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Abstract—We present an online framework for learning and
updating security policies in dynamic IT environments. It in-
cludes three components: a digital twin of the target system,
which continuously collects data and evaluates learned policies; a
system identification process, which periodically estimates system
models based on the collected data; and a policy learning
process that is based on reinforcement learning. To evaluate our
framework, we apply it to an intrusion prevention use case that
involves a dynamic IT infrastructure. Our results demonstrate
that the framework automatically adapts security policies to
changes in the IT infrastructure and that it outperforms a state-
of-the-art method.

Index Terms—Network security, security management, digital
twin, reinforcement learning, Markov decision process, MDP,
POMDP.

I. INTRODUCTION

A promising direction of recent research is obtaining se-

curity policies through reinforcement learning methods (see

survey [1]). In this line of investigation, the problem of

finding a security policy is generally modeled as a Markov

decision problem, and policies are learned through simulation.

While encouraging results have been obtained following this

approach [2], [3], [2], [4], [5], [6], key challenges remain [7].

One of them is to narrow the gap between the environment

where a policy is learned and the real system, where the policy

is applied. Another challenge is to adapt a policy to a changing

IT environment. Research to date has focused on stationary

environments, which limits the applicability of the results.

In operational IT environments, various changes occur on a

continuous basis. Components may fail, load patterns can shift,

bandwidth can fluctuate, and components may be updated, for

example. When such changes occur, security policies need to

be adapted. To address this problem, we present an online

framework that periodically updates security policies through

reinforcement learning. We show that our framework automat-

ically adapts security policies to changes in IT environments

and that it outperforms state-of-the-art methods, which either

are limited to simulations [2], [3], [2], [4], [5], [6] or to

stationary environments [8], [9], [10], [11], [12].

II. EXAMPLE USE CASE: INTRUSION PREVENTION

We develop and evaluate our framework considering an in-

trusion prevention use case that involves an IT infrastructure of

Attacker Clients

. . .

Defender

1 IPS1

alerts

Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Fig. 1: The IT infrastructure and the actors in the use case.

an organization (see Fig. 1). The operator of this infrastructure,

which we call the defender, takes measures to protect it against

an attacker while providing services to a client population. The

infrastructure includes a set of servers that run the services and

an Intrusion Prevention System (IPS) that logs events in real-

time. Clients access the services through a public gateway,

which also is open to the attacker.

The number of clients changes over time, which makes the

infrastructure dynamic. At certain times, the infrastructure is

under low load, and at other times, the number of clients

spikes, which causes a high load on the infrastructure.

The attacker’s goal is to intrude on the infrastructure and

compromise its servers. To achieve this, the attacker explores

the infrastructure through reconnaissance and exploits its vul-

nerabilities while avoiding detection.

The defender continuously monitors the infrastructure

through analyzing IPS alerts and other statistics. It can take

a limited number of defensive actions, each of which has a

cost and a chance of preventing an intrusion. An example of

a defensive action is to drop network traffic that triggers IPS

alerts of a certain priority.

When deciding the time for taking a defensive action, the

defender balances two objectives: (i) maintain services to

its clients; and (ii), prevent an intrusion at lowest cost. The

optimal policy for the defender is to monitor the infrastructure
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Fig. 2: Our online framework for learning and adapting

security policies.

and maintain services until the attacker enters through the

gateway, at which time the intrusion must be prevented at

minimal cost through defensive actions. The challenge for the

defender thus is to identify the precise time when an intrusion

starts. In the following, we describe a general framework that

addresses this challenge and learns optimal defender policies.

III. OUR FRAMEWORK FOR LEARNING SECURITY

POLICIES IN DYNAMIC IT ENVIRONMENTS

Our framework for learning security policies for a dynamic

target system includes three main parts (see Fig. 2). First, a

digital twin emulates the target system and its evolution in

a virtualized environment. This environment is used to run

attack scenarios and defender responses, from which traces

with system statistics and logs are obtained. Second, a system

identification algorithm estimates a model of the target system

based on the collected traces, e.g. a dynamical system model,

such as a Markov decision process. Third, the estimated model

is simulated and the defender policy is obtained through

reinforcement learning.

Digital twin. The digital twin collects traces and evaluates

learned policies. It emulates the target system and is periodi-

cally updated when changes to the target system are detected.

To evaluate a defender policy π, it runs attack scenarios and

executes defender responses prescribed by π. If a policy π

is deemed effective, the digital twin sends it to the target

system for implementation. From each such evaluation, a

trace of defender actions, system observations, and rewards

h = o1, a2, r2, . . . , aT−1, rT , oT is obtained. The traces are

then sent to the system identification process.

System identification process. The system identification

process periodically receives traces ht from the digital twin

and runs a system identification algorithm ϕ, which learns a

Algorithm 1: High-level execution of the framework

Input: emulator: method to create digital twin

ϕ: system identification algorithm

φ: policy learning algorithm

1 Algorithm (emulator, ϕ, φ)
2 do in parallel

3 DIGITALTWIN(emulator)

4 SYSTEMIDPROCESS(ϕ)

5 LEARNINGPROCESS(φ)

6 end

1 Procedure DIGITALTWIN(emulator)
2 Loop

3 π ← RECEIVEFROMLEARNINGPROCESS()

4 ht ← COLLECTTRACE(π)
5 SENDTOSYSTEMIDPROCESS(ht)

6 UPDATEDIGITALTWIN(emulator)

7 EndLoop

1 Procedure SYSTEMIDPROCESS(ϕ)
2 Loop

3 h1, h2, . . .← RECEIVEFROMDIGITALTWIN()

4 M← ϕ(h1, h2, . . .) // estimate model

5 SENDTOLEARNINGPROCESS(M)

6 EndLoop

1 Procedure LEARNINGPROCESS(φ)
2 Loop

3 M← RECEIVEFROMSYSTEMIDPROCESS()

4 π ← φ(M) // learn policy π

5 SENDTODIGITALTWIN(π)

6 EndLoop

system modelM based on ht. After obtainingM, the system

identification process sendsM to the policy learning process.

Policy learning process. The policy learning process peri-

odically receives a system modelM from the system identifi-

cation process, learns an effective policy π through simulating

M and running the reinforcement learning algorithm φ, and

then sends π to the digital twin for evaluation.

The pseudocode underlying our framework is given in Algo-

rithm 1. A video demonstration of the framework is available

at [13]. The framework can be customized by changing the

method to create the digital twin of the target system, the

system model M, the system identification algorithm ϕ, and

the reinforcement learning algorithm φ.

Some remarks on the implementation of the framework:

To synchronize traces, system models, and policies between

the digital twin, the policy learning process, and the system

identification process, we have implemented a parameter-

server architecture, through which the processes communicate

in an asynchronous fashion. The parameter server maintains

the latest policy, the latest system model, and a buffer with

traces collected from the digital twin. When estimating a

system model, a sliding window of the last K traces is used (in

this paper K = 50). To speed up the collection of traces and

the evaluation of policies, we run N digital twins in parallel



Actions

Continue, Revoke user certificates, Blacklist IPs, Block gateway
Drop traffic that generates IPS alerts of priority k ∈ {1, 2, 3, 4}

TABLE 1: Defender actions to emulate intrusion responses.

(in this paper N = 5).

IV. INSTANTIATING OUR FRAMEWORK FOR

THE INTRUSION PREVENTION USE CASE

In this section, we instantiate our framework for the intru-

sion prevention use case. We first describe our method for

creating a digital twin of the target system shown in Fig. 1.

We then formalize the use case and define our system model

M together with the system identification algorithm ϕ, which

instantiates M based on traces from the digital twin. Lastly,

we describe our algorithm φ for learning the defender policy.

A. Creating the Digital Twin of the Target System

Emulating physical hosts. We emulate physical hosts of the

target system using Docker containers. Resource constraints

on the containers, e.g. CPU and memory constraints, are

enforced using cgroups. The software functions running inside

the containers are copies of key components of the target

system, such as, web servers, databases, and the Snort IPS.

Emulating network connectivity. We emulate network

connectivity between hosts using virtual links. Connections

between servers in the target system are emulated as full-

duplex lossless connections with capacity 1 Gbit/s. External

connections between the gateway and the client population are

emulated full-duplex connections of 100 Mbit/s capacity and

0.1% packet loss. (These numbers are drawn from empirical

studies on enterprise and wide area networks [12].)

Emulating the client population. We emulate the client

population by processes inside Docker containers that inter-

act with the emulated hosts. Client arrivals follow a sine-

modulated Poisson process having the service rate function

λ(t) = λ̄ + α sin(2πt
υ
) and exponentially distributed service

time with µ = 1
4 (λ̄ = 20, α = 20, and υ = 800).

Emulating defender and attacker actions. We emulate

defender and attacker actions by executing the commands

listed in Table 1 and Table 2, respectively. At every time-step,

the defender takes an action from the list in Table 1, which is

determined by the defender policy π. Once an intrusion has

started, the attacker takes actions which are sampled uniformly

at random from the list in Table 2.

B. System Model M of the Use Case

We model the intrusion prevention use case with a Partially

Observed Markov Decision Process (POMDP) M = 〈S, A,

Pat

st,st+1
, Rat

st,st+1
,γ, ρ1, T , O, Z〉 [10], [2].

Time progression. Time evolves in discrete time-steps: t =
1, . . . , T , which constitute an episode. The duration of a time-

step in the digital twin is 30 seconds.

Type Actions

Reconnaissance TCP-SYN scan, UDP port scan, TCP Null scan,
TCP Xmas scan, TCP FIN scan,
ping-scan, “Vulscan”, TCP connection scan,

Brute-force attack Telnet, SSH, FTP, Cassandra,
IRC, MongoDB, MySQL, SMTP, Postgres

Exploit CVE-2017-7494, CVE-2015-3306,
CVE-2010-0426, CVE-2015-5602, CVE-2014-6271
CVE-2016-10033, CVE-2015-1427, SQL Injection

TABLE 2: Attacker commands to emulate intrusions.

Attacker model. The attacker starts the intrusion at a

random time during an episode and then follows a predefined

strategy until the intrusion is prevented.

State space S. At time-step t, the state st is 0 if no intrusion

occurs, it is 1 if an intrusion is ongoing, and it is ∅ if the

episode has ended. Hence, S = {0, 1, ∅}.

Initial state distribution ρ1. The initial state distribution

is the degenerate distribution ρ1(0) = 1.

Action space A. At time-step t, the defender either decides

to continue to monitor the infrastructure (at = C), or, it

decides to take a stop action (at = S), which corresponds

to a defensive action against a possible intrusion (see Table

1). The action space thus is A = {C, S}. A stop action can

be invoked L ≥ 1 times. The number of stop actions remaining

at time-step t is denoted by lt ∈ {1, . . . , L}.

Transition probabilities Pat

st,st+1,lt
. If st = 0, the attacker

starts an intrusion with probability p. In case of an intrusion,

the state transition 0 → 1 occurs. Similarly, if the defender

takes a defensive action when st = 1, the intrusion is pre-

vented with probability ψlt . In case the intrusion is prevented,

the state transition 1 → ∅ occurs. Hence, the transition

probabilities Pat

st,st+1,lt
= Plt [st+1|st, at] are:

P1 [∅|·, 1] = Plt [∅|∅, ·] = 1 (1)

Plt [0|0, at] = 1− p if lt − α > 0 (2)

Plt [1|0, at] = p if lt − α > 0 (3)

Plt [1|1, at] = 1− ψltα if lt − α > 0 (4)

Plt [∅|1, at] = ψltα if lt − α > 0 (5)

where α = 1{at=S} (1 denotes the indicator function).

Observation space O. The state st is hidden from the

defender, who instead observes ot ∈ O = {0, . . . , 104}, which

refers to the sum of the number of IPS alerts during time-step

t weighted by priority.

Observation function Zt,O . The observation ot is drawn

from a random variable O whose distribution Zt,O depends

on the current state st and is dynamic, i.e depends on t.

Belief space B. Based on the observations, the defender

forms a belief about st, which is expressed in the belief state

bt(st) = P[st|h
(1)
t ] ∈ B. B is the unit (|S|−1)-simplex. Since

st ∈ {0, 1} and bt(0) = 1− bt(1), bt is determined by bt(1).
Hence, we can model B = [0, 1].
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Defender policy πl. A defender policy πl : B → ∆(A)
maps a belief state to a probability distribution over A. (∆(A)
denotes the set of probability distributions over A.)

Time horizon T . Fig. 3 depicts the state transition diagram

of M. The diagram describes an episode of M, which starts

at t = 1 and ends at t = T . The time horizon T is a random

variable that indicates the time t when the terminal state ∅ is

reached. It follows from Eqs. 1-5 that Eπl
[T ] < ∞ for any

policy πl that is guaranteed to use L stop actions as t → ∞.

(Eπ denotes the expectation under π.)

Reward function Rat

st,lt
. The reward function is parame-

terized by the reward that the defender receives for stopping

an intrusion Rst > 0, the loss of being intruded Rint < 0,

and the cost Rcost < 0 of taking a defensive action:

R·
∅,0 = 0 (6)

RS
st,lt

= Rcost/lt + stRst/lt st ∈ {0, 1} (7)

RC
st,lt

= stRint st ∈ {0, 1} (8)

Objective function J . The optimal defender policy π∗
l

maximizes the expected reward over the time-horizon T :

π∗
l ∈ argmax

πl∈Πl

J(πl), J(πl) = Eπl

[

T
∑

t=1

γt−1Rat

st,lt

]

(9)

(For a theoretical analysis of our model and its connection

with optimal stopping theory, see [10], [2].)

C. System Identification Algorithm ϕ to Instantiate M

The system identification algorithm ϕ instantiates M by

estimating the observation function Zt,O based on traces

collected from the digital twin. We implement ϕ by fitting

a Gaussian mixture model Ẑt,O over the discrete observation

space O of M. For both values of s, we obtain the conditional

distribution Ẑt,O|s through expectation-maximization.

D. Policy Learning Algorithm φ to Learn Defender Policies

The policy learning process in Algorithm 1 learns defender

policies for M through the reinforcement learning algorithm

φ. In our previous work, we proved that, at each time-step

t, there exists an optimal defender policy π∗
t that uses L

thresholds α∗
1,t ≥ α∗

2,t, . . . , α
∗
L,t ∈ B [10, Theorem 1]. For

this reason, we implement φ as follows.

We parameterize the defender policy πt,l with a parameter

vector θ ∈ R
L and define πθ,t,l to be a smooth stochastic

policy that approximates a threshold policy:

πθ,t,l
(

S|bt(1)
)

=

(

1 +

(

bt(1)(1− σ(θl))

σ(θl)(1 − bt(1))

)−20
)−1

(10)

where σ(·) is the sigmoid function and σ(θ1), σ(θ2), . . .,
σ(θL) ∈ B are the L thresholds.

We then simulate M for a given number of episodes where

the defender takes actions according to πθ,t,l. Then, we use

the episode outcomes and trajectories to estimate the gradient

∇θJ(θ) (see Eq. 9). Next, we use the estimated gradient

and stochastic gradient ascent to update θ. This process of

simulating episodes and updating θ continues until πθ,t,l has

sufficiently converged. The pseudocode is available at [10].

V. LEARNING SECURITY POLICIES FOR

A DYNAMIC IT INFRASTRUCTURE

We evaluate our framework by using it to obtain defender

policies for the intrusion prevention use case described in

Section II. The results are shown in Fig. 4.

Evaluation setup. The topology of the target system is

shown in Fig. 1 and its configuration is listed in [10][Table

6]. We run the framework (Algorithm 1) for 50 hours. Our

framework updates the system model and the defender policy

every 10 minutes. The execution environment is a server

with two 24-core Intel Xeon Gold 2.10 GHz CPUs with

hyperthreading, 768 GB RAM, 4 NVIDIA Quadro RTX8000

GPUs, and Ubuntu 20.04. The hyperparameters can be found

in [10].

Baseline algorithms. We compare the performance of the

policies obtained with our framework to two baselines. The

first baseline is obtained with an ideal policy which presumes

knowledge of the exact intrusion time. The second baseline

uses the method proposed in [10], which recently achieved

state-of-the-art results for the same intrusion prevention use

case but for a stationary environment. Similar to the pro-

posed framework, [10] uses emulation, system identification,

and reinforcement learning. The main difference between

the proposed framework and [10] is that the latter assumes

a stationary environment and does not update the defender

policy periodically.

Discussion of the evaluation results. The upper plot in

Fig. 4 shows how the number of clients evolves, the middle

plot shows how the mean values of the estimated IPS alert

distributions change over time (see Section IV-C), and the

lower plot shows how the performance of the learned policies

evolves (see Section IV-D).

Fig. 4 contains the evaluation results. First, we observe that

the load on the system is dynamic and that the number of

clients follows a sinusoidal pattern (upper plot in Fig. 4).

Second, we note that the distributions of IPS alerts estimated

by our framework change over time and are correlated with the

number of clients (red and blue curves in the middle plot of

Fig. 4). Third, we see in the lower plot of Fig. 4 that the pink
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curve, which relates to our framework, is close to the dashed

black curve, which gives an upper bound to any optimal policy.

This suggests to us that our framework learns near-optimal

policies that are adapted to the changing alert distribution.

Lastly, we observe that the performance of the policy learned

by the baseline method in [10] degrades as the load on the

system changes. This suggests to us that the method proposed

in [10] is not suited for a dynamic IT environment.

VI. RELATED WORK

Most of the prior work on finding security policies through

reinforcement learning are simulation-based studies [2], [3],

[2], [4], [5], [6]. Our framework, in contrast, is based on

emulation of the target system. Prior work that use similar

emulation-based approaches as us include [8], [9], [10], [11],

[12]. Compared to these papers, the main difference is that

our framework is explicitly designed for online learning of

policies in dynamic environments. The referenced works either

assume a stationary environment or do not explicitly evaluate

their approach in dynamic environments.

VII. CONCLUSION AND FUTURE WORK

We present an online framework aimed at learning security

policies for dynamic IT environments. The framework involves

a digital twin and several parallel processes that a) collect

system measurements; b) estimate system models through sys-

tem identification; and c) learn policies through reinforcement

learning. We apply the framework to an intrusion prevention

use case and show that it dynamically adapts policies to

changes in an IT environment and that it outperforms a state-

of-the-art method for static environments.

In future work, we plan to extend our framework to obtain

policies that generalize to a variety of infrastructure configu-

rations and load patterns. This can be achieved by estimating

system models based on data from several digital twins with

different configurations and by expanding the observation

space of the defender. We also plan to evaluate our framework

for different use cases.

REFERENCES

[1] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for cyber
security,” CoRR, 2019, http://arxiv.org/abs/1906.05799.

[2] K. Hammar and R. Stadler, “Learning intrusion prevention policies
through optimal stopping,” in International Conference on Network and

Service Management (CNSM 2021), Izmir, Turkey, 2021.
[3] ——, “Finding effective security strategies through reinforcement learn-

ing and Self-Play,” in International Conference on Network and Service

Management (CNSM 2020), Izmir, Turkey, 2020.
[4] M. Kurt et al., “Online cyber-attack detection in smart grid: A reinforce-

ment learning approach,” IEEE Transactions on Smart Grid, 2019.
[5] A. Ridley, “Machine learning for autonomous cyber defense,” 2018, the

Next Wave, Vol 22, No.1 2018.
[6] M. Zhu, Z. Hu, and P. Liu, “Reinforcement learning algorithms for

adaptive cyber defense against heartbleed,” in Proceedings of the First

ACM Workshop on Moving Target Defense, ser. MTD ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 51–58.

[7] G. Dulac-Arnold, D. J. Mankowitz, and T. Hester, “Challenges of real-
world reinforcement learning,” 2019.

[8] I. Akbari et al., “Atmos: Autonomous threat mitigation in sdn using
reinforcement learning,” in NOMS IEEE/IFIP Network Operations and

Management Symposium, 2020, pp. 1–9.
[9] Y. Liu et al., “Deep reinforcement learning based smart mitigation of

ddos flooding in software-defined networks,” in IEEE CAMAD, 2018.
[10] K. Hammar and R. Stadler, “Intrusion prevention through optimal

stopping,” IEEE Transactions on Network and Service Management, pp.
1–1, 2022, https://ieeexplore.ieee.org/document/9779345.

[11] ——, “A system for interactive examination of learned security policies,”
in NOMS 2022-2022 IEEE/IFIP Network Operations and Management

Symposium, 2022, pp. 1–3.
[12] ——, “Learning security strategies through game play and optimal

stopping,” in Proceedings of the ML4Cyber workshop, ICML 2022,

Baltimore, USA, July 17-23, 2022. PMLR, 2022.
[13] ——, “A software framework for building self-learning security sys-

tems,” in NOMS 2022 IEEE/IFIP Network Operations and Management

Symposium, 2022, https://www.youtube.com/watch?v=18P7MjPKNDg.


