse.
γ = 0.999.

1.0 (top right), 0.01 (bottom left) and 0.0001 (bottom right), one can observe
the need for including more samples into the dictionary. The first case makes
use of 5 samples, the second 12 and the third 14. Moreover, below a threshold,
the number of used samples remains fixed at the level of 14. This differs from
the results when training the defender, as we discuss below.

Another difference is regarding the range of the values. Despite the fact
that there is a need for a fixed number of 14 samples, if one decreases the
variance, the range of values tend to collapse between a diagonal value of 1.0
and a covariance of zeros. A final remark about this picture is that this was

Bayesian REINFORCE for Network Intrusion Prevention | 61

the case for the best prior, the analysis for the worst prior revealed that the
distinction of the values for different levels of kernel variances was poor.

The case for the defender against AttackMaximal opponent can be
observed in Figure 6.8. In the same order as before, these plots are related to
the variance levels of 10.000, 100, 5.000 and 100.000, respectively. The top
left illustrates the kernel when considering all samples from the dictionary.
As we lower the variance, one can observe that less samples are considered.
Another distinctive difference for the defender case is the order of the variance
level, which suggests that the training for the defender requires a different
kernel choice than for the attacker. We can notice also an opposite trend
regarding the covariance values as the attacker. For the attacker, reducing the
kernel variance led to kernel values that collapses in either 1.0 or 0.0. For
the defender, lowering the kernel variance makes all the kernel values tend to
collapse to 1.0.

Figure 6.7 – Kernel matrices produced by a trained attacker agent against
DefendMinimal agent. Top left: variance of 0.01, top right: variance of
1.0. Bottom left: 0.01, bottom right: 0.0001.

62 | Bayesian REINFORCE for Network Intrusion Prevention

Figure 6.8 – Kernel matrices produced by a trained defender agent against
AttackMaximal agent. Top left: variance of 10000, top right: variance of
100. Bottom left: 5000, bottom right: 100000.

6.2.4 Working Time Profiling
Figure 6.9 presents a profiling of the working time for the BPG algorithm for
the attacker case. The defender has demonstrated a similar behaviour during
our investigations. The bar on the left represents the composition of the bigger
part of the bar on the right. The estimations are averaged over five training
episodes and the vertical line on the top of each column represents a standard
deviation. As one can observe the working time scales up linearly with the
number of samples as demonstrates the algorithm complexity formula of
Section 2.3.

6.3 Discussion of the Results
Attacker As the trained policies of the attacker perform similar in both
evaluation scenarios, we can conclude that the converged policies tend to be
deterministic and that the policies are stochastic only in a few cases.

Bayesian REINFORCE for Network Intrusion Prevention | 63

Figure 6.9 – Profiling of time required for different tasks our Bayesian
REINFORCE algorithm; the bars corresponds to a percentage in relation to
the time required for a full episode averaged over 5 initial runs and considering
M=50. The values for BQGP column corresponds to the cumulative time
for all M samples. The vertical lines on the top of each bar corresponds to
the standard deviation divided by the mean value of a full episode. BQGP:
Bayesian Quadrature Gaussian Process. 100% corresponds to a mean of 2.54
seconds.

Defender Regarding defender training against a static opponent, the results
for the case γ = 0.999 suggests that either the agents have converged to a
stochastic policy or the training process might require extra episodes in order
to converge. In particular for Vanilla BPG, the argmax evaluation had a
smaller variance, which indicates that the defender has learned a stochastic
policy. On the other hand, the increased argmax evaluation for the risk averse
defender suggests that the agent might require extra training to converge to a
deterministic policy.

64 | Bayesian REINFORCE for Network Intrusion Prevention

Chapter 7

Bayesian Actor-Critic for
Network Intrusion Prevention

This chapter evaluates the Bayesian Actor-Critic algorithm∗ that is described
in Section 2.4.2. First, we specify the priors for our set of experiments. Then,
we define the used baselines and hyperparameters. Finally, we present the
results and a discussion.

7.1 Experiments’ Configuration
The BAC algorithm uses a prior over the Q-function which is recursively
defined by the rewards.

7.1.1 Model Configurations for the Attacker Agent
Vanilla BAC: This model uses GPTD learning with kernel and noise
variance equal 10.0. We use two versions of this model: one with γ = 1.0

and another with γ = 0.999.

Prior Type 1: This prior penalizes the attacker if it has not yet performed a
reconnaissance activity. In this case R(a) = −0.9999.
∗ Our implementation of the BAC algorithm have is inspired by the MATLAB
code developed by SequeL team. This code is available through the platform
https://team.inria.fr/sequel/software/bac/.

65

66 | Bayesian Actor-Critic for Network Intrusion Prevention

R(a) =
1

2
(1−

min({SDk,j(a)}j)
10

) (7.1)

Prior Type 2: This prior uses the information of the current state and
disregards the current action. A reward is given conditioned on the current
state. It uses the same formulation as Prior Type 2 from Chapter 6.

Note that all priors and models specified under this subsection are also
multiplied by the inverse of the distance from the attacker to the target node.
The purpose of this is to encode a preference of the attacker for attack strategies
with shorter paths to the target node.

7.1.2 Model Configurations for the Defender Agent
We use the same model configurations as in the previous chapter for training
the defender agent:

Vanilla BAC This model configuration is the default model from the
algorithm. It uses kernel and noise variance equal to 10.0. For this model
we use the values 1.0 and 0.999 for the discount factor (Vanilla BAC types 1
and 2, respectively).

RiskAverse This model configuration does not use the kernel representation
(and therefore GPTD is not needed to learn a reward process), it uses a
noise variance with value 1.0 and uses the risk averse framework described
in Section 4.4.

7.1.3 Baselines and Hyperparameters
For this set of experiments we have used the same baselines as in Chapter 6.
The hyperparameters are listed in Table 7.1.

Bayesian Actor-Critic for Network Intrusion Prevention | 67

Table 7.1 – Hyperparameters for RL algorithms.

Parameter BACs REINFORCE PPO
Batch Size 4 32 2000
Hidden Dim 128 128 128
Hidden Layers 2 2 2
Discount Factor 0.999 1.0 0.999
Learning Rate 0.0001 0.0001 0.0001

Learning Rate Decay No No No
Optimizer Adam Adam Adam

Dictionary Size 50 - -

7.2 Experimental Results

7.2.1 Analysis of AttackerWin Probability for Attacker
Training

Figure 7.1 shows the results for the case when the discount factor is equal
to 0.999. Despite the fact that it has presented a reduced variance during
training, the performance level is approximately the same as in the previous
case.

7.2.2 Analysis of Attacker Win Probability for
Defender Training

Figure 7.3 illustrates the training of the defender agent against a static
opponent under model configurations Vanilla BAC types 1 and 2. After
some training episodes it presents an inflated variance behaviour, similar to
the phenomenon observed in the work [8]. Moreover, the change of noise
variance seems to not have any significant effect.

Figure 7.4 illustrates the same case as before but with a reduced discount
factor. It can be observed that the Vanilla BAC model converges faster and
to better values than the previous case. The inflated variance is still notable,
though. The risk averse defender had a worse performance and behave
similarly to the REINFORCE baseline, but with a higher variance. The

68 | Bayesian Actor-Critic for Network Intrusion Prevention

Figure 7.1 – Attacker win ratio of attacker agent against DefendMinimal
agent. The top figure shows actual values in a frame of one episode for a
shorter time-horizon. The bottom figure shows the boxplot distribution for the
last 5000 episodes from the middle figure. The green triangle represents the
mean values. These results consider a discount factor of γ = 0.999.

Figure 7.2 – Attacker win ratio of attacker agent against DefendMinimal
agent. This plot exhibits the performance considering different priors.

boxplots from this figure indicate that the sampled and argmax evaluation
had the same effect.

Bayesian Actor-Critic for Network Intrusion Prevention | 69

Figure 7.3 – Attacker win ratio against the number of training iterations; the
graph show the results from training the defender for environment v19; the
results are averages over three training runs with different random seeds; the
shaded regions show the standard deviation. These trials make use of RBF
kernel variance of 10.0. Vanilla BAC 1 has noise var. 10.0 and Vanilla BAC 2
has noise var. 1.0. These results consider a discount factor of γ = 1.0.

Figure 7.4 – Attacker win ratio of defender agent against AttackMaximal
agent. The top figure shows actual values in a frame of one episode for a
shorter time-horizon. The bottom figure shows the boxplot distribution for the
last 5000 episodes from the middle figure. The green triangle represents the
mean values. These results consider a discount factor of γ = 0.999.

70 | Bayesian Actor-Critic for Network Intrusion Prevention

Figure 7.5 – Attacker win ratio of defender agent against AttackMaximal
agent. The figure shows the performance for the Risk Averse agent and Vanilla
BAC.

7.2.3 Kernel Representations
Figure 7.6 illustrates the kernel matrices that are produced when training the
attacker agent with Vanilla BAC 1 model against a static opponent. In the
figure, the kernel variance is set to 10., 0.1 and 0.005, respectively. It can
be observed that the minimal value decreases as the variance is decreased.
Moreover, the maximum dictionary size is 47. Here, we can also observe the
effect of a threshold for the attacker training. This means that if the variance
level is reduced to a value below 0.005, then no change in the size of the
samples dictionary is detected. The minimum dictionary size observed is
equal to one and it happens only under settings with high variances. Regarding
the defender training, the dictionary size is equal to one for all model cases and
under a wide range of variance values (from 0.001 to 1010).

7.2.4 Working Time Profiling
Figure 7.7 presents the working time profile for the BAC algorithm for the
attacker case. The defender has a similar profile. The bar on the left represents
the composition of the bigger part of the bar on the right. The estimations are
averaged over five training episodes and the vertical line on the top of each
column represents a standard deviation.

Bayesian Actor-Critic for Network Intrusion Prevention | 71

Figure 7.6 – Kernel representation from the attacker training under model type
Vanilla BAC 1. From top to bottom, kernel variances are: 10., 0.1 and 0.005.
Dictionary sizes are: 3, 34 and 47, respectively.

72 | Bayesian Actor-Critic for Network Intrusion Prevention

Figure 7.7 – Profiling of time required for different tasks of Bayesian Actor-
Critic algorithm; the bars corresponds to a percentage in relation to the time
required for a full episode averaged over 5 initial runs and considering M=50.
The values for GPTD column corresponds to the cumulative time for all M
samples. The vertical lines on the top of each bar corresponds to the standard
deviation divided by the mean value of a full episode. GPTD: Gaussian
Process Temporal Difference.

Bayesian Actor-Critic for Network Intrusion Prevention | 73

7.3 Discussion of the Results
In our results, we observe an inflated variance effect when training the
defender. A similar effect was observed in [8] when training the defender
agent against the same static opponent.

74 | Bayesian Actor-Critic for Network Intrusion Prevention

Chapter 8

Discussion of the Results

This chapter summarizes the findings of the thesis and relates them to the
research questions.

8.1 The Experimental Results in Relation to
the Research Questions

In this section we summarize the experimental results and relate them to the
research questions that are stated in the beginning of this thesis.

8.1.1 Efficiency of Exploration
One of our research questions is whether the Bayesian reinforcement
learning method can allow more efficient exploration when learning intrusion
prevention policies compared with the non-Bayesian counterpart. To quantify
the efficiency of exploration, we analyze the number of episodes required of
each method to converge, see Fig. 8.1 and Fig. 8.2.

In Fig. 8.1 it can be seen that the number of episodes required to converge
when training the attacker with the PPO and BAC methods is higher than the
number of episodes required to converge with BPG and REINFORCE. Figure
8.2 shows the number of episodes required to converge when training the
defender. In contrast to the number of episodes required to train the attacker,
the number of episodes required to train the defender is approximately the
same for all evaluated methods.

75

76 | Discussion of the Results

Figure 8.1 – (For Attacker training). Number of episodes to achieve the best
mean performance for attacker training under policy gradient methods.

Figure 8.2 – (For defender training). Number of episodes to achieve the best
mean performance for defender training under policy gradient methods.

8.1.2 Sample Efficiency
To analyze the sample efficiency of the evaluated method, we look at the
number of episodes to reach a certain performance level. In Fig. 8.3 the
number of episodes to reach the best performance is shown and in Fig. 8.4 the
number of episodes to reach a specified performance level is shown. The plots
were produced by using a graph projection where the worst best performance

Discussion of the Results | 77

Figure 8.3 – Best mean performance evolution for attacker training. The
dots illustrate whenever the training has achieved a higher performance value.
The lines have different lengths according to the method’s requirement for
achieving higher performances in more or less episodes. The performance is
measured in terms of attacker win probability. The results represent average
of three different seeds.

of all methods (baselines included) were projected on the y-axis.
A sample-efficient method should achieve a higher performance with a

fewer number of episodes. In the figures it can be seen that REINFORCE has
the worst best performance, namely 0.13281 mean Attacker Win Probability
in the 280th episode. It is also shown that BPG achieves the best data
efficiency (third episode), followed by BAC (sixteenth episode) and PPO
(fortieth episode). Further, Fig. 8.6 shows the zoomed-in version of the
Best Performance Evolution graph of the defender training, where it is shown
that REINFORCE also exhibits the worst performance for this case, achieving
0.60375 as its highest mean Attacker Win Probability. We also observe from
the y-axis projection, that BPG and BAC have achieved similar data efficiency
performance (on the first episode), slightly better than PPO. In summary, we
can say that, empirically, BPG and BAC are more data-efficient than PPO for
training both the attacker and the defender.

78 | Discussion of the Results

Figure 8.4 – Best mean performance evolution for defender training. The
dots illustrate whenever the training has achieved a higher performance value.
The lines have different lengths according to the method’s requirement for
achieving higher performances in more or less episodes. The performance is
measured in terms of attacker win probability. The results represent average
of three different seeds.

8.2 Trade-off Evaluation Summarizing
In this section, we empirically analyze the trade-offs that arise from the
algorithm implementation. In particular, we pay attention to two kinds of
trade-offs: one regarding computational complexity, i.e., the time required to
complete an episode and how it effects the performance of the algorithm; and,
the trade-off regarding kernel covariance values and how it related to the kernel
variance hyperparameter.

8.2.1 Computational Complexity
Figure 8.7 summarizes the trade-off between the computational time required
for one episode and the best mean level of performance achieved. The dashed
blue line illustrates a possible region of trade-off for non-Bayesian methods.
Our Bayesian Policy Gradient approaches are presented by the yellow dots.
The more distant these dots are perpendicular to the blue line, the better the
trade-off is. One can observe that BAC clearly presents a better trade-off in
comparison with BPG.

Discussion of the Results | 79

Figure 8.5 – Best mean performance evolution for attacker training. The
y value corresponds to the worst best performance related to REINFORCE
method. The performance is measured in terms of the attacker win probability
on the y-axis. This graph is zoomed-in to emphasize the slopes above the
y threshold for the given episodes. The results represent average of three
different seeds.

8.2.2 Kernels’ Trade-offs
Table 8.1 shows a summary of our findings for the kernel matrices for BPG
and BAC cases. It summarizes the magnitude relation between different kernel
parameters. For the attacker we see that as the kernel variance increases, the
off-diagonal values also increase and the dictionary size decreases. However,
the opposite is observed for the defender.

Finally, an interesting behaviour that was observed is as follows. The
attacker presents a threshold for the dictionary size which was not observed
for the defender case. At some level, if one keep decreasing the kernel
variance, the off-diagonal values keep decreasing up to zero. However, the
dictionary size increases up to some level below the maximum dictionary
size. Then, it remains unaltered no matter further decrease of kernel variance.

80 | Discussion of the Results

Figure 8.6 – Best mean performance evolution for defender training. The
y value corresponds to the worst best performance related to REINFORCE
method. The performance is measured in terms of the attacker win probability
on the y-axis. This graph is zoomed-in to emphasize the slopes below the
y threshold for the given episodes. The results represent average of three
different seeds.

Figure 8.7 – Computational Trade-offs for Attacker training; the graph exhibits
the Attacker Win Ratio (y-axis) by the Working Time required (x-axis). The
horizontal dashed blue line represents an approximate computational trade-off
dimension of non-Bayesian methods. The yellow dots represents the Bayesian
methods.

Discussion of the Results | 81

Table 8.1 – Summary of magnitude relation for Kernel matrices in BPG and
BAC algorithms.

Kernel Var Off-diagonal Values Dictionary Size
Attacker ↑ ↑ ↓
Defender ↑ ↓ ↑

82 | Discussion of the Results

Chapter 9

Conclusion & Future Work

In this chapter we present our conclusions and interpretations of the results.

9.1 Discussion
In this thesis, we have implemented and evaluated three different Bayesian
reinforcement learning algorithms for the use case of network intrusion
prevention. This section contains our interpretations of the results.

9.1.1 Summary of Findings for Each Method
BQL The research question was answered for one of the chosen priors for
the attacker training. We find that the choice of the modeling distribution for
the rewards can dramatically impact the performance of BQL algorithm. The
defender training has performed poorly.

BPG The model has satisfied the research questions posed. On the other
hand, training the defender agent revealed to be much harder than training the
attacker agent. Additionally, the inspection of the kernel matrices suggests the
method is sensitive to the choice of hyperparameters.

BAC Bayesian Actor-Critic has a similar performance as BPG, with
exception to the defender training under the fully Bayesian approach (with
kernel learning). This phenomenon resembles PPO training behaviour for the
defender in [8]. Moreover, our results also empirically demonstrate that BAC
has an increased complexity over BPG for the Bayesian framework.

83

84 | Conclusion & Future Work

9.1.2 Conclusion
In conclusion, this work has successfully demonstrated that, regarding the
research questions from Section 1.2, it is possible to improve the efficiency of
exploration by using a Bayesian approach in comparison to the non-Bayesian
counterpart for most of the cases. In particular, depending on the parameter
configuration, it is possible to achieve a better strategy. Furthermore, it is
possible to learn strategies for intrusion prevention with less data by using a
Bayesian approach.

To summarize, the present work contributes to understand the following
facts regarding Bayesian learning for intrusion prevention games:

• The discount factor has proved to be effective to reduce the variance
during the training of the agents. However, it hurts the performance
when training the defender for some cases (specially for the risk averse
defender).

• The choice of the prior has a large impact on the performance of the
algorithms.

9.2 Future Work
There are someways to extend the applications of this thesis. One can consider
the following directions:

• Fine tune hyperparameters and investigate the combined effect of prior
collocation and kernel learning;

• To consider dynamic opponents;

• Investigate how Bayesian RL methods would behave under Self-Play
learning as in [8];

• Investigate risk-averse formulations further and their expected
behaviour, such as risk-aware (or risk-sensitive) agents as in [53].
This could connect with the case of deriving upper bounds to hack
probability depending on initial assumptions about the environment.
Each assumption has a likelihood for happening and, therefore, have a
distribution which could be used for risk-sensitive agents;

• Investigate larger topologies and how it could impact the estimation
of the kernel matrix. Moreover, other formulations for kernels can be
considered.

Conclusion & Future Work | 85

9.3 Experiences
Firstly, the use of a Adam optimizer proved to be more efficient than
the SGD∗ optimizer. The reason for this may rely in the sense that the
Adam optimizer has stronger assumptions regarding the convexity of the
optimization procedure.

Secondly, the online kernel sparsification procedure did not work well
when using the Fisher kernel for our use case. This is empirically related to the
computed values for the gradients. Furthermore, we have also experimented
with the Cauchy kernel, which has a heavier tail in its distribution. This was
found to be useful as well, as the gradients often presented a high quantity of
very small values.

Thirdly, the noise covariance matrix was found to enforce exploration
of BPG and BAC. This is considered to be reasonable given that a better
prior should require less exploration. Nonetheless, learning performance was
harmed by very small noise covariance, which in turn required a minimum
level of exploration.

Lastly, an additional entropy termwas tried out for the case of the Bayesian
Policy Gradient agent. This was to ensure more exploration for the agent, as it
attempts to minimize a Kullback-Leibler divergence. However, such method
was found to be harmful to learning.

9.4 Ethical Consideration
The United Nations Sustainable Development Goals are 17 in total and seek to
set targets that could be considered by all nations - developed and developing
- to drive to structured strategies to mitigate poverty, improve health and
education, reduce inequality and spur economic growth †.

The Organization for Security and Co-operation in Europe (OSCE) has
developed a partnership with UN Economic Commission for Europe in order
to drive efforts towards secure and sustainable transport. Some key topics were
digital connectivity and energy safety. Therefore, this work offers a possibility
for assessing this risk, in particular with respect to the promotion of a secure
data exchange in favour of terrorism prevention.

∗ Stochastic Gradient Descent. † The reader can consider the following portal in this matter:
https://sdgs.un.org/goals

86 | Conclusion & Future Work

References

[1] W. Stallings and L. Brown, Computer Security: Principles and Practice,
3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2014. ISBN
0133773922, 9780133773927

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
London: The MIT Press, 2018.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015. [Online]. Available: http://dx.doi.org/10.1038/nature14236

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of Go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016. doi:
10.1038/nature16961

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” CoRR, vol. abs/1504.00702, 2015. [Online].
Available: http://arxiv.org/abs/1504.00702

[6] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Communications
Surveys Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[7] T. T. Nguyen and V. J. Reddi, “Deep Reinforcement Learning for Cyber
Security,” arXiv:1906.05799v3 [cs.CR], Jul. 2020.

87

http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1504.00702

88 | REFERENCES

[8] K. Hammar and R. Stadler, “Finding effective security strategies through
reinforcement learning and Self-Play,” in International Conference on
Network and Service Management (CNSM), Izmir, Turkey, Nov. 2020.

[9] A. Ridley, “Machine learning for autonomous cyber defense,” the Next
Wave, Vol 22, No.1 2018., 2018.

[10] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen,
T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis, “Mastering the game of go without human knowledge,”
Nature, vol. 550, pp. 354–, Oct. 2017. [Online]. Available: http:
//dx.doi.org/10.1038/nature24270

[11] M. A. Maloof, Machine Learning and Data Mining for Computer
Security: Methods and Applications (Advanced Information and
Knowledge Processing). Berlin, Heidelberg: Springer-Verlag, 2005.
ISBN 184628029X

[12] D. Gollmann, Computer Security. Wiley, 2011.

[13] A. Fuchsberger, “Intrusion detection systems and intrusion prevention
systems,” Inf. Secur. Tech. Rep., vol. 10, no. 3, p. 134–139, Jan.
2005. doi: 10.1016/j.istr.2005.08.001. [Online]. Available: https:
//doi.org/10.1016/j.istr.2005.08.001

[14] K. A. Scarfone and P. M. Mell, “Sp 800-94. guide to intrusion detection
and prevention systems (idps),” Gaithersburg, MD, USA, Tech. Rep.,
2007.

[15] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou,
and C. Wang, “Machine learning and deep learning methods for
cybersecurity,” IEEE Access, vol. 6, pp. 35 365–35 381, 2018. doi:
10.1109/ACCESS.2018.2836950

[16] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and M. Marchetti,
“On the effectiveness of machine and deep learning for cyber security,”
in 2018 10th International Conference on Cyber Conflict (CyCon), May
2018. doi: 10.23919/CYCON.2018.8405026 pp. 371–390.

[17] S. Dua and X. Du,DataMining andMachine Learning in Cybersecurity,
1st ed. Boston, MA, USA: Auerbach Publications, 2011. ISBN
1439839425, 9781439839423

http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1016/j.istr.2005.08.001
https://doi.org/10.1016/j.istr.2005.08.001

REFERENCES | 89

[18] R. A. Bridges, C. L. Jones, M. D. Iannacone, and J. R. Goodall,
“Automatic labeling for entity extraction in cyber security,” CoRR, vol.
abs/1308.4941, 2013. [Online]. Available: http://arxiv.org/abs/1308.
4941

[19] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer, “Using machine
learning techniques to identify botnet traffic,” in Proceedings. 2006
31st IEEE Conference on Local Computer Networks, Nov 2006. doi:
10.1109/LCN.2006.322210 pp. 967–974.

[20] D. Sahoo, C. Liu, and S. C. H. Hoi, “Malicious URL detection
using machine learning: A survey,” CoRR, vol. abs/1701.07179, 2017.
[Online]. Available: http://arxiv.org/abs/1701.07179

[21] S. Siddiqui, M. S. Khan, K. Ferens, andW.Kinsner, “Detecting advanced
persistent threats using fractal dimension based machine learning
classification,” in Proceedings of the 2016 ACM on International
Workshop on Security And Privacy Analytics, ser. IWSPA ’16.
New York, NY, USA: ACM, 2016. doi: 10.1145/2875475.2875484.
ISBN 978-1-4503-4077-9 pp. 64–69. [Online]. Available: http:
//doi.acm.org/10.1145/2875475.2875484

[22] A. L. Buczak and E. Guven, “A survey of data mining and
machine learning methods for cyber security intrusion detection,” IEEE
Communications Surveys Tutorials, vol. 18, no. 2, pp. 1153–1176,
Secondquarter 2016. doi: 10.1109/COMST.2015.2494502

[23] M. Roesch, “Snort - lightweight intrusion detection for networks,” in
Proceedings of the 13th USENIX Conference on System Administration,
ser. LISA ’99. Berkeley, CA, USA: USENIX Association, 1999,
pp. 229–238. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1039834.1039864

[24] I. Saeed, A. Selamat, and A. Abuagoub, “A survey on malware
and malware detection systems,” International Journal of Computer
Applications, vol. 67, pp. 25–31, 04 2013. doi: 10.5120/11480-7108

[25] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers: A case
study on pdf malware classifiers,” in NDSS, 2016.

[26] M. D. Fraze, “Cyber grand challenge (cgc),” 2019, dARPA, https:
//www.darpa.mil/program/cyber-grand-challenge. [Online]. Available:
https://www.darpa.mil/program/cyber-grand-challenge

http://arxiv.org/abs/1308.4941
http://arxiv.org/abs/1308.4941
http://arxiv.org/abs/1701.07179
http://doi.acm.org/10.1145/2875475.2875484
http://doi.acm.org/10.1145/2875475.2875484
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge

90 | REFERENCES

[27] T. Avgerinos, D. Brumley, J. Davis, R. Goulden, T. Nighswander,
A. Rebert, and N. Williamson, “The mayhem cyber reasoning system,”
IEEE Security Privacy, vol. 16, no. 2, pp. 52–60, March 2018. doi:
10.1109/MSP.2018.1870873

[28] R. Elderman, L. J. J. Pater, A. S. Thie, M. M. Drugan, and M. A.
Wiering, “Adversarial reinforcement learning in a cyber security
simulation,” Feb. 2017. doi: 10.5220/0006197105590566. [Online].
Available: https://www.researchgate.net/publication/314153799

[29] K. Hammar and R. Stadler, “Learning intrusion prevention policies
through optimal stopping„” 2021. [Online]. Available: https://arxiv.org/
pdf/2106.07160.pdf

[30] M. L. Littman, “Markov Games as a framework for multi-agent
reinforcement learning.”

[31] D. S. et al., “Mastering the game of Go without Human knowledge,”
Nature, Oct. 2017.

[32] J. Heinrich and D. Silver, “Deep Reinforcement Learning from Self-
Play in Imperfect-Information Games,” arXiv:1603.01121v2 [cs.LG],
Jun. 2016.

[33] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, 8, 229-256,
Kluwer Academic Publishers, Boston, 1992.

[34] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” Apr. 2001.
[Online]. Available: https://www.researchgate.net/publication/2354219

[35] V. Konda, “Actor-critic algorithms,” PhD dissertation, Department of
Electrical Engineering and Computer Science, MIT, Jun. 2002.

[36] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust
Region Policy Optimization,” arXiv:1502.05477v5 [cs.LG], Apr. 2017.

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv:1707.06347v2
[cs.LG], Aug. 2017.

[38] A. O’Hagan, “Bayes Hermite Quadrature,” Journal of Statistical
Planning and Inference 29 245-260, 1991.

https://www.researchgate.net/publication/314153799
https://arxiv.org/pdf/2106.07160.pdf
https://arxiv.org/pdf/2106.07160.pdf
https://www.researchgate.net/publication/2354219

REFERENCES | 91

[39] J. Shawe-Taylor andM. Cristianini, Kernel Methods for Pattern Analysis.
London: Cambridge, 2004.

[40] Y. Engel, Algorithms and Representations for Reinforcement Learning.
Hebrew University, Apr. 2005.

[41] M. Wiering and M. van Otterlo, Reinforcement Learning: State-of-the-
Art. The Netherlands: Springer, 2012.

[42] R. Dearden, N. Friedman, and S. Russell, “Bayesian Q-learning,” 1998.

[43] M. Ghavamzadeh and Y. Engel, “Bayesian Policy Gradient Algorithms,”
2006.

[44] Y. Engel, S. Mannor, and R. Meir, “Bayes meets bellman: The gaussian
process approach to temporal difference learning,” Proceedings of the
Twentieth International Conference onMachine Learning (ICML-2003),
Washington DC, 2003, 2003.

[45] ——, “Reinforcement learning with gaussian processes,” Proceedings
of the 22 nd International Conference on Machine Learning, Bonn,
Germany, 2005., 2005.

[46] M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar, “Bayesian
Reinforcement Learning: A Survey,” arXiv:1609.04436v1[cs.AI], 2016.

[47] M. Ghavamzadeh, Y. Engel, and M. Valko, “Bayesian Policy Gradient
and Actor-Critic Algorithms,” Journal of Machine Learning Research 17
1-53, Sep. 2016.

[48] S. Homer, “Maximum Entropy Bayesian Actor Critic,” 2019.

[49] A. R. Tej, K. Azizzadenesheli, M. Ghavamzadeh, A. Anandkumar,
and Y. Yue, “Deep Bayesian Quadrature Policy Optimization,”
arXiv:2006.15637v3 [cs.LG], Dec. 2020.

[50] J. Schulman, X. Chen, and P. Abbeel, “Equivalence
between policy gradients and soft q-learning,” Oct. 2018.
[Online]. Available: https://www.semanticscholar.org/paper/
Equivalence-Between-Policy-Gradients-and-Soft-Schulman-Abbeel/
d0352057e2b99f65f8b5244a0b912026c86d7b21

[51] M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest, “FlipIt: The Game of
"Stealthy Takeover",” arXiv:1904.12901v1 [cs.LG], Feb. 2012.

https://www.semanticscholar.org/paper/Equivalence-Between-Policy-Gradients-and-Soft-Schulman-Abbeel/d0352057e2b99f65f8b5244a0b912026c86d7b21
https://www.semanticscholar.org/paper/Equivalence-Between-Policy-Gradients-and-Soft-Schulman-Abbeel/d0352057e2b99f65f8b5244a0b912026c86d7b21
https://www.semanticscholar.org/paper/Equivalence-Between-Policy-Gradients-and-Soft-Schulman-Abbeel/d0352057e2b99f65f8b5244a0b912026c86d7b21

92 | REFERENCES

[52] D. Koller and N. Friedman, “Probabilistic graphical models: Principles
and techniques,” The MIT Press, 2009.

[53] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-
constrained reinforcement learning with percentile risk criteria,” Journal
of Machine Learning Research 18 (2018) 1-51, Apr. 2018.

[54] N. A. Vien, H. Yu, and T. Chung, “Hessian matrix distribution for
bayesian policy gradient reinforcement learning,” Information Sciences
181 (2011) 1671–1685, Elsevier, 2011. doi: 10.1016/j.ins.2011.01.001

Appendix A

Key Algorithms

Following is presented the algorithms for the Bayesian REINFORCE,
Gaussian Process Temporal Difference (GPTD) and Bayesian Actor-Critic.

The algorithm 1 is a combination of the algorithms presented in [40, 43,
47, 54]. We present some local modifications so as to incorporate our kernel
choice. For the exposition of this algorithm, we consider the key references
to be [44, 45]. The Bayesian Actor-Critic algorithm, as introduced in the
background section, makes use of the GPTD algorithm mentioned before.

93

94 | Appendix A: Key Algorithms

Algorithm 1 Online Bayesian REINFORCE
1: Initialize D1 = {x1},m = 1, K̃−11 = [1/k11]
2: for i=2 to M do
3: Sample path εi using current policy
4: Compute k̃i−1(εi)
5: ai = K̃−1i−1k̃i−1(εi)

6: if kii − k̃i−1(εi)Tai ≤ ν then
7: Di = Di−1 ∪ {εi}
8: u(εi) =

∑Ti−1
t=0 ∇logµ(at|st, θ)

9: R(εi) =
∑Ti−1

t=0 r(st at)

10: K̃−1i = 1
σ2

[
σ2K̃−1i + aia

T
i −ai

−aTi 1

]
11: Ai =

[
Ai−1 0
0T 1

]
12: si = σ2 + k(εi, εi)− k̃i−1(εi)TATi−1Q̃i−1Ai−1k̃i−1(εi)

13: gi = Q̃i−1Ai−1k̃i−1(εi)
14: f(εi) = R(εi)
15: Z(:, i) = u(εi)
16: else
17: Ai =

[
Ai−1
aTi

]
18: si = σ2 + aTi ∆k̃i−1 −∆k̃Ti−1A

T
i−1Q̃i−1Ai−1∆k̃i−1

19: gi = Q̃i−1Ai−1∆k̃i−1
20: end if
21: Q̃i = 1

si

[
siQ̃i−1 + gig

T
i −gi

−gTi 1

]
22: end for
23: Output: E[∇η(θ)|DM] = ZT

MQ̃MfM

Appendix B

Key Theorems

Theorem 1 (Policy Gradient): The gradient of the expected reward is the
expectation of the product between the reward and the gradient of the log
of the policy. In mathematical notation, for a cumulative reward at time (or
episode) T, r(T), and a parameterized policy also at time-step T, πθ(T), one
could formulate it in general as:

∇θEπθ [r(T)] = Eπ[r(T)∇θlogπθ(T)] (B.1)

The demonstration of this theorem can be found in Sutton and Barto
(2018). The authors claim that policy gradient methods has stronger
convergence guarantees than action-value methods. This is argued to be a
consequence of policy parameterization as action probabilities have a more
smooth distribution in relation to the this parameterization, while ε-greedy
accounts for less subtle changes for an arbitrary small change in estimated
action values.

95

96 | Appendix B: Key Theorems

For DIVA
{
"Author1": {

"Last name": "Nesti Lopes",
"First name": "Antonio Frederico",
"Local User Id": "u100001",
"E-mail": "afnl@kth.se",
"ORCiD": "0000-0002-3493-1933",
"organisation": {"L1": "School of Electrical Engineering and Computer Science ",

}
},

"Degree": {"Educational program": "Master’s Programme, Machine Learning, 120 credits"},
"Title": {

"Main title": "Bayesian Reinforcement Learning Methods for Network Intrusion Prevention",
"Language": "eng" },

"Alternative title": {
"Main title": "",
"Language": "swe"

},
"Supervisor1": {

"Last name": "Hammar",
"First name": "Kim",
"Local User Id": "u100003",
"E-mail": "kimham@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science ",

"L2": "Computer Science" }
},

"Examiner1": {
"Last name": "Stadler",
"First name": "Dr. Rolf",
"Local User Id": "u100004",
"E-mail": "stadler@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science ",

"L2": "Computer Science" }
},

"Other information": {
"Year": "2021", "Number of pages": "xvi,??"}
}

www.kth.se

	Introduction
	Use Case
	Research Questions
	Approach
	Contributions
	Structure of the Thesis

	Background
	Network Security
	Intrusion Detection Systems
	Intrusion Prevention Systems
	Machine Learning Problems in Network Security

	Reinforcement Learning
	Reinforcement Learning Preliminaries
	Self-play
	Temporal Difference Learning with Eligibility Traces (TD())
	Q-Learning
	Policy Gradient Methods

	Bayesian Learning
	Bayesian and Bayes-Hermite Quadratures
	Kernel Methods and Gaussian Processes
	Sparsification procedures

	Bayesian Reinforcement Learning
	Bayesian Q-learning
	Bayesian Policy Gradient
	Gaussian Process Temporal Difference
	Bayesian Actor-Critic

	Theoretical Pairwise Comparison of Bayesian Reinforcement Learning Methods

	Related Work
	Modeling the Intrusion Prevention Game
	The Intrusion Prevention Game
	Environment Instantiation of the Game Model
	Reconnaissance Activities

	Static Opponents' Policies
	Risk Averse Agents
	Theoretical Win Probability
	Upper and Lower Bounds on the Hack Probability
	Evaluation Methods

	Experiments

	Bayesian Q-Learning for Network Intrusion Prevention
	Experiments' Configuration
	Model Configurations for the Attacker Agent Training
	Model Configurations for the Defender Agent Training
	Baselines and Hyperparameters

	Experimental Results
	Analysis of Attacker Win Probability for Attacker and Defender Training

	Discussion of the Results

	Bayesian REINFORCE for Network Intrusion Prevention
	Experiments' Configuration
	Model Configurations for the Attacker Agent
	Model Configurations for the Defender Agent
	Baselines and Hyperparameters

	Experimental Results
	Analysis of Attacker Win Probability for Attacker Training
	Analysis of Attacker Win Probability for Defender Training
	Kernel Representations
	Working Time Profiling

	Discussion of the Results

	Bayesian Actor-Critic for Network Intrusion Prevention
	Experiments' Configuration
	Model Configurations for the Attacker Agent
	Model Configurations for the Defender Agent
	Baselines and Hyperparameters

	Experimental Results
	Analysis of Attacker Win Probability for Attacker Training
	Analysis of Attacker Win Probability for Defender Training
	Kernel Representations
	Working Time Profiling

	Discussion of the Results

	Discussion of the Results
	The Experimental Results in Relation to the Research Questions
	Efficiency of Exploration
	Sample Efficiency

	Trade-off Evaluation Summarizing
	Computational Complexity
	Kernels' Trade-offs

	Conclusion & Future Work
	Discussion
	Summary of Findings for Each Method
	Conclusion

	Future Work
	Experiences
	Ethical Consideration

	References
	Key Algorithms
	Key Theorems

