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Abstract

Cybersecurity is one of the most pressing technological challenges of our time
and requires measures from all sectors of society. A key measure is auto-
mated security response, which enables automated mitigation and recovery
from cyber attacks. Significant strides toward such automation have been
made due to the development of rule-based response systems. However, these
systems have a critical drawback: they depend on domain experts to con-
figure the rules, a process that is both error-prone and inefficient. Framing
security response as an optimal control problem shows promise in addressing
this limitation but introduces new challenges. Chief among them is bridging
the gap between theoretical optimality and operational performance. Current
response systems with theoretical optimality guarantees have only been vali-
dated analytically or in simulation, leaving their practical utility unproven.

This thesis tackles the aforementioned challenges by developing a practi-
cal methodology for optimal security response in it infrastructures. It encom-
passes two systems. First, it includes an emulation system that replicates key
components of the target infrastructure. We use this system to gather mea-
surements and logs, based on which we identify a game-theoretic model. Sec-
ond, it includes a simulation system where game-theoretic response strategies
are optimized through stochastic approximation to meet a given objective,
such as quickly mitigating potential attacks while maintaining operational
services. These strategies are then evaluated and refined in the emulation
system to close the gap between theoretical and operational performance.

We present csle, an open-source platform that implements our method-
ology. This platform allows us to experimentally validate the methodology
on several instances of the security response problem, including intrusion pre-
vention, intrusion response, intrusion tolerance, and defense against advanced
persistent threats. We prove structural properties of optimal response strate-
gies and derive efficient algorithms for computing them. This enables us to
solve a previously unsolved problem: demonstrating optimal security response
against network intrusions on an it infrastructure.



Sammanfattning

Cybersäkerhet är en av vår tids mest angelägna teknologiska utmaningar och
kräver åtgärder från alla samhällssektorer. En nyckelåtgärd är automatisering
av säkerhetsrespons, vilket möjliggör automatisk avvärjning och återhämt-
ning från cyberangrepp. Betydande framsteg mot sådan automatisering har
gjorts genom utvecklingen av regelbaserade responssystem. Dessa system har
dock en kritisk nackdel: de är beroende av domänexperter för att konfigurera
reglerna, en process som är både felbenägen och ineffektiv. Modellering av sä-
kerhetsrespons som ett reglertekniskt optimeringsproblem är ett lovande sätt
att hantera denna begränsning men medför nya utmaningar. Främst bland
dem är att överbrygga gapet mellan teoretisk optimalitet och operativ pre-
standa. Nuvarande responssystem med teoretiska optimalitetsgarantier har
endast validerats i simulering, vilket lämnar deras praktiska nytta oprövad.

Den här avhandlingen behandlar ovannämnda utmaningar genom att ut-
veckla en praktisk metodik för optimal säkerhetsrespons. Metodiken omfattar
två system. För det första inkluderar den ett emuleringssystem som replikerar
it-infrastrukturer i en virtuell miljö. Från detta system samlar vi in mätvärden
och loggar som vi sedan använder för att identifiera en spelteoretisk modell.
För det andra innefattar metodiken ett simuleringssystem där spelteoretiska
responsstrategier optimeras genom stokastisk approximation för att uppnå
ett givet mål, exempelvis att minimera responssystemets driftkostnad samt
maximera dess förmåga att automatiskt stävja potentiella cyberangrepp. De
optimerade responsstrategierna utvärderas och förfinas sedan i emuleringssy-
stemet för att minska klyftan mellan teoretisk och operativ prestanda.

Vi presenterar csle, en originell plattform med öppen källkod som im-
plementerar vår metodik. Med hjälp av denna plattform utvärderar vi vår
metodik experimentellt på flera användningsområden, inklusive förebyggande
av intrång, intrångssvar, intrångstolerans och försvar mot avancerade bestå-
ende hot. Vi bevisar strukturella egenskaper hos optimala responsstrategier
och härleder effektiva algoritmer för att beräkna dem. Detta gör det möjligt
för oss att lösa ett tidigare olöst problem: att demonstrera optimal säkerhets-
respons mot nätverksintrång på en it-infrastruktur.
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Nomenclature

Terminology Description

Security response Actions taken to contain, mitigate, and recover
from cyber attacks.

Digital twin Virtual replica of an operational infrastructure.

Emulation Creation of a digital twin.

Simulation Sampling from a mathematical model.

Attacker Entity aiming to intrude on a system.

Defender Organization responding to potential attacks.

Client Process that consumes services of an infrastructure.

Observation System measurements, e.g., log files and alerts.

State Values describing the current condition of a system.

Action Decision made by either the attacker or the defender.

Strategy Function that maps observation sequences to actions.

Optimal strategy Strategy that is most advantageous according to an objective.

Dynamic attacker Attacker that adapts its strategy based on
the defender strategy.

Data-driven A methodology where decisions are
informed by system measurements.



INTRODUCTION

By 1985, machines will be capable of doing any work man can do.
— Herbert Simon 1965, The shape of automation.

Far from Herbert Simon’s early prediction, an organization’s response to a
cyber attack—i.e., the actions taken to mitigate the attack—is still defined
and implemented by humans. Although this approach can provide basic

response capabilities for an organization, a mounting concern is the complexity of
modern it infrastructures, which has grown exponentially with the rise of cloud
computing, distributed networks, and IoT services; see Fig. 1. Managing security
responses for these systems alongside their service requirements and physical infras-
tructures is an arduous technical challenge. Automation addresses this challenge
by ensuring that response measures can scale with the growing demands. However,
achieving such automation remains an unsolved problem due to its inherent diffi-
culties. Chief among them is that response actions must be executed in real-time
amidst uncertainty about the scope and nature of a potential attack.

These research challenges have engaged security experts, control engineers, and
game theorists for over two decades (Alpcan and Basar, 2003). Traditional ap-
proaches use static rules that map infrastructure statistics to automated responses
(Stakhanova et al., 2007). While such approaches can automate responses to known
attacks, they rely on humans for configuration. As a result, they cannot scale with
the growing complexity and dynamicity of it infrastructures (Fig. 1). A promis-
ing solution to this limitation is to frame security response as an optimal control
problem1, which enables the automatic computation of optimal responses based
on system measurements. Such framing facilitates a rigorous treatment of secu-
rity response where trade-offs between different security objectives can be studied
through mathematical models. Prior research demonstrates the advantages of this
approach in analytical and simulated settings (Nguyen and Reddi, 2023). However,
its feasibility for operational use in it infrastructures has yet to be proven.
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Figure 1: Estimated trends in cyber attacks and network connectivity during 2017-2028.

1Here “control problem” encompasses both control- and game-theoretic problem formulations.
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18 Introduction

Addressing the above limitations is the purpose of this thesis. We do so from
three directions: via mathematical modeling, via experimental evaluation, and via
systems engineering. Our main contribution is a practical methodology for optimal
security response in it infrastructures. This methodology is grounded in engineer-
ing principles for self-adaptive systems and has a rich mathematical foundation,
which we systematically develop throughout this thesis. It draws on the theories
of stochastic approximation, control, causality, and games. We prove theoretically
and experimentally that our methodology is superior to present solutions on several
instances of the security response problem, including intrusion prevention, intrusion
response, intrusion tolerance, and defense against advanced persistent threats. Our
key experimental finding is that the most important factor for scalable and optimal
security response is to exploit structure, both structure in theoretical models (e.g.,
optimal substructure) and structure of the it environment (e.g., network topology).
The former enables efficient computation of optimal responses and the latter is key
to managing the growing complexity of it infrastructures (Fig. 1).

Background
Modern it infrastructures involve a combination of application servers, data ware-
houses, and communication networks; see Fig. 2. Security operations within these
infrastructures are managed through Security Operations Centers (socs), where
human operators monitor and respond to incidents in real-time. Such centers are
supported by Security and Event Management (siem) systems that aggregate data
from various sources within the infrastructure. The operators use this data to assess
the severity of incidents and decide how to respond. A common response, though
drastic, is to shut down compromised systems. This response was key to mitigate
the wannacry attack in 2017 (Morse, 2017). Another typical response is updating
the network segmentation, which partitions the organization’s communication net-
work into separated segments. Such a segmentation was implemented in response
to the attack against Sony in 2014 (Steinberg et al., 2021). When choosing re-
sponses, an operator must balance the need to mitigate the attack against the risk
of disrupting services. While humans can manage such decisions given sufficient
monitoring data, a growing concern is the escalating frequency of cyber attacks
(Fig. 1), which drives a need for response automation and motivates this thesis.

Communication Infrastructure

. . .

services data warehouse siem soc

Figure 2: Security operations in modern it infrastructures; Security and Event Manage-
ment (siem) systems aggregate data for a Security Operations Center (soc) where human
operators respond to security incidents and potential attacks.
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Use Case
In our study of automated security response, we focus on a general response use
case that involves the it infrastructure of an organization. The operator of this
infrastructure, which we call the defender, takes measures to protect it against
an attacker while providing services to a client population. The infrastructure
includes hardware, software, and networks, all of which work combined to provide
operational services. These services range from web services and cloud storage to
video and music streaming, which often have strict security requirements, such as
guaranteed uptime and data integrity. Continuously meeting these requirements
demands timely and effective security response.
Infrastructure An example infrastructure is shown in Fig. 3. This infrastructure
is segmented into zones with interconnected servers, which clients access through a
public gateway. Though intended for service delivery, this gateway is also accessible
to a possible attacker. Each zone has a security policy that regulates access control,
allowing only authorized network traffic between zones. At the edge of each zone are
intrusion detection systems (idss) that monitor traffic and log events in real-time.
The defender accesses and analyzes these events to detect possible attacks.
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Figure 3: The actors and systems involved in the security response use case.



20 Introduction

Services Services are deployed on the infrastructure2. They are built using ar-
chitectural concepts such as client-server models, microservices, or hybrid cloud
architectures. Each of them presents its own challenges in terms of security and
operation. For example, microservices may require dynamic routing to reduce re-
sponse times and avoid bottlenecks. Additionally, services are often part of larger
service chains that include virtual network functions, such as firewalls, intrusion
detection systems (ids), or load balancers; see Fig. 4.

gateway firewall ids
load

balancer

http
nodes

authentication
service

search
engine

database

cache

Figure 4: An example service chain with virtual network functions as microservices.

Infrastructure statistics During operation, services on the infrastructure pro-
duce real-time data, such as logs, performance metrics, and other statistics, which is
critical for monitoring the security and performance of systems. Detecting anoma-
lies within such data streams requires distinguishing between false and true security
alerts. Figure 5 shows distributions of alerts on our testbed3. We observe many false
alerts but also a clear difference between the distributions during normal operation
(blue histograms) and during attacks (red histograms).
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Figure 5: Distributions of security alerts on our testbed during two network intrusions.

Client population Clients influence the infrastructure statistics when interacting
with services. For example, metrics like traffic rate and cpu utilization may spike
during peak client load, mimicking patterns associated with attacks. Figure 6 shows
alert distributions during an experiment where we loaded our testbed with client

2The configuration of the infrastructure shown in Fig. 3 is given in Paper 3.
3See Paper 4 for details.
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arrivals drawn from a Poisson process. We note a strong correlation between the
clients’ arrival rate λ(t) and the number of alerts. (λ(t) is defined in Paper 5.)
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Number of security alerts

t

Figure 6: Time series of client arrival rates and distributions of alerts on our testbed.

Attacker The attacker, much like a client, accesses infrastructure services
through the public gateway. However, instead of consuming these services as a
client, the attacker aims to exploit them to compromise servers. To achieve this
goal, it can perform different actions, e.g., reconnaissance, brute-force attacks, and
exploits; see Fig. 7. The attacker’s intent in compromising servers is irrelevant
to our study and can vary from financial gain and espionage to hacktivism and
geopolitical objectives (Anderson, 2001). Typically, the attacker starts with recon-
naissance to gather information about the target system. This phase is followed
by exploitation, where the attacker exploits vulnerabilities to compromise infras-
tructure components. For example, the attacker could exploit a buffer overflow to
execute malicious code on the target system. After compromising a component, the
attacker employs lateral movement techniques and may disrupt critical services.

Attacker

login attemptsconfigure
Automation Server

Brute force

Reconnaissance

Code execution

Attacker Server

tcp syn
tcp syn ack

port open

Attacker Service Server
malicious
request

inject code execution

Figure 7: Attacks often involve reconnaissance, brute force, and malicious code execution.

Today, it is widely recognized that it infrastructures are unlikely to ever be
capable of preventing all attacks (Maloof, 2005). They are simply too complex.
Hence, it infrastructures require the ability to quickly respond and mitigate attacks
when they occur, which motivates the following problem formulation.
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Problem
Given the above use case, we study the problem of developing optimal defender
strategies that map infrastructure statistics to automated responses for optimizing
a given objective, such as promptly mitigating potential attacks while minimizing
service disruption. (By mitigation, we understand the ability to apply controls
that restore operational services and steer the infrastructure to a secure state.) We
consider responses on the physical layer, the network layer, the operating system
layer, and the service layer. They include shutdown, recovery, access control, net-
work resegmentation, replication control, malware removal, and cyber deception.
These actions can be used to mitigate, prevent, and recover from cyber attacks.
We provide three examples of response actions below.

Old path

New path

Honeypot Server

Figure 8: Flow control.

Example 1 (Flow control). Flow control is a com-
mon response to counter network intrusions. By
redirecting suspicious traffic to a honeypot, for ex-
ample, the defender can isolate and analyze mali-
cious behavior without exposing critical parts of the
network; see Fig. 8. Such responses are particularly
effective in adaptable network infrastructures, e.g., software-defined networks.

Defender
Revoke certificates

Blacklist IP

Figure 9: Access control.

Example 2 (Access control). Access control is a tradi-
tional mechanism for responding to attacks. By adjust-
ing resource permissions, defenders can prevent attack-
ers from compromising critical assets; see Fig. 9. Such
actions can also limit an attacker’s ability to move lat-
erally within the infrastructure (Bishop, 2004).

. . .
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Figure 10: Replication control.

Example 3 (Replication control). Replication
control in distributed systems can be used to re-
spond to network intrusions by ensuring that mul-
tiple replicas of critical services remain available
even when some replicas are compromised; see
Fig. 10. This control problem involves balancing
the number of replicas and the timing of recovery
actions to maintain service availability and limit
operational cost (Castro and Liskov, 2002).

Challenges When choosing responses, the defender balances two conflicting ob-
jectives. On the one hand, it aims to maintain service to the clients. On the other
hand, it must quickly respond to attacks and reduce their impact. In balancing this
trade-off, the defender faces uncertainty about a potential attack and the causes of
changes in the infrastructure statistics: load patterns shift, bandwidth fluctuates,
components fail, etc. This uncertainty is both epistemic, stemming from incom-
plete knowledge of the attacker’s actions, and aleatory, due to inherent randomness
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and variability in the infrastructure’s operations. Responding to attacks amid such
uncertainties involves two interdependent tasks: deciding when to take action and
deciding which action to execute. The first task is linked to attack detection, which
is essential for determining the optimal moment to intervene. The second task is
related to situational awareness about the state of the infrastructure and the na-
ture of the attack, which is key to selecting effective responses. This selection must
also account for the possible adaptive behavior of the attacker, who may update its
strategy to circumvent encountered defenses.

Performance metrics Figure 11 illustrates the phases and performance met-
rics of the security response problem. The x-axis represents time, and the y-axis
measures service quality and the level of security. The × on the horizontal axis
indicates the time of an attack, which causes a drop in the level of security and
service quality, leading to operational costs. Following the attack is a response time
interval, during which response actions are deployed to mitigate and recover from
the attack. Ideally, these actions should rapidly mitigate the attack while minimiz-
ing operational cost. The system’s ability to continue functioning after the attack
is reflected by its tolerance, also known as resilience. Similarly, the system’s ability
to prevent the attack in the first place is captured by its survivability.
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Figure 11: Phases and performance metrics of the security response problem.

Approach
As evidenced by the problem description above, security response is, at its core,
a decision-making problem. From choosing the right way to mitigate an attack to
configuring access control policies or controlling network flows, each decision in-
volves balancing security requirements and service availability amidst uncertainty
about a potential attack. Relying on humans to make such decisions in real-time
is unsustainable given the growing complexity of it infrastructures (Fig. 1). For
this reason, this thesis focuses on an alternative, data-driven approach to secu-
rity response, which is rooted in the broader disciplines of autonomic computing
(Kephart and Chess, 2003) and operations research (Kantorovich, 1960). This
approach leverages mathematical models and real-time system measurements to
automatically optimize responses through numerical and quantitative methods.
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Methodology We propose the data-driven methodology illustrated in Fig. 12 for
automating security responses in it infrastructures. It includes two systems. First,
we use an emulation system for creating a virtual replica of the target infrastruc-
ture, i.e., a digital twin. This twin closely approximates the functionality and
timing behavior of the target infrastructure, allowing us to run attack scenarios
and defender responses. Such runs produce system measurements and logs, based
on which we identify a game-theoretic model with two players: an attacker and a
defender (von Neumann, 1928). Second, we use a simulation system where opti-
mal response strategies are incrementally learned through stochastic approximation
(Robbins and Monro, 1951). Learned strategies are extracted from the simulation
system and evaluated on the digital twin. This process can be performed iteratively
to provide progressively better response strategies4, where strategy performance is
measured by operational cost and ability to automatically mitigate cyber attacks.

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Emulation System

Target
Infrastructure

System
identification

Strategy
mapping

Selective
Replication

Strategy
implementation

Simulation System
Mathematical model &

optimization

Digital twin for
data collection &

strategy evaluation

Automated, data-driven, &
optimal security response

Figure 12: Our methodology for automated, data-driven, and optimal security response.

Emulation system The emulation system creates a digital twin of the target
infrastructure consisting of virtual containers and networks. Such a twin allows
us to test response strategies under different conditions, including varying attacks,
workloads, and network latencies. Note that while offering this flexibility, a dig-
ital twin still closely approximates the target infrastructure by running the same
software and controlling network delays. As a consequence, evaluating a response
strategy on a digital twin reveals potential issues that simulations cannot feasibly
replicate, such as unexpected resource constraints or software vulnerabilities.

4In control-theoretic terms, it is an adaptive control process (Åström and Wittenmark, 1995).
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Simulation system With a simulation, we mean an execution of a discrete-time
dynamical system of the form

st+1 ∼ f(st, a
(D)
t , a

(A)
t ), (see Fig. 13)

where st is the system state at time t, a(D)
t is the defender action, a(A)

t is the
attacker action, and s ∼ f means that s is sampled from f . Such simulations run
in milliseconds on modern computers and enable data-driven optimization5.

it infrastructure

state st+1
st

response a(D)
t

exploit a(A)
t

Attacker

Defender
Figure 13: Security response as a
discrete-time dynamical system.

Each simulation path s1, s2, . . . , st is associ-
ated with security consequences and costs;
the aim is to find those defender actions
that control the simulation in an optimal
manner according to a stipulated objec-
tive. When performing such optimization,
we face the complexity of the simulation
model. The core issue is the level of abstrac-
tion at which the model is defined. The
more detailed we construct the model, the
closer it can capture the dynamics of the
target infrastructure. At the same time, a
detailed model incurs high computational
costs and potentially a lack of generalization. To address this trade-off, we itera-
tively refine the model with the help of the digital twin; see Fig. 12. Specifically,
after computing a theoretically optimal defender strategy, we validate it on the
digital twin. If the evaluation is unsatisfactory, we update the simulation model
accordingly. This procedure is repeated until satisfactory performance is obtained.

The above methodology is broadly applicable, extending beyond any specific
response scenario, infrastructure configuration, optimization technique, or identifi-
cation method. It can be instantiated with concepts from diverse fields, including
control theory, game theory, causality, and stochastic approximation. These con-
cepts will be developed in-depth throughout this thesis. For now, we turn to a
review of the relevant literature to put our methodology in context.

Related Research
Since the early 1980s, there has been a broad interest in automating security func-
tions, especially in intrusion detection and security response (Anderson, 1980).
Traditional methods for intrusion detection rely on static rules that map infras-
tructure statistics to security alerts (Denning, 1987). For instance, an alert might
be triggered if multiple failed login attempts occur within a short period. The main
drawback of these methods is their dependence on domain experts to configure the

5Optimization on the digital twin is impractical due to time constraints of system commands.
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rules, a process that is both labor-intensive and error-prone. Substantial effort has
been devoted to addressing this limitation by developing statistical methods for
detecting intrusions, e.g., anomaly detection (Dromard et al., 2017). As a result of
this effort, modern intrusion detection systems now incorporate such techniques.

In contrast to detection, security response remains a manual task performed by
human operators. Attempts to automate this task include rule-based response sys-
tems (Wazuh Inc, 2022) and incident response playbooks (Applebaum et al., 2018).
These systems respond to security incidents based on preconfigured rules. Al-
though such systems can automate responses to known attacks, they rely on hu-
mans for configuration and cannot adapt to dynamic or evolving attacks. Current
research—including this thesis—investigates data-driven methods to address these
limitations; see Fig. 14. Three predominant approaches have emerged from this re-
search: control-theoretic, reinforcement learning, and game-theoretic approaches.
Below, we review their strengths and limitations, highlighting the research gaps.
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Figure 14: A categorization of the literature on automated security response and posi-
tioning of this thesis; we present a general methodology for automated security response;
unlike other approaches, this methodology is not limited to a specific scenario or formal
framework; throughout this thesis, we apply it to several instances of the security response
problem, including intrusion prevention, intrusion response, intrusion tolerance, and de-
fense against Advanced Persistent Threats (apts); we also integrate it with several formal
frameworks, including game theory, reinforcement learning, control theory, and causality.



Related Research 27

Control theory for automated security response

Control theory provides a well-established mathematical framework for studying
automatic systems. Therefore, it provides a foundational theory for automated se-
curity response. Classical control systems involve actuators in the physical world
(e.g., electric power systems (Dán and Sandberg, 2010)), and many studies have fo-
cused on applying control theory to automate intrusion responses in cyber-physical
systems; see survey (Teixeira et al., 2015). The control framework can also be ap-
plied to computing systems, and interest in control theory among researchers in it
security is growing (Miehling et al., 2019). Unlike traditional control theory, which
often focuses on continuous-time systems, control-theoretic approaches for it sys-
tems mainly use discrete-time models6. This focus is because measurements from it
systems are solicited on a sampled basis, which is best described by a discrete-time
model (Hellerstein et al., 2004). Previous works that apply control theory to secu-
rity response in it systems include: [220, 252, 217, 306, 362, 363, 308]7, all of which
model security response as the problem of controlling a discrete-time dynamical sys-
tem and obtain optimal strategies through dynamic programming (Bellman, 1957).
Their main limitation is that dynamic programming does not scale to problems of
practical size due to the curse of dimensionality (Bertsekas and Tsitsiklis, 1996).
Exceptions to this inefficiency are cases where specific problem structures allow the
reduction of computational complexity (Miehling et al., 2018).

Traditional control-theoretic approaches (e.g., dynamic programming) for
security response do not scale to infrastructures of practical size.

Limitation 1: Scalability.

Reinforcement learning for automated security response

Reinforcement learning has emerged as a promising approach to approximate opti-
mal control strategies in scenarios where dynamic programming is not applicable,
and fundamental breakthroughs demonstrated by systems like alphago (Silver
et al., 2016) and openai five (Berner et al., 2019) have inspired researchers to
study reinforcement learning to automate security functions. Four seminal papers:
(Georgia, 2000), (Xu and Xie, 2005), (Servin and Kudenko, 2008), and (Zhu and
Basar, 2009) analyze security response and apply traditional reinforcement learning
algorithms. They have catalyzed much follow-up research [328, 178, 182, 176, 130,
397, 510, 261, 66, 369, 525, 469, 152, 207, 150, 4, 286, 353, 175, 518, 125, 123, 508,
529, 528, 287, 391, 283, 292, 64, 213, 284, 519, 239, 486, 187, 493, 219, 218, 484,
179, 22, 521, 273, 223, 185, 278, 260, 141, 296, 336, 241, 368, 490, 495, 93, 452, 245,

6The theoretical framework for discrete-time systems is often referred to as decision theory.
7We use (author, year)-style referencing when we want to emphasize when the research was

conducted; when this is not important, we use numeric references to save space.
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215, 474, 500, 335, 47, 110]. These works show that deep reinforcement learning
is a scalable technique for approximating optimal response strategies8. However,
such methods lack convergence guarantees and often diverge when facing dynamic
attackers, i.e., attackers that adapt their strategies to encountered defenses.

Current deep reinforcement learning approaches for security response lack
optimality guarantees and often diverge.

Limitation 2: Lack of theoretical guarantees.

Game theory for automated security response

Game theory stands out from control theory and reinforcement learning by fo-
cusing on decision-makers that reason strategically about the opponents’ behav-
ior. The formulation of security response as a game can be traced back to the
early 2000s with works such as (Buttyán and Jean-Pierre, 2001), (Braynov and
Sandholm, 2003), (Alpcan and Basar, 2004), (Theodorakopoulos and Baras, 2006),
(Altman et al., 2007), (Grossklags et al., 2008), (Buchegger and Alpcan, 2008),
(Kiekintveld et al., 2009), and (Saad et al., 2010). In addition to these early pio-
neers, numerous researchers have contributed to this line of research in the last two
decades. Notable contributions include the textbooks (Buttyan and Hubaux, 2007),
(Alpcan and Basar, 2010), (Tambe, 2011), (Kamhoua et al., 2021) and the doctoral
dissertations (Alpcan, 2006), (Sallhammar, 2007), (Chen, 2008), (Grossklags, 2009),
(Zonouz, 2011), (Zhu, 2013), (Malialis, 2014), (Teixeira, 2014), (Fang, 2016),
(Bao, 2018), (Horák, 2019), (Umsonst, 2021), (Huang, 2022), (Guoxin, 2024), which
have sparked significant follow up research [116, 210, 398, 36, 483, 517, 186, 312,
502, 446, 124, 202, 354, 476, 528, 393, 33, 471, 78, 144, 399, 327, 450, 451, 13, 399,
327, 450, 451, 13, 170, 364, 325, 178, 150, 268, 527, 205, 531, 284, 493, 484, 521, 16,
270, 346, 394, 149, 383, 275, 420, 462, 65]. These works study various aspects of
security games, including the existence, uniqueness, and structure of equilibria, as
well as computational methods. However, nearly all of them are simulation studies,
and how they generalize to operational infrastructures is unproven. Few emulation
studies exist, e.g., (Zonouz et al., 2009) and (Aydeger et al., 2021), but they do not
present a general methodology9.

Most of the proposed game-theoretic approaches for security response
have only been validated analytically or in simulation.

Limitation 3: Simulation-based evaluations.

8By scalable, we mean that deep reinforcement learning methods can handle large state and
action spaces, which traditional dynamic programming methods struggle with.

9Technical comparisons between the contributions of this thesis and the prior work can be
found in the included papers; see §1.7, §2.6, §3.2, §4.8, §5.8, and §6.2.
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Research gap

In summary, while previous research on data-driven methods for automated security
response has made strides in various domains, critical problems remain unaddressed.
Current control-theoretic approaches exhibit limitations in scalability when applied
to it infrastructures of practical size. In contrast, deep reinforcement learning
approaches are scalable but lack theoretical guarantees, particularly when facing
dynamic attackers. On the other hand, game-theoretic approaches allow modeling
dynamic attackers but are often evaluated through simulation only. Hence, despite
extensive prior research, the question of how to build automated response systems
that are both theoretically sound and practically viable remains open. To address
this challenge, we study the following research question.

RQ: What methodology can be used to develop an automated security
response system that guarantees scalability and optimality, and how can
the system be rigorously validated on a testbed?

Contributions
Addressing the above question is the main focus of this thesis. We posit that
the methodology illustrated in Fig. 12 provides the answer. This claim will be
supported by applying the methodology to several instances of the security response
problem, including intrusion prevention, intrusion response, intrusion tolerance,
and defense against advanced persistent threats, each detailed in one of the papers
presented in this thesis; see Papers 1–6. The advancements made through these
papers encompass not only experimental findings but also theoretical insights and
practical implementations. Our main contributions can be summarized as follows.

⋆ 1. Scalable algorithms for computing optimal response strategies.

To address Limitation 1, we design and implement seven scalable algorithms
for computing optimal response strategies (Algs. 1.1–6.1), for which we prove
convergence (Thms. 5.3, 5.4, and 6.4). They build on techniques from
stochastic approximation, game theory, reinforcement learning, linear and
dynamic programming, and causality. We demonstrate that these algorithms
outperform state-of-the-art methods in the scenarios we study.

⋆ 2. Mathematical formulations of optimal security response.

We introduce six novel mathematical models of security response. With these
models, we show that a) optimal stopping is a suitable framework for deriving
the optimal times to take response actions; b) partially observed stochastic
games effectively model the security response use case; and c) the Berk-Nash
equilibrium allows capturing model misspecification in security games.
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⋆ 3. Proving structural properties of optimal response strategies.

To address Limitation 2, we develop fundamental mathematical tools for se-
curity response and prove structural properties of optimal response strategies,
such as decomposability (Thm. 3.2) and threshold structure (Thms. 1.1, 2.1,
4.3, 4.5, and 5.1). These structural results enable scalable computation and
efficient implementation of optimal strategies in operational systems.

⋆ 4. General methodology for optimal security response.

We design a general methodology for optimal security response; see Fig. 12.
Additionally, we present the Cyber Security Learning Environment (csle),
an open-source platform that implements our methodology (Hammar, 2023).
This platform allows us to experimentally validate the methodology on sev-
eral instances of the security response problem, including intrusion prevention,
intrusion response, intrusion tolerance, and defense against advanced persis-
tent threats. Unlike previous simulation-based solutions, our methodology
provides practical insights beyond a specific response scenario.

Organization
The remainder of this thesis is organized as follows. The first chapter covers the-
oretical background on decision and game theory. Readers already well-versed in
these theories may skip this chapter without missing essential context. Following
this background chapter are two chapters that cover the problem formulation and
the methodology. These chapters set the stage for the remaining chapters, which
contain Papers 1–6, each detailing an application of our methodology to a spe-
cific instance of the security response problem. Finally, we conclude and provide
suggestions for future research.



DECISION-THEORETIC FOUNDATIONS

The purpose of models is not to fit the data but to sharpen the questions.
— Samuel Karlin 1983, Fisher Memorial Lecture.

Mathematical models allow us to rigorously formulate new ideas, provide
a common basis for study, make assumptions explicit, and help catego-
rize various solutions. It is with these reasons in mind that each paper

presented in this thesis begins with the formulation of a mathematical model. In
this chapter, we review the formalisms that underpin these models, namely Markov
decision theory and game theory, laying the groundwork for the subsequent chap-
ters. The exposition is brief but includes pointers to the relevant literature.

Notation

Our usage of mathematical notation is fairly standard. For the reader’s convenience,
we summarize the most frequently used notations here. Boldface lowercase letters
denote column vectors, e.g., x = (x1, x2, . . .). Upper case calligraphy letters (e.g.,
V) represent sets. P is a probability measure. The set of probability measures
over V is written as ∆(V). A random variable is written in upper case (e.g., X), a
random vector in boldface (e.g., X). The range of a random variable X is denoted
as RX . The expectation of an expression ϕ with respect to X is written as EX [ϕ]. If
ϕ includes many random variables that depend on π, we simply write Eπ[ϕ]. x ∼ f
means that x is sampled from the distribution f . We use P[x | y] as a shorthand
for P[X = x | Y = y]. In a game with a set of players N , we use −k as a shorthand
for N \ {k}. We use big O notation, e.g., O(g(x)). The i-th standard basis vector
is written as ei. We use “increasing” and “decreasing” to mean strictly increasing
and strictly decreasing, respectively. Conversely, we use “non-decreasing” and “non-
increasing” to mean weakly increasing and weakly decreasing, respectively. ∥·∥∞ is
the supremum norm. Further notation is listed in Table 1 on the next page.

Measurability

We predominantly study spaces endowed with the discrete topology. Consequently,
the construction of the underlying probability space is standard and shall be omitted
for brevity. Specifically, the probability space is defined as (Ω,F ,P), where Ω is
a finite sample space, the σ-algebra of events is F = 2Ω, and all sets Y ∈ F are
P-measurable (Kolmogorov, 1933). A random variable X : Ω→ R is a measurable
function, i.e., for all X ∈ B(R), we have that X−1(X ) ∈ F , where B(R) is the
Borel σ-algebra on R. A filtration (Ft)t≥0 is an increasing sequence of sub σ-
algebras where each Ft ⊂ F represents events observable up to time t. For example,
Ft = σ(Xk | k ≤ t) is the σ-algebra generated by the random variables X1, . . . , Xt.
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Notation Description
xT The transpose of x.
X × Y The Cartesian product of the sets X and Y.

n

i=1
Xi X1 ×X2 × . . .Xn.

|X | Cardinality of the set X .
f ≜ ϕ(x) f is defined as ϕ(x).
∇θJ(θ) Gradient of J with respect to θ.
(xi)i=1,...,n Either a sequence or a vector (x1, x2, . . . , xn).
{xi}i=1,...,n The set {x1, x2, . . . , xn}.
⟨x1, x2, . . . , xn⟩ A tuple with n components.
1ϕ(x) The indicator function, which is 1 if ϕ(x) is true; 0 otherwise.
δi(·) The Dirac delta function centered at i.
R The set of real numbers.
R+ The set of non-negative real numbers.
Rm×n The set of m× n matrices with real entries.
N The set of natural numbers 0, 1, 2, . . ..
pa(X)G Parents of node X in graph G.
ch(X)G Children of node X in graph G.
an(X)G Ancestors of node X in graph G.
de(X)G Descendants of node X in graph G.
G[V] The subgraph obtained by restricting G to the nodes in V.
DKL(P ∥ Q) The Kullback-Leibler (kl) divergence between P and Q.
0n The n-dimensional zero vector (0, . . . , 0) ∈ Rn.
1n The n× n identity matrix.
2S The power set of S.
⊕ Vector concatenation operation.
Ω,F ,P Sample space, σ-algebra of events, probability measure.
B(R) The Borel σ-algebra on R.
Ft, σ(Xk | k ≤ t) Filtration at time t, σ-algebra generated by X1, . . . , Xt.

Table 1: Mathematical notation.

The Markov Decision Process
A Markov Decision Process (mdp) models the control of a discrete-time dynamical
system and is defined by the seven-tuple

M ≜ ⟨S,A, f, r, γ,b1, T ⟩. (Bellman, 1957) (1)

It evolves in time steps from t = 1 to t = T , which constitutes one episode. γ ∈ [0, 1]
is a discount factor, S is the set of states, and A is the set of actions. The initial
state is drawn from b1 ∈ ∆(S) and f(st+1 | st, at) is the probability of transitioning
from state st to state st+1 when taking action at, which has the Markov property

f(st+1 | st, at) = f(st+1 | s1, . . . , st, at). (2)

Each state transition is associated with a reward r(st, at) ∈ R. If f (2) and r are
independent of the time step t, the mdp is stationary. Similarly, if S and A are
finite, the mdp is finite.
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Assumption 1 (Finiteness and stationarity). Unless otherwise stated, all models
considered in this thesis are assumed to be finite and stationary.

Assumption 2 (Bounded rewards). ∃M ∈ R, |r(s, a)| ≤M <∞,∀(s, a) ∈ S ×A.

Actions are decided by a strategy π(ht), which is a function of the history

ht ≜ (s1, a1, . . . , st−1, at−1, st) = (ht−1, at−1, st) ∈ Ht, (3)

where Ht is the set of histories of length t.
If π only depends on ht through st, it is said to be Markovian. If π maps

each history to a unique action, it is deterministic (also called pure) and written
as at = π(ht). Otherwise, it is stochastic (also called behavioral) and written as
at ∼ π(· | ht). If π is independent of the time step t, it is stationary. Otherwise, it
is non-stationary and written as πt.

An optimal strategy π⋆ maximizes the expected cumulative discounted reward

J(π⋆) = sup
π∈Π

J(π), where J(π) ≜ Eπ

[
T∑

t=1
γt−1r(St, At)

]
. (4)

Here J : Π → R is an objective functional and Eπ denotes the expectation of the
random vector HT ∈ HT (3) when following strategy π.

Remark 1 (Measurability). Assuming f (2), b1, and π are well-defined probability
measures, then, by the extension theorem of (Ionescu Tulcea, 1949), there exists a
unique probability measure P on Ht for all t. Consequently, the expectation in (4)
is well-defined under general conditions (Prop. 7.28, Bertsekas and Shreve, 1978).

Remark 2 (Constraints). Two types of constraints can be added to (4): local
and global. Local constraints restrict actions based on the state st and can be
handled by standard algorithms for mdps. Global constraints, on the other hand,
restrict the state trajectory (st)T

t=1 and require a different formal framework, namely
constrained Markov decision processes; we cover this framework in Paper 4.

If the strategy space Π contains the class of Markovian strategies and the mdp
is finite, then there exists a strategy that achieves the maximum in (4); see Thm. 1
below. However, if π is parameterized, or if the mdp is not finite, the maximum
might not be attained. Nevertheless, by the completeness of R, the supremum in
(4) always exists under the following assumption and Assumption 2.

Assumption 3 (Finite objective (4)).

The time horizon T is finite; or

T is a random variable and Eπ⋆ [T ] <∞ for any optimal strategy π⋆; or

T is infinite and γ < 1.
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Theorem 1 (Existence of optimal strategies in mdps). Given a finite mdp and
Assumptions 2–3, then an optimal, deterministic, Markovian strategy π⋆

t exists. If
the mdp is stationary and the horizon T is infinite or random, then an optimal,
deterministic, stationary, Markovian strategy π⋆ exists10.

Remark 3 (Dominance of Markovian strategies). Throughout this thesis, when-
ever an optimal Markovian strategy exists, we shall implicitly restrict the strategy
space Π to the class of Markovian strategies, which simplifies notation and analysis.

The complexity of computing an optimal strategy for an mdp is polynomial
in |S| + |A| + B, where B is the maximum number of bits required to represent
any component of f (2) or r (Littman et al., 1995). Such computation involves
maximizing the objective in (4), which is separable in the sense that it is additive
across time steps. This separability underlies the Bellman equation and enables
efficient computation through dynamic programming, as described below.

With some abuse of notation, we use J(π) to denote the value of a strategy π
(4), while also using Jπ(s) to refer to the value of a state s under strategy π11:

Jπ(s) ≜ r(s, π(s)) + γ
∑
s′∈S

f(s′ | s, π(s))Jπ(s′) ∀s ∈ S. (5)

Immediate reward.

Expected future reward.

Likewise, Qπ(s, a) is the value of taking action a in state s:

Qπ(s, a) ≜ r(s, a) + γ
∑
s′∈S

f(s′ | s, a)Jπ(s′) ∀(s, a) ∈ S ×A. (6)

Bellman’s optimality equation relates π⋆ to the optimal value function J⋆:

π⋆(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

f(s′ | s, a)J⋆(s′)
]

(Eq. 1, Bellman, 1957) (7)

for all s ∈ S. Since a strategy that maximizes (4) also satisfies (7), this equation
effectively provides an alternative optimality condition (sufficient and necessary) to
(4) (Thm. 4.3.3, Puterman, 1994). Note that π⋆(s) ∈ arg maxa∈A Q

⋆(s, a).

The Bellman equation is grounded in the principle of optimality, which
states that the optimal action in any state leads to a sequence of subse-
quent actions that are optimal starting from the next state.

The principle of optimality (Bellman, 1957).

10See (Thms. 4.4.2, 6.2.10, 8.4.5, Puterman, 1994) for the proofs, which are based on backward
induction and Banach’s fixed-point theorem (Thm. 6, p. 160, Banach, 1922).

11Jπ may depend on time if the mdp is non-stationary or if T < ∞, we then write it as Jπ
t .
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Dynamic and linear programming Dynamic programming algorithms, e.g.,
value and policy iteration (§6.3-6.4, Puterman, 1994), use (7) to obain an optimal
strategy through successive approximations of J⋆. Specifically, value iteration im-
plements the recursion Jk+1 = T Jk, where k is the iteration index and T is a
contraction mapping (∥T J −T J ′∥∞ ≤ γ∥J − J ′∥∞) defined as

(T J)(s) ≜ max
a∈A

[
r(s, a) + γ

∑
s′∈S

f(s′ | s, a)J(s′)
]

∀s ∈ S. (8)

Similarly, policy iteration is defined as

πk+1(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

f(s′ | s, a)Jπk (s′)
]

∀s ∈ S, (9)

where Jπk = TπJ
πk and

(TπJ)(s) ≜ r(s, π(s)) + γ
∑
s′∈S

f(s′ | s, π(s))J(s′) ∀s ∈ S. (10)

Note that Tπk
Jπk−1 = T Jπk−1 , where Tπk

is linear and T is non-linear. Hence,
policy iteration effectively linearizes the Bellman operator around Jπk−1 and then
solves for the fixed point, analogous to Newton’s method; see Fig. 15.

J⋆

π⋆

π1

J π1 = T
π1 J π1 (10)

πk → πk+1 (9)

(a) Policy iteration [448].

T J (8) 45◦ degree line

J

J

J⋆ = T J⋆J2J1

J2

J3

value iterations

fixed
point

(b) Value iteration when |S| = 1 [51].

Figure 15: Dynamic programming; (a) policy iteration computes Jπ = TπJπ (10) and
updates π using (9); (b) value iteration implements the recursion Jk+1 = T Jk (8).

Under Assumptions 1–3, the recursion Jk+1 = T Jk satisfies limk→∞ Jk = J⋆

(Thm. 6.3.1, Puterman, 1994). Likewise, the strategies produced by (9) satisfy
limk→∞ πk = π⋆ (Thm 6.4.2, Puterman, 1994). These convergence results are based
on the observation that J⋆ = T J⋆, i.e., J⋆ is a fixed point of T (8). Therefore, J⋆

is the smallest vector J ∈ J that satisfies the Bellman inequality

J(s) ≥ max
a∈A

[
r(s, a) + γ

∑
s′∈S

f(s′ | s, a)J(s′)
]

∀s ∈ S, (11)
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where J is the Banach space of |S|-dimensional vectors (Hordijk and Kallen-
berg, 1979). Consequently, J⋆ is the unique solution to the following linear program

minimize
J∈J

{∑
s∈S

J(s)β(s) | J satisfies (11)
}

subject to β(s) > 0 ∀s ∈ S, (12)

where β is a probability distribution over S.

Stochastic approximation Stochastic approximation provides an alternative
method for solving (4) when dynamic programming cannot be applied, e.g., when
only samples of f (2) are available. Another key advantage of stochastic approx-
imation is its ability to efficiently estimate near-optimal solutions to (4) in cases
when dynamic programming is computationally prohibitive.

Let H be an operator on S ×A defined as

(H Q)(s, a) ≜ r(s, a) + γ
∑
s′∈S

f(s′ | s, a) max
a′∈A

Q(s′, a′)−Q(s, a).

Note that H Q⋆ = 0|S|×|A|. Hence, solving (4) amounts to finding a root of H .
Suppose that we can obtain samples of the form (H Q)(s, a) +w, where w ∈ R is a
random noise. Using such samples, we can implement the stochastic approximation

Qn+1(s, a) = Qn(s, a) + αn((H Qn)(s, a) + wn)

= Qn(s, a) + αn

(
(H Qn)(s, a)+

(
r(s, a) + γmax

a′∈A
Qn(s′, a′)−Qn(s, a)

)
− (H Qn)(s, a)

)

= Qn(s, a) + αn

(
r(s, a) + γmax

a′∈A
Qn(s′, a′)−Qn(s, a)

)
, (13)

Noise term wn; E[Wn] = 0; s′ ∼ f(· | s, a).

where (αn)∞
n=0 is a sequence of step sizes satisfying

∞∑
n=0

αn =∞ and
∞∑

n=0
α2

n <∞. (Robbins and Monro, 1951)

This stochastic approximation algorithm is known as Q-learning (Watkins, 1989).
Under Assumptions 1–3,

∑∞
n=0 αnwn is almost surely convergent (martingale con-

vergence theorem). Therefore, (13) asymptotically behaves as

Qn+1(s, a) = Qn(s, a) + αn(H Qn)(s, a). (14)

Hence, limn→∞ Qn = Q⋆ (Thm. 2, Jaakkola et al., 1994).
Note that (14) can be interpreted as an Euler scheme that approximately solves

dQ(s,a)
dn = (H Q)(s, a). This interpretation enables the application of ode theory

to analyze the convergence properties of (13) (Borkar, 2008) (Meyn, 2022).
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The Partially Observed Markov Decision Process
A Partially Observed Markov Decision Process (pomdp) is an extension of an mdp
where the states are hidden; it is defined by the nine-tuple

M ≜ ⟨S,A, f, r, γ,b1, T,O, z⟩. (Åström, 1965) (15)
The first seven elements define an mdp. O denotes the set of observations and
z(ot | st) is the observation function, where ot ∈ O. If O, S, and A are finite, the
pomdp is finite. If f , r, and z are time-independent, the pomdp is stationary.

A control strategy π(ht) is a function of the history

ht ≜ (b1, a1, o2, a2, . . . , at−1, ot) = (ht−1, at−1, ot) ∈ Ht. (16)
Based on this history, the controller computes the belief state

bt(s) ≜ P[St = s | ht] = P[St = s | ot, at−1,ht−1] (17)
(Bayes)= P[ot | s, at−1,ht−1]P[s | at−1,ht−1]

P[ot | at−1,ht−1]
(Markov)= z(ot | s)P[s | at−1,ht−1]

P[ot | at−1,ht−1]
(Markov)=

z(ot | s)
∑

st−1∈S bt−1(st−1)f(s | st−1, at−1)∑
ŝ∈S

∑
s′∈S z(ot | s′)f(s′ | ŝ, at−1)bt−1(ŝ)

≜ B(bt−1, at−1, ot)(s),

where B is a recursive belief operator. This operator performs O(|S|2) scalar multi-
plications. (We assume that S is finite (Assumption 1); otherwise, the summations
in (17) have to be replaced with integrals12.)

Independent of s, i.e., a normalizing constant.

Since bt is a sufficient statistic for st (Def. 4.2, Lem. 5.1, Thm. 7.1, Kumar
and Varaiya, 1986), we can define a Markovian strategy as π : B → ∆(A), where
B ≜ ∆(S) is the belief space, i.e., the unit (|S| − 1)-simplex; see Fig. 16.

(b) ∆({0, 1, 2}): 2-dimensional unit-simplex.

0.25 0.55

0.2

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(0.25, 0.55, 0.2)

(a) ∆({0, 1}): 1-dimensional unit-simplex.
(1, 0) (0, 1)

0.4 0.6
(0.4, 0.6)

Figure 16: The belief state b ∈ ∆(S) (17) is an |S|-dimensional probability vector, which
can be represented geometrically as a point in the unit simplex of dimension |S| − 1.

12When the state space is large, (17) generally has to be approximated; one common approxi-
mation technique is the particle filter, which we describe in Paper 6.
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Theorem 2 (Existence of optimal strategies in pomdps).
Given a finite pomdp and Assumptions 2–3, then13

1. There exists an optimal, deterministic, Markovian strategy π⋆
t and an optimal

value function J⋆
t : B → R that is piece-wise linear and convex14 and satisfies

J⋆
t (b) = max

a∈A

[
ES [r(S, a) | b] + γ

∑
o∈O

J⋆
t (B(b, a, o))P[o | b, a]

]
. (18)

2. If the pomdp is stationary and T is infinite or random, then there exists a
stationary, deterministic, Markovian π⋆ and a stationary J⋆.

Computing an optimal strategy for a pomdp is pspace-hard (Thm. 6, Papadim-
itriou and Tsitsiklis, 1987). To understand this complexity, note that a pomdp can
be treated as a continuous-state mdp by defining bt as the state and using B (17)
as the transition function (Thm. 7.2.2, Krishnamurthy, 2016).

The One-Sided Partially Observed Stochastic Game
A zero-sum, one-sided, Partially Observed Stochastic Game (posg) can be regarded
as a generalized pomdp with two controllers (players)15. It is defined as

Γ ≜ ⟨N ,S, (Ak)k∈N , f, r, γ,b1, T, z,O⟩. (Def. 3.1, Horák et al., 2023) (19)

N ≜ {1, 2} is the set of players, S is the set of states, and Ak is the set of actions
for player k. f(st+1 | st,at) is the transition function and r(st,at) is the reward
function, where at ≜ (a(1)

t , a
(2)
t ) ∈ A1 × A2 is the action profile at time t. γ is

a discount factor, b1 is the initial state distribution, T is the time horizon, and
z(ot | st) is the observation function, where ot ∈ O. Γ (19) is finite if S, A1 ×A2,
and O are finite. Similarly, Γ is stationary if f , r, and z are time-independent.

Player k follows a behavior strategy πk, where a(k)
t ∼ πk(h(k)

t ) and

h(k)
t ≜ (b1, a

(k)
1 , i(k)

2 , a
(k)
2 , . . . , a

(k)
t−1, i

(k)
t ) = (h(k)

t−1, a
(k)
t−1, i

(k)
t ) ∈ H(k)

t . (20)

Here H(k)
t is the history space and i(k)

t is the information feedback:

i(1)
t ≜ (ot) and i(2)

t ≜ (ot, st, a
(1)
t−1) . (21)

Partial observability. Complete observability.

13See (Thms. 7.2.2, 7.4.1, 7.6.1, Krishnamurthy, 2016) for the proof.
14E.J. Sondik originally proved this property (Thm. 2, Sondik, 1978). A more accessible proof

can be found in (Thms. 7.6.1–7.6.2, Krishnamurthy, 2016).
15A stochastic game (Shapley, 1953) is a specific type of dynamic (and extensive-form) game

where state transitions can be stochastic (Def. 5.4, Basar and Olsder, 1999).
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Definition 1 (Perfect recall, (Def. 7, Kuhn, 1953)). A stochastic game has perfect
recall if each player k ∈ N remembers h(k)

t at each time step t (20).

Assumption 4 (Perfect recall). Throughout this thesis, games have perfect recall.

Based on the history (20), the belief state of player 1 is computed as

bt(st) ≜ B(bt−1, a
(1)
t−1, ot, π2)(st) = B(h(1)

t , π2)(st) ≜ P[St = st | h(1)
t , π2] = (22)

z(ot | st)
∑

st−1∈S
∑

a
(2)
t−1∈A2

π2(a(2)
t−1 | bt−1, st−1)bt−1(st−1)f(st | st−1, a

(1)
t−1, a

(2)
t−1)∑

a
(2)
t−1∈A2

∑
s′,s∈S z(ot | s′)π2(a(2)

t−1 | s,bt−1)f(s′ | s, a(1)
t−1, a

(2)
t−1)bt−1(s)

,

which requires O(|A2||S|2) scalar multiplications. (If S ∪ A2 is not finite, the
summations in (22) are replaced with integrals.) Note that this computation can
be performed by both players, i.e., player 2 knows the true state and player 1’s belief
state (21). Consequently, the players’ behavior Markov strategies can be defined as
π1 : B → ∆(A1) and π2 : B × S → ∆(A2); see Fig. 17.

B (22)
πk

strategy
st

system sensor
belief bt action

a
(k)
t

state
st+1

obs
ot+1

prior bt−1

Bayesian
learning

information feedback i(k)
t

Figure 17: The control loop of player k in a partially observed stochastic game (19).

π1 is a best response against π2 if it maximizes

J (π1,π2)(b1) ≜ E(π1,π2)

[
T∑

t=1
γt−1r(St,At) | b1

]
. (23)

Similarly, π2 is a best response against π1 if it minimizes J (π1,π2)(b1). Hence, the
best response correspondences are

B1(π2) ≜ arg max
π1∈Π1

J (π1,π2)(b1) correspondence for player 1 (24a)

B2(π1) ≜ arg min
π2∈Π2

J (π1,π2)(b1) correspondence for player 2. (24b)

Computation of these correspondences amount to computing the optimal strategies
in a pomdp and an mdp, respectively.

We refer to π ≜ (π1, π2) as the strategy profile. When each player follows a best
response, π forms a Nash equilibrium (ne), which is defined as16

π⋆ ≜ (π⋆
1 , π

⋆
2) ∈ B1(π⋆

2)×B2(π⋆
1). (Eq. 1, Nash, 1951) (25)

16The complexity of computing an ne in a posg is nexpnp (Thm. 3.5, Goldsmith and Mund-
henk, 2007). Recall that P ⊆ NP ⊆ PSPACE ⊆ NEXP ⊆ NEXPNP.
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This equilibrium can be refined as a Perfect Bayesian Equilibrium (pbe) by requir-
ing the belief (22) to be consistent across subgames.

Definition 2 (Subgame). An instance of Γ starting from the history h(2)
t is a

subgame of Γ and denoted as Γ|h(2)
t

.

Definition 3 (Reachable subgame). Given a strategy profile π and a game Γ, a
subgame Γ|h(2)

t
is reachable iff P[h(2)

t | π,b1] > 0.

Definition 4 (Perfect Bayesian Equilibrium (pbe)). (π⋆,B) (22) is a pbe iff

1. optimality. π⋆ = (π⋆
1 , π

⋆
2) is a ne in Γ|h(2)

t
∀h(2)

t ∈ H(2)
t .

2. belief consistency. For any h(1)
t ∈ H(1)

t with P[h(1)
t | π⋆,b1] > 0, then

B(h(1)
t , π⋆

2) = B( B(h(1)
t−1, π

⋆
2) , π⋆

1(B(h(1)
t−1, π

⋆
2)) , ot, π

⋆
2).

bt−1. a
(1)
t−1.

Theorem 3 (Existence of equilibria in one-sided posgs). Under Assumptions 1–4,
a zero-sum, one-sided posg Γ has a ne and a pbe in Markovian behavior strategies.
Further, stationary versions of such equilibria exist if T is random or T =∞.

Proof. Without loss of generality, we assume that T is deterministic17. If T < ∞,
then Γ can be represented in extensive form18. Consequently, it has a ne in Marko-
vian behavior strategies (Thm. 4.3, Thm. 4.6, Myerson, 1997). Denote the value of
the game when restricting the horizon to be T <∞ as vT and let (π1,T , π2,T ) be the
corresponding ne. Next, let π1,T∞ be an infinite-horizon extension of π1,T where
player 1 follows strategy π1,T for the first T time steps and then follows an arbitrary
strategy in the rest of the game. Define r ≜ min r(·) and r ≜ max r(·). It follows
that the reward obtained by π1,T∞ is at most vT ≜ vT +

∑∞
t=T +1 γ

t−1r = vT +γT r
1−γ

and at least vT ≜ vT + γT r
1−γ . Since γT → 0 as T →∞, the bounds [vT , vT ] con-

verge to a single value, denoted v∞, which is achieved by stationary strategies
(Thm. 2). Let v⋆ = supπ1 infπ2 [J (π1,π2)(b)] (23). By definition, vT ≤ v⋆ ≤ vT .
Hence, v∞ = v⋆ is the value of the game (squeeze theorem). Consequently, any
reachable subgame has a stationary ne in Markovian behavior strategies. As this
claim is independent of b1 and s1, we obtain a pbe by combining the nes of all
reachable subgames with those of the unreachable subgames and B (22)19.

Corollary 1 (Convexity of the value function). Under Assumptions 1–4, the value
function J⋆

t (b) ≜ J
(π⋆

1 ,π⋆
2 )

t (b) (23) of a zero-sum, two-player, one-sided posg Γ is
piece-wise linear and convex20. Further, J⋆ is stationary if T is random or T =∞.

17Otherwise Γ can be reformulated with T = ∞; see Lemma 4.1 in Paper 4.
18See Lemma 4.2 of Paper 4 for a proof that a posg can be represented in extensive form.
19Similar proofs are given in (Thm. 2.3, Horák, 2019) and (§3, Hespanha and Prandini, 2001).
20A proof is given in (Thm. 4.5, Horák, 2019).
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Remark 4 (Game-theoretic optimality). In contrast to optimal control problems,
e.g., mdps and pomdps, where optimality has an unambiguous meaning (4), in
game-theoretic settings, optimality is not a well-defined concept. Throughout this
thesis, we consider the pbe as a specific form of optimality, which, due to the zero-
sum structure, aligns with minimax optimality (Blackwell and Girshick, 1979).

Notation and terminology Our game- and decision-theoretic notation is sum-
marized in Table 2 below.

Notation(s) Description
M,Γ,Γ|h(2) A decision process (1) (15), a game (19), and a subgame.
S,O,A Sets of states, observations, and actions in a decision process.
Ak Set of actions of player k in a game.
T, γ Time horizon and discount factor.
f, r, z Transition (2), reward, and observation functions.
at, a

(k)
t Action at time t and action of player k in a game.

at Action profile at time t in a game.
st, rt State at time t and reward at time t.
ot Observation at time t.
π, π⋆ Strategy in a decision process and an optimal strategy.
πk,π Strategy of player k in a game and strategy profile.
π⋆, π⋆

k Equilibrium strategy profile in a game and equilibrial strategy of player k.
π̃k Best response strategy of player k in a game.
Π,Πk Strategy space in a decision process and of player k in a game.
J Objective functional (4) or value function (5) (overloaded notation).
Jπ, Jπ Value functions of strategy π (7) and strategy profile π (23).
Qπ, Qπ Q-functions of strategy π and strategy profile π (6).
J⋆, Q⋆ Optimal value function (7) (18) (23) and Q function (6).
T ,Tπ The Bellman operator (8) and the strategy evaluation operator (10).
H The Q-learning operator (13).
ht,Ht History at time t in a decision process and set of histories of length t.
h(k)

t ,H(k)
t History at time t of player k in a game and set of histories of length t.

i(k)
t Information feedback of player k at time t in a game.

bt,B,B Belief state at time t, set of beliefs, and belief operator (17) (22).
N , Bk Set of players in a game, best response correspondence of player k (24).

Table 2: Notation for our game- and decision-theoretic models.

Our terminology for classifying different game and decision-theoretic models is
summarized in Table 3 on the next page.
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Terminology Meaning
Finite mdp |S ∪ A| <∞.
Stationary mdp f and r are independent of the time step t.
Markovian π in an mdp π is a function of the state s.
Finite pomdp |S ∪ A ∪ O| <∞.
Markovian π in a pomdp π is a function of the belief state b (17).
Stationary pomdp f , r, and z are independent of the time step t.
Finite os-posg |S ∪ A1 ∪ A2 ∪ O| <∞.
Stationary os-posg f , r, and z are independent of the time step t.
Markovian π1 in a os-posg π1 is a function of the belief state b (22).
Markovian π2 in a os-posg π2 is a function of the belief state b (22) and the state s.
Best response Optimal strategy against a fixed opponent strategy in a os-posg.
Stationary π π is conditionally independent of the time step t.
Pure π π is a deterministic function.
Behavior π π is a probability distribution over actions at each time step.
Episode Execution of a decision process or a game for T time steps.

Table 3: Terminologies for our game- and decision-theoretic models.

Summary
This chapter reviews two mathematical frameworks for modeling decision problems:
Markov decision theory and (noncooperative) game theory. They are particularly
well-suited in the context of security response due to their ability to model sequen-
tial decision-making in uncertain, complex, and dynamic environments. The next
chapter formalizes the security response problem using these frameworks.

Bibliographic Remarks
The Markov process, which underpins Markov decision theory, was introduced by
A.A Markov in 1906 [299, 300]. Markov’s seminal papers laid the groundwork for
Markov decision theory, which can be traced back to the mid-20th century with the
contributions of R. Bellman [45], C.E. Shannon [404], A.L Samuel [388], S. Karlin
[231], and L.S. Shapley [405]. In 1957, Bellman established the framework of mdps
in the landmark book “Dynamic Programming” [46].

The foundations of game theory were laid out in the classic book by J. von
Neumann and O. Morgenstern, “The Theory of Games and Economic Behavior”
in 1944 [480]. Precursors to this seminal work were E. Zermelo’s work on chess in
1913 [511], a sequence of short papers by E. Borel in the 1920s [67, 68, 70, 69], and
von Neumann’s 1928 paper on finite zero-sum games [479]. The field blossomed
in the 1950s with J.F. Nash’s introduction of the Nash equilibrium, a concept
that earned him the Nobel prize in 1994 [322]. Concurrently, L.S. Shapley made
significant advances in dynamic games and introduced the stochastic game in 1953
[405]. Another significant advancement came from H.W. Kuhn, who introduced the
concepts of perfect recall and behavior strategies in 1953 [257].



FORMALIZING THE SECURITY RESPONSE
PROBLEM

A problem well stated is a problem half solved.
— Charles Kettering 1876-1958.

The security response problem is not intrinsically mathematical and can be
stated with minimal formalism, as demonstrated in the introduction chap-
ter. However, a mathematical formulation allows us to define concepts

precisely, verify the consistency of ideas, and study the implications of assump-
tions. For these reasons, this chapter is devoted to formalizing the security response
problem and articulating our assumptions in precise mathematical terms.

To accomplish this formalization, we need a vocabulary in which to talk about
the systems and actors involved. Following the terminology of (Alpcan and
Basar, 2010), we refer to the operator of the infrastructure as the defender, and we
refer to the entity causing the attack as the attacker21; see Fig. 18. Both interact
with the infrastructure by taking actions, which affect the infrastructure’s state.
When selecting these actions, the defender and the attacker consider measurements
collected from the infrastructure, which we refer to as observations. A function that
maps a sequence of observations to an action is called a strategy, and a strategy
that is most advantageous according to some objective is optimal. We illustrate
this terminology with an example on the next page.

it infrastructure
sensor

state observation

response

exploit
Attacker

Defender
Figure 18: The security response problem; an attacker exploits vulnerabilities of an it
infrastructure; the operator of the infrastructure, which we refer to as the defender, mon-
itors the network and executes responses.

21Though several entities may be involved, defining a single “attacker” often simplifies the
analysis without sacrificing generality.

43
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A defender monitors an it infrastructure
by observing alerts from an intrusion detec-
tion system. The infrastructure includes a
set of servers that provide service to clients
through a public gateway, which is also open
to an attacker. To prevent the attacker from
intruding, the defender can block the gate-
way. In deciding when to take this action,
the defender balances two objectives: main-
tain service and keep the attacker out. The
optimal strategy can be to maintain ser-
vice until the moment the attacker enters
through the gateway, at which time the
gateway must be blocked. (We prove in
Paper 1 that this strategy has a threshold
structure.) What makes the defender’s task
difficult is that it has to infer that an intru-
sion occurs from the sequence of alerts.

Defender

Attacker Clients
. . .

Gateway

. . .
alerts ids

Example: Instance of the security response problem.

When to block?
alerts

t

Mathematically, the response problem in its simplest form can be stated as

sup
a(D)∈AD

J(a(D)), (security response as a static optimization)

where AD is the set of defender actions and J(a(D)) is an objective function that
encodes the effect of taking action a(D) in terms of security and service utility.

While the above formulation models the response problem for a simple system,
it only models the optimization of a single response action without addressing the
state or dynamic aspects of the infrastructure. In practice, security response in-
volves optimizing a sequence of interdependent actions. Such dynamic optimization
can be captured by modeling the infrastructure as a discrete-time dynamical system
whose evolution depends on the sequence of response actions. This approach allows
us to frame security response as a Markov Decision Process (mdp)22:

sup
πD∈ΠD

EπD [J(πD) | s1] (security response as an mdp) (26)

subject to st+1 ∼ f(· | st, a
(D)
t ) ∀t ≥ 1

a
(D)
t ∼ πD(· | st) ∀t ≥ 1,

22The components of an mdp are defined the background chapter; see (1).
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where t = 1, . . . , T , πD is the defender strategy, ΠD is the strategy space, J(πD)
is an objective functional, and the attacker strategy is assumed to be static and
implicitly modeled by f .

Remark 5 (Axioms of rational choice). The defender’s objective to maximize the
expected value of J (26) is justified by the von Neumann-Morgenstern axioms (p.
26, von Neumann and Morgenstern, 1944). We show in Paper 4 that these axioms
generally hold for the security response use case. If they do not hold, prospect
theory can be used to model the objective (Kahneman and Tversky, 1979).

Though an mdp allows us to model the dynamic aspects of the response problem,
it assumes full observability of the infrastructure’s state – a condition rarely met in
practice. Usually, the defender has partial observability of the state, e.g., through
log files and alerts. This partial observability can be modeled with a Partially
Observed Markov Decision Process (pomdp)23:

sup
πD∈ΠD

EπD [J(πD) | b1] (security response as a pomdp)

subject to s1 ∼ b1

st+1 ∼ f(· | st, a
(D)
t ) ∀t ≥ 1

ot ∼ z(· | st) ∀t ≥ 2

bt+1 = B(bt, a
(D)
t , ot+1) ∀t ≥ 1

a
(D)
t ∼ πD(· | bt) ∀t ≥ 1,

where ot is the defender’s observation (15).
While the pomdp captures partial observability, it assumes a fixed attacker

strategy that is implicitly modeled by the dynamics f . This assumption is un-
realistic since attackers are dynamic and adapt their methods in response to the
defender’s actions (Anderson, 2001). A game-theoretic model is suitable to repre-
sent such adaptability. To define such a model, we must make assumptions about
the attacker’s behavior, resources, and objectives. Throughout this thesis, we make
the following two assumptions.

Assumption 5 (Zero-sum). The attacker’s objective is inverse to the defender’s.

Assumption 5 expresses that the game is zero-sum. We can justify this assump-
tion in three ways. First, since the defender is unaware of the attacker’s goal, it is
reasonable to assume that the attacker’s objective is adversarial to the defender’s.
Second, it reduces the computational complexity of solving the game and implies
that every equilibrium leads to the same value. Third, it captures a scenario where
the attacker’s goal is to inflict maximal harm to the defender, which was the case
in the notpetya attack in 2017 (U.S. Department of Justice, 2020).

23The components of a pomdp are defined the background chapter; see (15).
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Assumption 6 (Omniscent attacker). The attacker has complete observability.

Assumption 6 expresses that the game between the attacker and the defender has
one-sided partial observability. That is, while the defender has partial observability
of the infrastructure’s state, the attacker knows the state as well as the defender’s
observations. We can motivate this assumption in two ways. First, the assumption
holds for insider attacks, such as the attack against Ukraine’s power grid in 2015
(Case, 2016). Second, it reflects that it is generally not known what information is
available to the attacker; therefore, a worst-case scenario is assumed.

Given the above assumptions, we formulate security response as a zero-sum,
one-sided Partially Observed Stochastic Game (posg)24:

sup
πD∈ΠD

inf
πA∈ΠA

EπD,πA [J(πD, πA) | b1] (security response as a posg)

(27a)
subject to s1 ∼ b1 (27b)

st+1 ∼ f(· | st, a
(D)
t , a

(A)
t ) ∀t ≥ 1 (27c)

ot ∼ z(· | st) ∀t ≥ 2 (27d)

bt+1 = B(bt, a
(D)
t , ot+1, πA) ∀t ≥ 1 (27e)

a
(D)
t ∼ πD(· | bt) ∀t ≥ 1 (27f)

a
(A)
t ∼ πA(· | bt, st) ∀t ≥ 1, (27g)

where a
(A)
t is the attacker action and πA is the attacker strategy. Almost any

security response scenario can be modeled as a game of this form; we provide
several examples in the subsequent chapters.

Remark 6 (Modeling clients). The clients of the it infrastructure are implicitly
modeled by the observation distribution z (27d), i.e., the clients’ interactions with
the infrastructure’s services affect the defender’s observations.

Remark 7 (Maximin optimality). The sup inf objective in (27) expresses that the
defender should maximize the minimal value of J (27a) across all possible attacker
strategies. This objective is reasonable since a) the defender does not know the
attacker’s strategy; and b) the attacker likely uses the best possible strategy.

Remark 8 (Bounded rationality). In practice, the defender may not be able to
maximize (27) due to computational or cognitive constraints, in which case we say
that the defender has bounded rationality (Simon, 1955). However, assuming full
rationality in the problem formulation remains valuable for theoretical development.
We present an approach for modeling bounded rationality in Paper 5.

24The components of a posg are defined the background chapter; see (19).
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Solving (27) corresponds to finding a Nash equilibrium25. We know from Thm. 3
in the background chapter that such an equilibrium exists under general conditions.
However, many difficulties are encountered when one attempts to compute it. Chief
among them is that we must obtain the functions f (27c) and z (27d), and the func-
tional J (27a). Due to the complexity of it infrastructures, these parameters need
to be derived from a combination of system measurements and domain knowledge
about the infrastructure’s architecture. Hence, we have the following challenge.

The parameters of the security response problem must be determined
from infrastructure measurements and architectural domain knowledge.

Challenge 1: System identification.

The next major difficulty is the complexity of computing the equilibrium, which
is nexpnp (Thm. 3.5, Goldsmith and Mundhenk, 2007)26. To make matters worse,
this complexity often grows exponentially with the infrastructure size due to the
curse of dimensionality (Bellman, 1957), as summarized in the following challenge.

The complexity of computing an optimal defender strategy often grows
exponentially with the size of the infrastructure configurationa.

aSee Paper 3 for a proof.

Challenge 2: Computational complexity.

Lastly, once a (theoretically) optimal strategy has been obtained, it must be
experimentally validated. Simulations are typically used for this purpose (Nguyen
and Reddi, 2023). However, they do not adequately model many functional and
timing details of an operational infrastructure. Therefore, a response strategy must
be experimentally validated on a testbed, as stated in the following challenge.

Defender strategies must be experimentally validated on a testbed where
attacks and response actions can be executed.

Challenge 3: Experimental strategy validation.

25Which also can form a stronger equilibrium, namely a Perfect Bayesian equilibrium (pbe);
see the background chapter for details.

26Recall that P ⊆ NP ⊆ PSPACE ⊆ NEXP ⊆ NEXPNP.
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Summary
We model security response against a static attacker as a pomdp27, and we model
security response against a dynamic attacker as a one-sided posg28. Given these
models, we identify three primary challenges in devising an optimal response strat-
egy: system identification (Challenge 1), computational complexity (Challenge 2),
and strategy validation (Challenge 3). In the next chapter, we introduce our
methodology for optimal security response, which tackles Challenge 1 and Chal-
lenge 3. Subsequently, we present six papers where we apply our methodology to
different instances of the security response problem. In these papers, we demon-
strate how to overcome Challenge 2 by deriving structural properties of optimal
response strategies and leveraging stochastic approximation techniques.

27We use the pomdp model in Paper 1 and Paper 6.
28We use the posg model in Paper 2, Paper 3, Paper 4, and Paper 5.



PLATFORM AND METHODOLOGY FOR
OPTIMAL SECURITY RESPONSE

The best material model of a cat is another, or preferably the same, cat.
— Norbert Wiener 1945, The role of models in science.

Our methodology for optimal security response in an it infrastructure is cen-
tered around a digital twin, i.e., a virtual replica of the infrastructure; see
Fig. 19. We use this twin to run attack scenarios and defender responses.

Such runs produce system measurements and logs, from which we estimate infras-
tructure statistics. These statistics allow us to instantiate a mathematical model
of the target infrastructure through system identification (Ljung, 1998). We then
leverage this model to optimize response strategies, whose performance is assessed
using the digital twin. This closed-loop process can be executed iteratively to pro-
vide progressively better response strategies.

Mathematical Model of Security Response
s1,1 s1,2 s1,3 s1,4 s1,5 . . . s1,n

s2,1 s2,2 s2,3 s2,4 s2,5 . . . s2,n

Digital Twin
. . .

Virtual network

Virtual devices

Emulated services

Emulated actors

Target Infrastructure
Change events

System identification

Verified response strategy

Optimized response strategy

Automated & optimal
security response

Data collection and
strategy evaluation

Strategy
optimization

Figure 19: Our methodology for obtaining an optimal response strategy for a target in-
frastructure; the digital twin is a virtual replica of the target infrastructure; it is used to
collect statistics and to evaluate strategies; the collected data enables us to identify a math-
ematical model of the infrastructure, which allows for strategy optimization.
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We have developed a platform based on the methodology captured in Fig. 19.
This platform allows for creating digital twins, running simulations, performing
system identification, and optimizing response strategies. It is deployed on com-
modity hardware, and the source code is released under the cc-by-sa 4.0 license
(Hammar, 2023)29. We refer to the platform as csle, which stands for the “Cyber
Security Learning Environment.” The rest of this chapter delves into the technical
details of csle, covering its architecture, implementation, and programming inter-
face. Special attention is given to the digital twin, as it provides the main tool for
the experimental results presented in the subsequent chapters.

Architecture
csle runs on a distributed system with N ≥ 1 physical servers connected through
an ip network. Each server runs a virtualization layer provided by docker contain-
ers and virtual links (Merkel, 2014). csle is implemented in Python (Van Rossum
and Drake Jr, 1995), JavaScript (Eich, 2005), and Bash (GNU, 2007). It can be
accessed through Python libraries, a web interface, a command-line interface, and a
grpc interface (Google, 2022). It stores metadata in a distributed database referred
to as the metastore, which is based on postgres and citus (Cubukcu et al., 2021).
This database consists of N replicas, one per server; see Fig. 20. A quorum-based
two-phase commit scheme is used to achieve consensus among replicas. One replica
is a designated leader and is responsible for coordination. The others are workers.
The leader is elected using the protocol described in (Alg. 1, Niazi et al., 2015).
A new leader is elected by a quorum whenever the current leader fails or becomes
unresponsive. csle thus tolerates up to N

2 − 1 failing servers.

Leader

Metastore

Python libraries

Management api (grpc)

rest api (http) Command-line interface

Workers

Figure 20: csle architecture; it is a distributed system with a database and four inter-
faces: a Python api, a grpc api, a rest api, and a command-line interface.

29The code repository also contains video demonstrations, usage examples, pre-built virtual
containers, technical documentation, and a dataset of attack traces.
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We run csle on our cluster of commodity servers at kth; see Fig. 21. All exper-
imental results presented in this thesis have been obtained through experimentation
using this cluster. Server specifications can be found in Table 4. The servers are
connected through an Ethernet switch. Deployment of csle on both on-premise
and cloud infrastructures is automated using ansible (Red Hat, 2024).

Figure 21: Our server rack at kth where we run csle.

Server Processors Network ram (gb)
1, r 715 2u two 12-core amd opteron 12×GbE 64.
2, r 715 2u two 12-core amd opteron 12×GbE 64.
3, r 715 2u two 12-core amd opteron 12×GbE 64.
4, r 715 2u two 12-core amd opteron 12×GbE 64.
5, r 715 2u two 12-core amd opteron 12×GbE 64.
6, r 715 2u two 12-core amd opteron 12×GbE 64.
7, r 715 2u two 12-core amd opteron 12×GbE 64.
8, r 715 2u two 12-core amd opteron 12×GbE 64.
9, r 715 2u two 12-core amd opteron 12×GbE 64.
10, r 630 2u two 12-core intel xeon e 5- 2680 12×GbE 256.
11, r 740 2u 1 20-core intel xeon gold 5218r 2× 10GbE 32.
12, supermicro 7049 2 tesla p 100, 1 16-core intel xeon 100MbE 126.
13, supermicro 7049 4 rtx 8000, 1 24-core intel xeon 10GbE 768.

Table 4: Specifications of the servers in our rack (Fig. 21).
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Digital Twin
The concept of a digital twin emerged in the 1960s when nasa used virtual environ-
ments to evaluate failure scenarios for lunar landers (Allen B. Danette, 2021). In
the context of our methodology, a digital twin is a virtual replica of an it infrastruc-
ture that provides a controlled environment for virtual operations, the outcomes of
which can be used to optimize operations in the physical infrastructure. It enables
us to systematically test response strategies under different conditions, including
varying attacks, workloads, and network latencies.

Creating a twin involves three main tasks: (i) replicating relevant parts of
the physical infrastructure, such as processors, network interfaces, and network
conditions; (ii) emulating actors, i.e., attackers, defenders, and clients; and (iii)
instrumenting the twin with monitoring and management capabilities. Each of
these three tasks is detailed below.

Emulating hosts and switches

Hosts and switches are emulated with docker containers (Merkel, 2014), i.e.,
lightweight executable packages that include runtime systems, code, libraries, and
configurations. This virtualization lets us quickly instantiate large emulated infras-
tructures; see Fig. 22. Resource allocation to containers, e.g., cpu and memory,
is enforced using cgroups. Containers that emulate switches run ovs (Pfaff et
al., 2015) and connect to controllers through openflow (McKeown et al., 2008).
Since the switches are programmed through flow tables, they can act as layer-two
switches or as routers.
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Infrastructure size (number of virtual containers)
Figure 22: Time required to deploy a digital twin in function of the infrastructure size;
deploying the twin involves creating containers and attaching them to virtual networks; the
time measurements were performed for a digital twin with a single virtual network running
on a server with a 24-core intel xeon gold 2.10 GHz cpu and 768 gb ram.

Emulating network links

Network connectivity between containers in a digital twin is emulated with virtual
links implemented by linux bridges and network namespaces, which create logical
copies of the physical host’s network stack. If an emulated network spans multiple



Digital Twin 53

physical servers, the traffic is tunneled over the physical network using vxlan (Ma-
halingam et al., 2014). In other words, the physical network provides a substrate,
on top of which the emulated networks are overlaid; see Fig. 23.

Server 1
Digital twin

Server 2
Digital twin

Server N

Digital twin

vxlan vxlan . . . vxlan

ip network
Figure 23: A distributed digital twin on csle; physical servers are connected through an
ip network, over which virtual networks are created using vxlan tunnels.

Network conditions of virtual links are created using the netem module in the
linux kernel (Hemminger, 2005). This module allows setting bit rates, packet de-
lays, packet loss probabilities, and jitter. For the experimental results presented
in this thesis, we emulate connections between servers in an it infrastructure with
full-duplex loss-less connections of 1 Gbit/s capacity in both directions. Similarly,
we emulate connections between servers and external clients with full-duplex con-
nections of 100 Mbit/s capacity and 0.1% packet loss with random bursts of 1%
packet loss. These numbers are based on measurements on enterprise and wide-area
networks (Kushida and Shibata, 2002)(Paxson, 1997)(Elliott, 1963).

Management

Each emulated device in a digital twin runs a management agent, which exposes
a grpc api (Google, 2022). This api is invoked to perform control actions, e.g.,
restarting services and updating configurations. The communication channels to
the agents are provided by a management network. The reason for using a separate
network to carry management traffic is to avoid interference and simplify control
of the digital twin (Clemm and Cisco Systems, 2007).

Emulating actors

Client populations are emulated through processes that access services on emulated
hosts. Client arrivals are controlled by a Poisson process with exponentially dis-
tributed service times. The sequence of service invocations is selected according to
a Markov process. Similarly, attackers are emulated by programs that select actions
from a pre-defined set that includes reconnaissance commands, brute-force attacks,
and exploits. Examples of attacker actions are listed in Table 5 on the next page.
Likewise, defender actions are emulated by executing system commands through
the grpc api described above. Examples of defender actions are listed in Table 6.
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Type Actions mitre att&ck technique
Reconnaissance tcp syn scan, udp scan T1046 service scanning.

tcp xmas scan T1046 service scanning.
vulscan T1595 active scanning.
ping-scan T1018 system discovery.

Brute-force telnet, ssh T1110 brute force.
ftp, cassandra T1110 brute force.
irc, mongodb, mysql T1110 brute force.
smtp, postgres T1110 brute force.

Exploit cve-2017-7494 T1210 service exploitation.
cve-2015-3306 T1210 service exploitation.
cve-2010-0426 T1068 privilege escalation.
cve-2015-5602 T1068 privilege escalation.
cve-2015-1427 T1210 service exploitation.
cve-2014-6271 T1210 service exploitation.
cve-2016-10033 T1210 service exploitation.
sql injection (cwe-89) T1210 service exploitation.

Table 5: Examples of emulated attacker actions on csle; actions are identified by the vul-
nerability identifiers in the Common Vulnerabilities and Exposures (cve) database (The
MITRE Corporation, 2022) and the Common Weakness Enumeration (cwe) list (The
MITRE Corporation, 2023); the actions are also linked to the corresponding attack tech-
niques in the mitre att&ck taxonomy (Strom et al., 2018).

Index Action mitre d3fend technique
1 Revoke user certificates d3-cban certificate revocation.
2 Blacklist ips d3-ntf network traffic filtering.
3− 37 Drop traffic that generates alerts of priority 1− 34 d3-ntf network traffic filtering.
38 Block gateway d3-ni network isolation.
39 Migrate servers between different network zones d3-ni network isolation.
40 Redirect traffic from one server to another d3-ntf network traffic filtering.
41 Isolate a server d3-ni network isolation.
42 Deploy new security functions (e.g., firewalls) d3-ntpm network policy mapping.
43 Shutdown a server d3-hs host shutdown.
44 Replicate a service d3-svcdm service mapping.
45 Start decoy services d3-de decoy environment.

Table 6: Examples of emulated defender actions on csle; the actions are linked to
the corresponding defense techniques in the mitre d3fend taxonomy (Kaloroumakis and
Smith, 2021).
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Monitoring

We use a monitoring system based on a publish-subscribe architecture; see Fig. 24.
Following this architecture, each emulated device in a digital twin runs a monitoring
agent, which reads local metrics of the host and pushes those metrics to an event
bus implemented with kafka (Kreps, 2011). The data in this bus is consumed by
data pipelines, which process the data and write it to storage systems. The number
of metrics collected per time step is in the order of thousands and scales linearly
with the number of emulated devices in the digital twin.

Devices

Event bus
Response Strategy

Storage Systems

Control actions

Data pipelines

Events

Figure 24: Monitoring system of a digital twin on csle; emulated devices run monitoring
agents that periodically push metrics to an event bus; the data in this bus is consumed by
data pipelines that process the data and write to storage systems; the processed data is also
used by an automated response strategy to decide on control actions.

System Identification
The emulation and monitoring capabilities described above enable system identi-
fication, which is a procedure to create mathematical models of dynamic systems
based on measured data (Ljung, 1998). In our methodology, this procedure involves
collecting data from a digital twin and then applying statistical techniques to fit
a model that predicts the twin’s behavior under various conditions. csle inte-
grates several estimation algorithms to support this process, such as expectation-
maximization (Dempster et al., 1977), Gaussian process regression (Rasmussen and
Williams, 2006), and Markov Chain Monte Carlo (Robert and Casella, 2004). A
code example of using csle for system identification is provided on the next page.
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1 import Metastore , Emulator, Monitor, EM from csle

2 dt = Metastore.get_digital_twin(..)

3 attacker_seq = ["nmap −p 22 −script ssh−brute 15.12.8.33", ..]
4 defender_seq = ["iptables −A INPUT −s 15.12.9.120 −j DROP", ..]
5 Emulator.run(dt, attacker_seq , defender_seq)

6 stats = Monitor.get_statistics(dt)

7 pomdp = Metastore.get_pomdp(..)

8 fitted_model = EM.fit(stats, pomdp)

Listing 1: Sample Python program that uses csle for system identification;
line 2 fetches metadata of the digital twin; lines 3–4 define sequences of system
commands to execute; line 5 runs the commands on the digital twin; the
commands are executed at discrete time intervals of a specific length (e.g., 30s);
line 6 extracts the collected data from the monitoring system (e.g., log files and
infrastructure statistics); line 7 fetches the parameters of a pomdp from the
metastore (see the background chapter for the definition of a pomdp); and line
8 fits the pomdp parameters (e.g., the observation distribution z (15)) to the
monitoring data using expectation-maximization (Dempster et al., 1977). (We
define one time step in the pomdp as one monitoring interval on the digital twin,
i.e., if we collect measurements at 30s intervals from the digital twin, then one
time step in the pomdp corresponds to 30s on the digital twin.)

Optimization and Evaluation
After completing the system identification, the next step in our methodology is to
compute an optimal response strategy based on the identified model; see Fig. 19.
csle has a suite of algorithms to perform this optimization. These algorithms are
based on different algorithmic frameworks, including dynamic and linear program-
ming, reinforcement learning, computational game theory, stochastic approxima-
tion, evolutionary computation, Bayesian optimization, and causality. We provide
a code example below.

1 import Metastore , CrossEntropyMethod from csle

2 dt = Metastore.get_digital_twin(..)

3 pomdp = Metastore.get_pomdp(..)

4 response_strategy = CrossEntropyMethod.train(pomdp)

5 results = dt.evaluate(response_strategy)

Listing 2: Sample Python program that uses csle for optimizing and evaluating
a security response strategy; line 2 gets metadata of the digital twin from the
metastore; line 3 extracts the parameters of a pomdp (see the background chapter
for the definition of a pomdp); line 4 optimizes a response strategy for the pomdp
using the cross-entropy method (Alg. 1, Moss, 2020); and line 5 evaluates the
optimized response strategy on the digital twin.
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Related Platforms
Recently, major it vendors, defense organizations, and academic institutions have
started efforts to build similar platforms as ours (csle). They include Cyber-
BattleSim by Microsoft (Blum, 2021), cyborg by the Australian department of
defense (Standen et al., 2021), nasim by the University of Queensland (Schwartz
et al., 2020), yawning titan by the uk defense science and technology laboratory
(Andrew et al., 2022), cygil by Canada’s department of defense (Li et al., 2021),
nasimemu by the Czech Technical University in Prague (Janisch et al., 2023), at-
mos by the University of Waterloo (Akbari et al., 2020), gym-flipit by Northeast-
ern University (Oakley and Oprea, 2019), gym-idsgame by kth Royal Institute
of Technology (Hammar and Stadler, 2020), mab-malware by the University of
California (Riverside) (Song et al., 2022), malware-rl by the University of Vir-
ginia (Anderson et al., 2018), pengym by Japan’s advanced institute of science
and technology (Huynh Phuong Thanh et al., 2024), farland by usa’s national
security agency (Molina-Markham et al., 2021), cyberwheel by the Oak Ridge
national laboratory (Oesch et al., 2024), cybershield by the University of Malaga
(Carrasco et al., 2024), and cyborg++ by the Alan Turing Institute (Emerson et
al., 2024). Like csle, all of them include capabilities for data-driven optimization
of response strategies. The main differences are that csle is open-source and has
been experimentally validated on several instances of the security response problem
(as described in the next chapter of the thesis); see Table 7.

Platform Simulation Emulation Open-source Library Validated
csle (ours) ✓ ✓ ✓ ✓ ✓
CyberBattleSim ✓ ✗ ✓ ✓ ✗
cyborg ✓ ✗ ✓ ✗ ✗
yawning titan ✓ ✗ ✓ ✗ ✗
nasim ✓ ✗ ✓ ✗ ✗
atmos ✗ ✓ ✓ ✗ ✓
gym-flipit ✓ ✗ ✓ ✗ ✗
gym-idsgame ✓ ✗ ✓ ✗ ✗
mab-malware ✗ ✓ ✓ ✗ ✓
malware-rl ✗ ✓ ✓ ✗ ✓
pengym ✓ ✓ ✓ ✗ ✗
cygil ✗ ✓ ✗ ✗ ✗
nasimemu ✓ ✓ ✓ ✗ ✗
farland ✓ ✓ ✗ ✗ ✓
cyberwheel ✓ ✓ ✓ ✗ ✓
cybershield ✓ ✗ ✗ ✗ ✗
cyborg++ ✓ ✗ ✓ ✗ ✗

Table 7: Comparison between platforms for data-driven security response based on key
features: support for simulation-based optimization; support for emulation-based evalua-
tion; open source code; whether the platform provides a library with algorithms to facilitate
strategy optimization and system identification; and whether the platform has been exper-
imentally validated on different instances of the security response problem.
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Summary
This chapter describes our methodology for optimal security response. The method-
ology encompasses system identification, strategy optimization, and evaluation on
a digital twin, effectively addressing Challenge 1 and Challenge 3 from the previous
chapter. The methodology is general in the sense that it is not limited to a specific
response scenario, optimization technique, or identification method. Additionally,
we present csle, an experimental platform that implements our methodology. In
the following chapters, we leverage this platform to apply the methodology to six
different instances of the security response problem, through which we demonstrate
how to overcome Challenge 2 by deriving structural properties of optimal response
strategies and applying stochastic approximation techniques.
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CASE STUDIES

No isolated experiment, however significant in itself, can suffice for the
experimental demonstration of any phenomenon.

— Ronald Fisher 1935, The Design of Experiments.

We pursue the research question posed in the introduction chapter by
applying our methodology to six instances of the security response
problem, each detailed in one of the included papers; see Fig. 25. We

summarize the contents of each paper below, together with references to publica-
tions30. The full papers are presented in the subsequent chapters.
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Figure 25: Each paper included in this thesis formalizes an aspect of the security response
problem, presents analytical results, and evaluates the results through experimentation, all
following the methodology from the previous chapter; Paper 1 studies intrusion prevention
using optimal stopping; Paper 2 tackles intrusion response using a stopping game; Paper
3 addresses intrusion response through game decomposition; Paper 4 studies intrusion
tolerance using a two-level game; Paper 5 focuses on online learning of response strategies
against advanced persistent threats (apts); and Paper 6 presents a causal tree search
algorithm for defense against apts.

30All papers have been published (or accepted for publication) in refereed conference proceed-
ings or journals except Paper 6, which is currently under review.

59
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Paper 1 – Intrusion Prevention through Optimal Stopping

The main question we answer in this paper answers is:

At which points in time should a network operator take defensive actions
given periodic but limited observational data from an it infrastructure?

We propose a model based on optimal stopping theory to study this question; see
Fig. 26. We prove that the optimal stopping times can be obtained through thresh-
olds, which enables efficient computation of an optimal defender strategy. Based
on this insight, we design t-spsa, an efficient stochastic approximation algorithm
for estimating the thresholds. We validate our methodology on a digital twin of an
infrastructure with 31 servers. The validation results attest that our methodology
outperforms state-of-the-art reinforcement learning and change detection methods.

Intrusion event Intrusion ongoing

time

Early stopping times Stopping times that
affect the intrusion

Figure 26: The optimal stopping formulation of intrusion prevention presented in Paper
1; the horizontal axis represents time; the dashed line shows the moment the intrusion
starts, which is the optimal stopping time.

The paper is published as
K. Hammar and R. Stadler (2022), “Intrusion Prevention through Optimal Stopping [179].”
IEEE Transactions on Network and Service Management (TNSM), vol. 19, no. 3, pp.
2333-2348.

Related publications are
K. Hammar and R. Stadler (2021), “Learning Intrusion Prevention Policies through Op-
timal Stopping [182].”. International Conference on Network and Service Management
(CNSM), Izmir, Turkey, 2021, pp. 509-517.
K. Hammar and R. Stadler (2022), “A System for Interactive Examination of Learned
Security Policies [175].” IEEE Network Operations and Management Symposium (NOMS),
Budapest, Hungary, 2022, pp. 1-3.

Paper 2 – Learning Near-Optimal Intrusion Responses Against
Dynamic Attackers

This paper reports on a continuation of the work in Paper 1. It extends the optimal
stopping problem to a game-theoretic formulation, which enables us to find optimal
stopping strategies against a dynamic attacker, i.e., an attacker that adapts its
strategy based on the defender strategy. In this stopping game, each player faces an
optimal stopping problem. The problem for the defender is to decide when to take
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defensive actions and the problem for the attacker is to decide when to begin and end
the intrusion. We prove the existence of equilibria and that the best responses have
threshold properties. Leveraging these properties, we develop t-fp, a fictitious play
algorithm that estimates equilibria through stochastic approximation; see Fig. 27.
We show that t-fp outperforms a state-of-the-art fictitious play algorithm and that
the obtained strategies are effective on a digital twin.
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Figure 27: The fictitious play process between the attacker and the defender in Paper
2; horizontal arrows indicate iterations of fictitious play and vertical arrows indicate the
learning of best responses; the process converges to an equilibrium (π⋆

D, π⋆
A).

The paper is published as
K. Hammar and R. Stadler (2024), “Learning Near-Optimal Intrusion Responses Against
Dynamic Attackers [183].” IEEE Transactions on Network and Service Management
(TNSM), vol. 21, no. 1, pp. 1158-1177.

Related publications are
K. Hammar and R. Stadler (2022), “Learning Security Strategies through Game Play and
Optimal Stopping [184].”. Machine Learning for Cyber Security Workshop, International
Conference on Machine Learning (ICML), Baltimore, USA. pp. 1-9.
K. Hammar and R. Stadler (2022), “An Online Framework for Adapting Security Policies
in Dynamic it Environments [176].” International Conference on Network and Service
Management (CNSM), Thessaloniki, Greece, pp. 359-363.

Paper 3 – Scalable Learning of Intrusion Response through Recursive
Decomposition

In contrast to Paper 1 and Paper 2, this paper considers not only the problem
of when defensive actions need to be taken but also the selection of which action
to execute. We formulate this problem as a stochastic game where the attacker
and the defender can execute different actions on components of the infrastruc-
ture. This detailed modeling means the game’s complexity grows exponentially
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with the infrastructure’s size due to the curse of dimensionality (Bellman, 1957);
see Fig. 28. To manage this complexity, we recursively decompose the game into
simpler subgames. We prove that this decomposition is optimal and that the best
responses exhibit threshold structures. Building on this theoretical understanding,
we develop dfp – an efficient algorithm for approximating equilibria. We validate
our approach on a digital twin of an infrastructure with 64 servers. The results
show that dfp outperforms a state-of-the-art reinforcement learning algorithm.

1 2 3 4 5
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105
state space

observation space
action space

Infrastructure size
Figure 28: Size of the security response game considered in Paper 3 in function of the
infrastructure size; the exponential growth exemplifies the curse of dimensionality: more
state variables result in a combinatorial explosion of possible states (Bellman, 1957).

The paper is published as
K. Hammar and R. Stadler (2023), “Scalable Learning of Intrusion Response through Re-
cursive Decomposition [185].”. Springer Lecture Notes in Computer Science, vol 14167, pp.
172–192. Decision and Game Theory for Security (GameSec), Avignon, France.

Related publications are
K. Hammar and R. Stadler (2020), “Finding Effective Security Strategies through Rein-
forcement Learning and Self-Play [178].”. International Conference on Network and Service
Management (CNSM), Izmir, Turkey, 2020, pp. 1-9.
K. Hammar and R. Stadler (2023), “Digital Twins for Security Automation [177].”. IEEE
Network Operations and Management Symposium (NOMS), Miami, USA, pp. 1-6.

Paper 4 – Intrusion Tolerance for Networked Systems through
Two-Level Feedback Control

Expanding on Papers 1–3, this paper demonstrates the generality of our method-
ology by applying it to intrusion tolerance. The main question we answer is:

What are optimal recovery and replication strategies for a distributed
system to maximize service availability and minimize operational cost
in the presence of network intrusions?

We present a two-level game to study this question: a local game models intru-
sion recovery and a global game models replication control; see Fig. 29. For both
games, we prove the existence of equilibria and show that the best responses have
a threshold structure, which enables efficient computation of strategies. We argue
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that state-of-the-art intrusion-tolerant systems can be understood as instantiations
of our game with heuristic control strategies. Our analysis shows the conditions
under which such heuristics can be significantly improved through game-theoretic
reasoning. Such reasoning allows us to derive optimal (equilibrial) control strate-
gies and to evaluate them on a digital twin. The evaluation results demonstrate
that our game-theoretic strategies can significantly improve service availability and
reduce operational cost of state-of-the-art intrusion-tolerant systems. In addition,
our game strategies can ensure any chosen level of service availability and time-to-
recovery, bridging the gap between theoretical and operational performance.

. . .
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Figure 29: The intrusion-tolerant control architecture presented in Paper 4; node con-
trollers with strategies π1, . . . , πNt make local recovery decisions; a global system controller
with strategy π manages the replication factor Nt.

The paper is published as
K. Hammar and R. Stadler (2024), “Intrusion Tolerance for Networked Systems through
Two-Level Feedback Control [181].” IEEE Dependable Systems and Networks Conference
(DSN), Brisbane, Australia, pp. 338-352.

A related publication is
K. Hammar and R. Stadler (2024), “Intrusion Tolerance as a Two-Level Game [180].”.
Springer Lecture Notes in Computer Science, vol 14908, pp. 3-23. Decision and Game
Theory for Security (GameSec), New York, USA.

Paper 5 – Automated Security Response through Online Learning with
Adaptive Conjectures

This paper addresses a limitation of Papers 1–4, in which we assume that a perfect
model of the underlying it infrastructure can be obtained. To relax this assump-
tion, we introduce Conjectural Online Learning (col), a security response algo-
rithm which accounts for model misspecification. In col, both the attacker and the
defender have probabilistic conjectures about the model, which may be misspeci-
fied. These conjectures are iteratively adapted via Bayesian learning and used to
update the strategies through rollout; see Fig. 30. We prove that the conjectures
converge to best fits, and we provide a bound on the performance improvement that
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rollout enables with a conjectured model. To characterize the steady state when
both the attacker and the defender run col, we define a variant of the Berk-Nash
equilibrium. We validate col on a digital twin of an infrastructure with 64 servers.
The evaluation results show that col adapts to a changing environment, enables
faster convergence than reinforcement learning, and outperforms the snort idps
(Roesch, 1999) in several key metrics.
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Conjecture
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Attacker

Defender
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Conjecture
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Figure 30: Conjectural Online Learning (col): Paper 5 formulates the interaction be-
tween an attacker and a defender as a game where each player has a probabilistic conjecture
about the game model, which may be misspecified in the sense that the true model has prob-
ability 0; the conjectures are iteratively adapted through Bayesian learning.

The paper is published as
K. Hammar, T. Li, R. Stadler, and Q. Zhu (2024), “Automated Security Response through
Online Learning with Adaptive Conjectures [174].”. To appear in IEEE Transactions on
Information Forensics and Security (TIFS).

Related publications are
F.S Samani, K. Hammar, and R. Stadler (2024), “Online Policy Adaptation for Networked
Systems using Rollout [387]”. IEEE Network Operations and Management Symposium
(NOMS), Seoul, South Korea, pp. 1-9.
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T. Li, K. Hammar, R. Stadler, and Q. Zhu (2024), “Conjectural Online Learning with
First-order Beliefs in Asymmetric Information Stochastic Games [277]”. To appear in the
proceedings of IEEE Conference on Decision and Control (CDC), Milan, Italy.

Paper 6 – Optimal Defender Strategies for CAGE-2 using Causal
Modeling and Tree Search

This paper differs from the first five papers by using a different environment and
scenario for evaluation, namely cage-2, which involves defending a networked sys-
tem against an advanced persistent threat (cage-2, 2022). This departure from
the evaluation on a digital twin facilitates direct comparisons with the existing lit-
erature. Our main contribution is a causal model of the cage-2 scenario, based on
which we prove the existence of optimal defender strategies and design an iterative
method that converges to such a strategy. The method, called c-pomcp, leverages
the causal structure to prune, construct, and traverse a search tree; see Fig. 31. We
show that c-pomcp achieves better performance and is two orders of magnitude
more efficient than state-of-the-art methods.
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Figure 31: Paper 6 presents Causal-Partially Observed Monte-Carlo Planning (c-
pomcp), which is an online method for optimal security response; the figure illustrates
one time step of c-pomcp during which (i) a particle filter is used to compute a belief
state; (ii) a causal graph is used to prune a search tree; and (iii) tree search is used to find
an optimal response intervention.

The paper is submitted for publication as
K. Hammar, N. Dhir, and R. Stadler (2024), “Optimal Defender Strategies for cage-2 using
Causal Modeling and Tree Search [173]”. IEEE Transactions on Dependable and Secure
Computing (TDSC).





Paper 1†

INTRUSION PREVENTION THROUGH
OPTIMAL STOPPING

Kim Hammar and Rolf Stadler

Abstract

We study automated intrusion prevention using stochastic approximation.
Following a novel approach, we formulate the problem of intrusion prevention
as an (optimal) multiple-stopping problem. This formulation gives us insight
into the structure of optimal strategies, which we show to have threshold
properties. For most practical cases, obtaining an optimal defender strategy
using dynamic programming is not feasible. We therefore develop a stochastic
approximation approach to estimate an optimal threshold strategy. We intro-
duce t-spsa, an efficient algorithm that learns threshold strategies through
stochastic approximation. We show that t-spsa outperforms state-of-the-art
algorithms for our use case. Our methodology for learning and validating
strategies includes a simulator where defender strategies are incrementally
learned and a digital twin where statistics are produced that drive simulation
runs and where learned strategies are evaluated. We show that this methodol-
ogy can produce effective defender strategies for a practical it infrastructure.

†The paper is published as
K. Hammar and R. Stadler (2022), “Intrusion Prevention through Optimal Stopping [179].”
IEEE Transactions on Network and Service Management (TNSM), vol. 19, no. 3, pp.
2333-2348.

Related publications are
K. Hammar and R. Stadler (2021), “Learning Intrusion Prevention Policies through Op-
timal Stopping [182].”. International Conference on Network and Service Management
(CNSM), Izmir, Turkey, 2021, pp. 509-517.
K. Hammar and R. Stadler (2022), “A System for Interactive Examination of Learned
Security Policies [175].” IEEE Network Operations and Management Symposium (NOMS),
Budapest, Hungary, 2022, pp. 1-3.
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To stop or not to stop, that is the question.
— William Shakespeare 1601, Hamlet (stop=be).

1.1 Introduction

An organization’s security strategy has traditionally been defined, imple-
mented, and updated by domain experts (Fuchsberger, 2005). Although
this approach can provide basic cybersecurity for an organization’s com-

munication and computing infrastructure, a growing concern is that infrastructure
update cycles become shorter and attacks increase in sophistication (Zouave et
al., 2020). Consequently, the security requirements become increasingly difficult to
meet. This paper presents a novel approach to address this challenge by learning
defender strategies automatically. We apply this approach to an intrusion preven-
tion use case. Here, we use the term “intrusion prevention” as suggested in the
literature, e.g., in (Fuchsberger, 2005). It means that a defender prevents an at-
tacker from reaching its goal rather than preventing it from accessing any part of
the infrastructure. The main question we answer is:

At which points in time should a network operator take defensive actions
given periodic but limited observational data from an it infrastructure?

We study this question within the framework of discrete-time dynamical systems
and formulate it as an (optimal) multiple-stopping problem; see Fig. 1.1. In this
formulation, the defender can take a finite number of stops. Each stop is associated
with a defensive action, and the objective is to decide the optimal time for stop-
ping. This approach gives us insight into the structure of optimal defender strategies
through the theory of optimal stopping (Wald, 1947). We prove that an optimal
multi-threshold strategy exists that can be efficiently computed and implemented.
Based on this insight, we design t-spsa, an efficient stochastic approximation algo-
rithm for estimating the thresholds. We evaluate our approach on a digital twin2 of
an infrastructure with 31 servers. The evaluation results attest that our approach
outperforms state-of-the-art methods for our use case.

Intrusion event
t = 1 Intrusion ongoing

t

t = T

Early stopping times Stopping times that
affect the intrusion

Episode

Figure 1.1: Optimal multiple-stopping formulation of intrusion prevention; the horizontal
axis represents time; T is the time horizon; the dashed line shows the intrusion start time;
the optimal strategy is to prevent the attacker at the time of intrusion.

2The digital twin is created using csle, as described in the methodology chapter.
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1.2 The Intrusion Prevention Use Case

We consider an intrusion prevention use case that involves the it infrastructure of
an organization. The operator of this infrastructure, which we call the defender,
takes measures to protect it against an attacker while providing services to a client
population; see Fig. 1.23. The infrastructure includes a set of servers that run
the services and an Intrusion Detection System (ids) that logs events in real-time.
Clients access the services through a public gateway, which is also open to the
attacker. We assume that the attacker intrudes into the infrastructure through
the gateway, performs reconnaissance, and exploits vulnerabilities to compromise
servers. We model the attacker as an agent that starts the intrusion at a random
time and then takes a predefined sequence of actions, i.e., we consider an attacker
with a static strategy.

Attacker Clients
. . .

Defender

1 ids1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Figure 1.2: The it infrastructure and the actors in the intrusion prevention use case.

The defender monitors the infrastructure by accessing and analyzing ids statis-
tics and login attempts at the servers. It can take a fixed number of defensive
actions to prevent the attacker. A defensive action is, for example, to revoke user
certificates in the infrastructure to recover compromised accounts. We assume that
the defender takes the defensive actions in a predetermined order. The final action
the defender can take is blocking all external access to the gateway. As a con-
sequence of this action, the service and any ongoing intrusion are disrupted. In

3The infrastructure configuration is listed in Appendix C.
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deciding when to take action, the defender has two objectives: maintain service
to its clients and keep a possible attacker out of the infrastructure. The optimal
strategy is to monitor the infrastructure and maintain service until the attacker en-
ters through the gateway. At this time, the attacker must be prevented by taking
defensive actions. The defender’s challenge is identifying when this moment occurs,
which corresponds to an optimal stopping problem.

1.3 The Markovian Optimal Stopping Problem

Optimal stopping is a classical problem domain with a well-developed theory [482,
408, 350, 94, 50, 377, 43, 358, 356]. Example use cases for this theory include:
asset selling (Bertsekas, 2005), change detection (Tartakovsky et al., 2006), ma-
chine replacement (Krishnamurthy, 2016), hypothesis testing (Wald, 1947), gam-
bling (Chow et al., 1971), selling decisions (Toit and Peskir, 2009), queue man-
agement (Roy et al., 2019), industrial control (Rabi and Johansson, 2008), and
the secretary problem (Kleinberg, 2005). Many variants of the optimal stopping
problem have been studied. For instance, discrete-time and continuous-time prob-
lems, finite horizon and infinite horizon problems, problems with fully observed
and partially observed state spaces, problems with finite and infinite state spaces,
Markovian and non-Markovian problems, and single-stop and multi-stop problems.
Consequently, different solution approaches have been developed. The most com-
mon are the martingale (Snell, 1952) and the Markovian (Bather, 2000) approaches.

This paper investigates the multiple-stopping problem with L stops, a finite
time horizon T , discrete-time progression, a finite state space, and the Markov
property. We use the Markovian solution approach and model the problem as a
Partially Observed Markov Decision Process (pomdp), where the state evolves as
a discrete-time Markov process (St)T

t=1 that is partially observed. Two actions are
available at each time step: (S)top and (C)ontinue. Action a in state s yields a
reward r(s, a). If a = S and only one of the L stops remains, the decision process
terminates. Otherwise, the process transitions to the next state.

The stopping time with l stops remaining is a random variable

Tl ≜ inf{t | t > Tl+1, at = S}, where l ∈ {1, .., L} and TL+1 ≜ 0.

This variable is measurable with respect to the filtration Ft = σ(Hk | k ≤ t),
where Ht is the pomdp history (16)4 and {Tl = t} ∈ Ft for all t (Peskir and
Shiryaev, 2006)5. The objective is to find a stopping strategy π⋆

l that maximizes

sup
πl∈Π

Eπl

[TL−1∑
t=1

r(St,C) + r(STL
,S) + . . .+

T1−1∑
t=T2+1

r(St,C) + r(ST1 ,S)
]
.

First stop. Final stop.

4See the background chapter for the definitions of the history Ht and the pomdp.
5Note that we allow Tl to be infinite; stopping times that are not almost surely finite are

sometimes called Markov times (Poor and Hadjiliadis, 2008).
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1.4 Formalizing the Intrusion Prevention Use Case

We formulate the intrusion prevention use case as an instance of the multiple-
stopping problem described above, where each stop is associated with a defensive
action. We model this problem as a pomdp; see (15) in the background chapter
for the definition of a pomdp. (A game-theoretic model is not needed since the
attacker is static and follows a fixed strategy.) The requisite notation is given in
Table 1.1 and the pomdp components ⟨S,A, f, r, γ,b1, T,O, z⟩ are defined below.

Notation(s) Description
L, l Number of stop actions and stops remaining.
S = 1,C = 0 Stop and continue actions.
Sl,Cl Stop and continue sets with l stops remaining.
α⋆

l Optimal stopping threshold with l stops remaining.
πl, J(πl),Πl Defender strategy, objective functional (1.4), and strategy space.
πθ,l Parameterized defender strategy.
S,A,O Sets of states, actions, and observations.
st,ot, rt State, observation, and reward at time t.
St,Ot, Rt Random variables (vectors) with realizations st,ot, rt.
∆xt,∆yt,∆zt Severe/warning ids alerts and login attempts during time step t.
I, p Intrusion start time, probability that an intrusion starts.
fl, z, r Transition (1.1), observation (1.2), and reward (1.3) functions.
Bt,bt,B Belief state at time t, its realization, and the belief space.
T∅ Time horizon.
θ(i),∆(i) Threshold and perturbation vectors at iteration i of t-spsa (Alg. 1.1).
Tl, τl Stopping time with l stops remaining and its realization.
T ⋆

l , τ
⋆
l Optimal stopping time with l stops remaining and its realization.

Table 1.1: Variables and symbols used in the model.

Actions A The defender has two actions: (S)top and (C)ontinue. The action
space is thus A ≜ {S,C}. We encode S with 1 and C with 0 to simplify the formal
description below. The number of stops the defender must execute to prevent an
intrusion is L ≥ 1, which is a predefined parameter of our use case. The number of
stop actions remaining is denoted by l ∈ {1, . . . , L}.

States S The state st is 0 if no intrusion occurs and 1 if an intrusion is ongoing.
The terminal state ∅ is reached after the defender takes the final stop action. The
state space is thus S ≜ {0, 1, ∅}. The initial state is s1 = 0. Hence, b1 ∈ ∆(S) is
the degenerate distribution b1(0) = 1.

Observations O The defender has a partial view of the system and observes ot ≜
(∆xt,∆yt,∆zt), where ∆xt, ∆yt, and ∆zt are bounded counters that denote the
number of severe ids alerts, warning ids alerts, and login attempts generated during
time step t, respectively. Hence, the observation space is O ≜ {0, . . . ,∆xmax} ×
{0, . . . ,∆ymax} × {0, . . . ,∆zmax}.
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Belief space B Based on its history ht (16)6, the defender computes the belief
state bt(st) ≜ P[St = st | ht] ∈ B through (17), as defined in the background
chapter. Since ∅ is a terminal state, the only two reachable states during a pomdp
episode are 0 and 1. Therefore, B = ∆({0, 1}) = [0, 1].

Proposition 1.1 (Reachable beliefs). The number of reachable beliefs from the
initial belief b1 in t time steps is upper bounded by (|A||O|)t.

Proof. Since the denominator in (17) is a normalization constant (defined in the
background chapter), it suffices to consider the numerator. The numerator depends
on ot, which can take on |O| different values; and at−1, which can take on |A|
different values. Therefore, the number of reachable beliefs from b1 in 1 step is
upper bounded by |A||O|. Assume by induction that the number of reachable
beliefs in k − 1 > 1 time steps is upper bounded by (|A||O|)k−1. For each of those
beliefs, we can reach a maximum of |A||O| new beliefs at time k, which means that
the total number of beliefs reachable in k steps is upper bounded by (|A||O|)k.

Transition function fl(s′ | s, a) We model the start of an intrusion by a
Bernoulli process (Qt)T

t=1, where Qt ∼ Ber(p) is a Bernoulli random variable with
p > 0. The first occurrence of Qt = 1 defines the intrusion start time I, which thus
is geometrically distributed; see Fig. 1.3.
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Figure 1.3: The Cumulative Distribution Function (cdf) of the intrusion start time I.

Consequently, we can define the transition function as

f1(∅ | ·, 1) ≜ fl(∅ | ∅, ·) ≜ 1 (1.1a)
fl(0 | 0, a) ≜ 1− p if l − a > 0 (1.1b)
fl(1 | 0, a) ≜ p if l − a > 0 (1.1c)
fl(1 | 1, a) ≜ 1 if l − a > 0, (1.1d)

where a ∈ A7. All other state transitions occur with probability 0. (1.1a) defines
6The history is defined in the background chapter; see (16).
7Recall that we encode (S, C) ≜ (1, 0); hence lt+1 = lt − at.
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the transitions to the terminal state ∅, which is reached when the final stop action
is taken (i.e., when l = 1 and a = 1). If (1.1a) is not applicable, i.e., if the system
does not reach the terminal state, then the transitions are defined by (1.1b)-(1.1d).
(1.1b) captures the case where no intrusion occurs; (1.1c) specifies the case when
the intrusion starts; and (1.1d) describes the case where an intrusion is in progress.
The state transition diagram is shown in Fig. 1.4. Note that the intrusion state
s = 1 is absorbing until L stop actions have been taken.

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0intrusion starts

Qt = 1

final stop
lt = 0

intrusion prevented
lt = 0

Figure 1.4: State transition diagram of the pomdp: each circle represents a state; an
arrow represents a state transition; a label indicates the event that triggers the transition;
an episode starts in state s1 = 0 with l1 = L.

Remark 1.1 (An intrusion will almost surely occur).
The intrusion start time I is almost surely finite since

P[I <∞] = 1− P[I =∞] = 1− lim
t→∞

(1− p)t = 1.

Observation function z(ot | st) We assume that the number of ids alerts and
login attempts during a time step are discrete random variables X,Y, Z that depend
on the state. Consequently, the probability that ∆xt severe alerts, ∆yt warning
alerts, and ∆zt login attempts occur during time step t can be expressed as

z(∆xt,∆yt,∆zt | st) ≜ z(ot | st) ≜ P[Ot = ot | st], (1.2)

where ot ≜ (∆xt,∆yt,∆zt) realizes the random vector Ot ≜ (X,Y, Z). Note that
the distribution z (1.2) depends on the attacker and the clients that interact with
services of the infrastructure, i.e., they are implicitly modeled by z.

Reward function r(s, a) The objective of the intrusion prevention use case is
to maintain service on the infrastructure while preventing a possible intrusion.
Therefore, we define the reward function to give the maximal reward if the defender
maintains service until the intrusion starts and then prevents the intrusion by taking
L stop actions. The reward per time step r(s, a) is parameterized by the reward
that the defender receives for stopping an intrusion (Rst > 0), the reward for
maintaining service (Rsla > 0), and the loss of being intruded (Rint < 0):

r(∅, ·) ≜ 0 (1.3a)
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r(s,C) ≜ Rsla + sRint

L
s ∈ {0, 1} (1.3b)

r(s,S) ≜ sRst

L
s ∈ {0, 1}. (1.3c)

(1.3a) states that the reward in the terminal state is zero. (1.3b) states that the
defender receives a positive reward (Rsla) for maintaining service and a loss ( Rint

L )
for each time step that it is under intrusion. Lastly, (1.3c) indicates that each stop
incurs a cost by interrupting service (i.e., no Rsla) and possibly a reward ( Rst

L ) if it
affects an ongoing intrusion. (The constants Rst, Rsla, and Rint should be configured
to satisfy Assumption 2 in the background chapter.)

Assumption 1.1 (Intrusion cost exceeds service utility).
(

Rint
L +Rsla

)
< 0.

Time horizon T∅ The time horizon T∅ is a random variable that indicates the
time t > 1 when the terminal state ∅ is reached. It follows from (1.1) that Eπl

[T∅] <
∞ for any strategy πl that uses L stops as t→∞.

Strategy space Πl As the pomdp is stationary and the time horizon T∅ is not pre-
determined, it suffices to consider stationary deterministic strategies; see Thm. 2 in
the background chapter. Despite this sufficiency, we consider the space of stochastic
strategies πl ∈ Πl ≜ {1, . . . , L} × B → ∆(A) to enable smooth optimization.

Proposition 1.2. Tl = inft{t | at = S, at ∼ πl(bt), lt = l} is a stopping time.

Proof. Let Ft be the filtration generated by the history sequence (Hk)t
k=1 (16).

Since πl(bt) = πl(B(ht)) (17), {Tl = t} ∈ Ft for all t.

Objective With some abuse of notation, we use J(π) to denote the value of a
strategy π (4), while also using Jπ(b) to refer to the value of a belief state b under
strategy π, as defined in the background chapter. An optimal strategy π⋆

l ∈ Πl

maximizes the expected cumulative reward over the time horizon T∅, i.e.,

π⋆
l ∈ arg max

πl∈Πl

J(πl), where J(πl) ≜ Eπl

[
T∅∑

t=1
r(St, At) | b1

]
. (1.4)

Proposition 1.3. J(π⋆
l ) (1.4) is finite for any optimal strategy π⋆

l .

Proof. The objective in (1.4) is undiscounted, which means that it is unbounded for
non-finite stopping times. Hence, we must show that the optimal stopping times
T ⋆

1 , . . . , T ⋆
L are almost surely finite. Note that

E [Bt+1(1) | Ft] = E [P[I ≤ t+ 1 | Ft+1] | Ft]
(a)= E [E[1I≤t+1 | Ft+1] | Ft]

= E [1I≤t+1 | Ft] (Law of iterated expectations)
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= P [I ≤ t+ 1 | Ft] = P [I ≤ t | Ft] + P [I = t+ 1 | Ft]
≥ P [I ≤ t | Ft] = bt(1),

where (a) uses E[1I≤t+1] = 1 · P[I ≤ t+ 1] + 0 · P[I > t+ 1] = P[I ≤ t+ 1].
Moreover, |Bt(1)| < 1. Therefore, (Bt(1))t≥1 is an Ft-submartingale. It follows

from the martingale convergence theorem that Bt(1) converges almost surely as
t→∞ (Thm. 6.4.3, Ash, 1972). Thus, by the bounded convergence theorem,

E
[

lim
t→∞

Bt(1)
]

= lim
t→∞

E[Bt(1)] (Ch. 4, Prop. 6, Royden, 1988)

= lim
t→∞

E[P[I ≤ t | Ft]] = lim
t→∞

E[E[1I≤t | Ft]]
(a)= lim

t→∞
E[1I≤t]

= lim
t→∞

P[I ≤ t] = 1− lim
t→∞

(1− p)t = 1,

where (a) follows from the law of iterated expectations.
Hence, bt(1) converges almost surely to 1 as t→∞. By definition, the optimal

action when bt(1) = 1 is S8. Thus, T ⋆
1 , . . . , T ⋆

L are almost surely finite.

Proposition 1.3 implies that the optimal value function J⋆(b) (18)9 is well-
defined and finite for each b ∈ B. We provide an example of J⋆ below.

Consider the pomdp instantiated with L ≜ 1, p ≜ 0.01, Rint ≜ −1.1,
Rsla ≜ 1, Rst ≜ 1, O ≜ {1, 2, . . . , 10}, z(· | 0) ≜ BetaBin(n = 10, α =
0.7, β = 3), and z(· | 1) ≜ BetaBin(n = 10, α = 1, β = 0.7).

The value J⋆(b) = Eπ⋆
l

[∑T∅
t=1 r(St, At) | b

]
is shown in Fig. 1.5. We

note that J⋆ is piece-wise linear and convex, as expected from Thm. 2 in
the background chapter. Moreover, we observe that J⋆ has a threshold
structure, as formally stated in Thm. 1.1 on the next page.

Example: Instantiation of the POMDP.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10 alpha vectors J⋆(b) (1.4)

b(1)

Figure 1.5: The value of an optimal defender strategy for the example; the dashed red
lines indicate alpha-vectors α(1),α(2), . . ., where J⋆(b) = maxi[1 − b(1), b(1)]Tα(i); see
(Def. 1, Sondik, 1978) for the definition of the alpha vectors; we computed J⋆ using
Heuristic Search Value Iteration (hsvi) (Alg. 1, Smith and Simmons, 2004).

8i.e., it is optimal to stop when an intrusion occurs; see Appendix A for a proof of this fact.
9The value function is defined in the background chapter; see (18).
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Threshold properties of an optimal strategy

A strategy that solves the multiple-stopping problem is a solution to (1.4). Such
a strategy satisfies the Bellman equation; see Thm. 2 in the background chapter.
Based on this equation, we partition the belief space B into two sets

Sl ≜ {b | b ∈ B, π⋆
l

(
b
)

= S} the stopping set; and
Cl ≜ {b | b ∈ B, π⋆

l

(
b
)

= C} the continuation set.

Applying the stopping theory developed in (Nakai, 1985) and (Krishnamurthy et
al., 2018), we obtain the following structural result.

Theorem 1.1 (Threshold structure of an optimal strategy in the pomdp).
Given the definitions above and Assumption 1.1, the following holds.

(A)

Sl−1 ⊆ Sl ∀l ∈ {2, . . . L} (nested stopping sets). (1.5)

(B) If L = 1, then there exists an optimal strategy π⋆
L that satisfies

π⋆
L(b) = S ⇐⇒ b(1) ≥ α⋆ for some threshold α⋆ ∈ [0, 1]. (1.6)

(C) If L ≥ 1 and z (1.2) is totally positive of order 2 (i.e., tp-2 (Def. 10.2.1,
Krishnamurthy, 2016)), then there exist L values α⋆

1 ≥ α⋆
2 ≥ . . . ≥ α⋆

L and an
optimal strategy π⋆

l that satisfies

π⋆
l (b) = S ⇐⇒ b(1) ≥ α⋆

l ∀l ∈ {1, . . . , L}, where α⋆
l ∈ [0, 1]. (1.7)

Theorem 1.1.A states that the stopping sets have a nested structure. This
structure means that if it is optimal to stop given b when l − 1 stops remain, it
is also optimal to stop when l or more stops remain. Theorem 1.1.B–C state that
there exists an optimal strategy with threshold properties; see Fig. 1.6. If L ≥ 1,
an additional condition applies: the stochastic matrix with the rows z(· | 0) and
z(· | 1) (1.2) must be tp-2 (Karlin, 1964). This condition is satisfied, for example,
if z(· | s) is stochastically monotone in s. We provide proof in Appendix A.

b(1)
0 1

S1

S2

...

SL

α⋆
1α⋆

2α⋆
L

. . .

Figure 1.6: Illustration of Thm. 1.1: there exist L thresholds α⋆
1 ≥ α⋆

2, . . . , ≥ α⋆
L in the

unit interval [0, 1] and an optimal threshold strategy π⋆
l that satisfies (1.5)–(1.7).
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Theorem 1.1 implies that the optimal strategy for the defender is to mon-
itor the infrastructure, update the belief b, and when b(1) exceeds a
threshold, trigger a defensive action.

Key insight.

Knowing that there exist optimal strategies with particular structures has two
benefits. First, insight into the structure of optimal strategies often leads to a con-
cise formulation and efficient implementation of the strategies (Puterman, 1994).
This is obvious in the case of threshold strategies. Second, the complexity of com-
puting an optimal strategy can be reduced by exploiting structural properties (Roy
et al., 2019). The following section describes a stochastic approximation algorithm
that exploits the structural result in Thm. 1.1.

Our stochastic approximation algorithm: T-SPSA

Theorem 1.1 states that under given assumptions and given L ≥ 1 stop actions,
there exists an optimal strategy that uses L thresholds α⋆

1 ≥ α⋆
2, . . . ,≥ α⋆

L, where
α⋆

l ∈ [0, 1]. We now present an algorithm, which we call Threshold-Simultaneous
Perturbation Stochastic Approximation (t-spsa), that computes these thresholds
through stochastic approximation (Robbins and Monro, 1951).

We parameterize πl,θ with a vector θ ∈ RL. The component θl relates to the
threshold with l ∈ {1, . . . L} stops remaining. t-spsa updates θ through stochastic
gradient ascent with the gradient ∇θJ(θ), where J(θ) is a shorthand for J(πl,θ)
(1.4). To ensure differentiability, we define πθ,l to be a smooth stochastic strategy
that approximates a threshold strategy:

πθ,l (S | b) ≜
(

1 +
(

b(1)(1− σ(θl))
σ(θl)(1− b(1))

)−20
)−1

, (1.8)

where σ(·) is the sigmoid function and (σ(θl))L
l=1 are the L thresholds10; see Fig. 1.7.

0.5 1

0.5

1

πl,θ(S | b) (1.8)
threshold σ(θl)

b(1)
0

Figure 1.7: The stochastic threshold strategy in (1.8); σ is the sigmoid function; σ(θl) is
the threshold (0.5 in this example); the x-axis indicates the belief state b(1) ∈ [0, 1]; and
the y-axis indicates the probability prescribed by πl,θ to the stop action S.

10To avoid division by zero, we only use (1.8) when σ(θl) ̸= 0 and b(1) ̸= 1; if σ(θl) = 0 or
b(1) = 1, then πθ,l (S | b) = 1.
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We learn the threshold vector θ through simulation of the pomdp as follows.
First, we initialize θ(1) ∈ RL randomly. Second, for each iteration n ∈ {1, 2, . . .}
of t-spsa, we perturb θ(n) to obtain θ(n) + cn∆(n) and θ(n) − cn∆(n), where
cn = c

nλ ∈ R is the perturbation size, (λ, c) are hyperparameters, and ∆(n) ∈ RL

is a perturbation vector defined as

∆(n)
i ≜


+1 with probability 1

2
−1 with probability 1

2

∀i ∈ {1, . . . , L}.

Subsequently, we run two pomdp episodes where stop actions are prescribed accord-
ing to the perturbed threshold vectors (1.8). We then use the obtained episode out-
comes Ĵ(θ(n) +cn∆(n)) and Ĵ(θ(n)−cn∆(n)) to estimate the gradient ∇θ(n)J(θ(n))
using the Simultaneous Perturbation Stochastic Approximation (spsa) estimator

(
∇̂θ(n)J

(
θ(n)

))
i
≜
Ĵ
(
θ(n) + cn∆(n))− Ĵ (θ(n) − cn∆(n))

2cn∆(n)
i

, (Spall, 1992)

where i ∈ {1, . . . , L} is the component index of the gradient.
Next, we use the estimated gradient and the stochastic approximation algorithm

to update the parameter vector

θ(n+1) = θ(n) + an∇̂θ(n)J(θ(n)),

where an ≜ a
(n+A)ϵ is the step size and (A, ϵ) are hyperparameters (Spall, 1998).

θ(n) converges almost surely to a local maximum of J (1.4) as n→∞ if

an, cn > 0 ∀n; an → 0, cn → 0 as n→∞;
∞∑

n=0
an =∞;

∞∑
n=0

(
an

cn

)2
<∞.︸ ︷︷ ︸

Step size conditions (Robbins and Monro, 1951)

(Prop. 1, Spall, 1992)

We list the pseudocode of t-spsa in Appendix D.

1.5 Creating a Digital Twin of the Target Infrastructure

To instantiate the pomdp defined above, we must know the observation distribution
z(ot | st) (1.2), i.e., the distribution of ids alerts and login attempts conditioned on
the state. We estimate this distribution using measurements from a digital twin of
the target infrastructure. We create this digital twin using csle, as described in the
methodology chapter (Hammar, 2023). The topology of the target infrastructure
is shown in Fig. 1.2, and the configuration is listed in Appendix C.
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The digital twin comprises virtual containers and networks that replicate the
functionality and the timing behavior of the target infrastructure. These containers
run the same software and processes as the physical infrastructure. For example,
the container that emulates the gateway shown in Fig. 1.2 runs the snort ids with
community ruleset v2.9.17.1 (Roesch, 1999). This ids produces real-time data, such
as logs and alerts. We collect this data from the digital twin at 30-second intervals,
which allows us to compute the defender observation ot (1.2). (We define 30s in
the digital twin to be 1 time step in the pomdp.) The distribution of the data
produced by the digital twin depends on the actions of the defender, the clients,
and the attacker, as defined below.

Emulating the defender

We have implemented L = 3 stop actions on the digital twin to emulate the de-
fender; they are listed in Table 1.2. The first stop recovers user accounts compro-
mised by the attacker. The second and third stops update the firewall configuration
of the gateway. Specifically, the second stop adds a rule to the firewall that drops
incoming traffic from ip addresses that have been flagged by the ids, and the third
stop blocks all incoming traffic.

l Action Command on the digital twin mitre d3fend technique
3 Revoke certificates openssl ca -revoke <certificates> d3-cban certificate revocation.
2 Blacklist ips iptables -A INPUT -s <ip> -j DROP d3-ntf network traffic filtering.
1 Block gateway iptables -A INPUT -i eth0 -j DROP d3-ni network isolation.

Table 1.2: Defender stop commands on the digital twin; the commands are linked to
the corresponding defense techniques in the mitre d3fend taxonomy (Kaloroumakis and
Smith, 2021); l denotes the number of remaining stops.

Emulating the clients

The client population is emulated by processes that interact with application servers
through the gateway by performing a sequence of functions on a sequence of servers,
both of which are selected uniformly at random from Table 1.3 on the next page.
Client arrivals per time step are emulated using a stationary Poisson process with
mean λ = 20 and exponentially distributed service times with mean µ = 4.

Emulating the attacker

We have implemented three attackers on the digital twin: NoviceAttacker, Ex-
periencedAttacker, and ExpertAttacker, which execute the sequences of
actions listed in Table 1.4 (shown on the next page). The actions consist of recon-
naissance commands and exploits. During each time step, one action is executed.
The attackers differ in their reconnaissance command and the number of stops
required to prevent the attack; see Table 1.5 on the next page.



Functions Application servers
http, ssh, snmp, icmp N2, N3, N10, N12.
irc, postgres, snmp N31, N13, N14, N15, N16.
ftp, dns, telnet N10, N22, N4.

Table 1.3: Emulated client population in the digital twin; each client invokes functions on application servers; shell commands
for invoking the functions are listed in (Hammar, 2023); the server configurations N1, . . . , N31 are listed in Appendix C and the
network topology is shown in Fig. 1.2. (Note that each component in Fig. 1.2 is labeled with an identifier Ni.)

Time steps t NoviceAttacker ExperiencedAttacker ExpertAttacker
1-I ∼ Ge(p) (Intrusion not started) (Intrusion not started) (Intrusion not started)
I + 1-I + 6 Recon1, brute-force attacks (ssh,telnet,ftp) Recon2, cve-2017-7494 N4, Recon3, cve-2017-7494 N4,

N2, N4, N10, login(N2, N4, N10), brute-force attack (ssh) N2, login(N2, N4), login(N4), backdoor(N4)
backdoor(N2, N4, N10) backdoor(N2, N4), Recon2 Recon3, sql Injection N18

I + 7-I + 10 Recon1, cve-2014-6271 N17, cve-2014-6271 N17, login(N17) login(N18), backdoor(N18),
login(N17), backdoor(N17) backdoor(N17), ssh brute-force attack N12 Recon3, cve-2015-1427 N25

I + 11-I + 14 ssh brute-force attack N12, login(N12) login(N12), cve-2010-0426 N12, login(N25), backdoor(N25),
cve-2010-0426 N12, Recon1. Recon2, sql Injection N18 Recon3, cve-2017-7494 N27

I + 15-I + 16 login(N18), backdoor(N18) login(N27), backdoor(N27).
I + 17-I + 19 Recon2, cve-2015-1427 N25, login(N25).

Table 1.4: Attacker actions on the digital twin; I is the start time of the intrusion (see Fig. 1.3); shell commands and scripts
for executing the actions are listed in (Hammar, 2023); the server configurations N1, . . . , N31 are listed in Appendix C and the
network topology is shown in Fig. 1.2; if the attacker sequences complete before the defender performs the final stop, the sequences
are restarted. (Note that each component in Fig. 1.2 is labeled with an identifier Ni.)

Attacker L Reconnaissance
NoviceAttacker 1 tcp/udp scan.
ExperiencedAttacker 2 icmp ping scan.
ExpertAttacker 3 icmp ping scan.

Table 1.5: Number of stops (L) required to prevent the attacker and the reconnaissance commands of the attackers.
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Estimating the distributions of alerts and login attempts

We estimate the distributions of ids alerts and login attempts using data from the
digital twin. At the end of every 30s interval on the twin, we collect the metrics
∆x, ∆y, ∆z, which contain the alerts and login attempts that occurred during the
interval. We use M = 21, 000 i.i.d. samples to compute the empirical distribution
ẑ(· | st) as an estimate of z(· | st) (1.2), where ẑ a.s.→ z as M → ∞ (Glivenko and
Cantelli, 1933). Figure 1.8 shows some of the estimated (smoothed) distributions
(aggregated over all three attackers). The distributions during normal operation
and intrusion mostly overlap. However, the distributions during intrusions tend to
have more probability mass at larger values of ∆x,∆y, and ∆z. From these esti-
mated distributions, we note that the tp-2 assumption in Thm. 1.1.C is reasonable.

‘

5000 10000 15000 20000

ẑ
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Figure 1.8: Estimated (smoothed) distributions of severe ids alerts ∆x (top row), warning
ids alerts ∆y (middle row), and login attempts ∆z (bottom row) based on measurements
from the digital twin.

Simulating an episode of the POMDP

A simulated episode evolves as follows. The episode starts in state s1 = 0 with
l1 = L. During each time step, the action is sampled from the defender strategy as
at ∼ πl,θ(· | bt). If the action is stop and lt = 1, the episode ends. Otherwise, the
remaining number of stop actions is updated: lt+1 = lt − at

11. The next state and
observation are then sampled as st+1 ∼ fl(· | st, at) (1.1) and ot+1 ∼ ẑ(· | st+1)
(Fig. 1.8), respectively. Subsequently, the belief bt+1 is computed using (17)12 and

11Recall that we encode (S, C) = (1, 0).
12As defined in the background chapter.
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the reward rt+1 is computed using (1.3). The sequence of time steps continues until
the defender performs the final stop, after which the episode ends.

Remark 1.2. The clients’ activities are not simulated but are captured by ẑ.

Emulating an episode of the POMDP on the digital twin

Like a simulated episode, an emulated episode on the digital twin starts with the
same initial conditions, evolves in discrete time steps, and experiences an intrusion
event at a random time. However, an episode on the digital twin differs from a
simulated episode in the following ways. First, attacker and defender actions on
the digital twin include computing and networking functions with side-effects; see
Table 1.2 and Table 1.4. Second, the defender observations in the digital twin
are not sampled but are obtained through reading log files and metrics of emulated
servers in the digital twin. Third, the emulated client population in the digital twin
performs requests to the emulated application servers just like on an operational
infrastructure; see Table 1.3. Due to these differences, running an episode on the
digital twin takes much longer time than simulating a similar episode (e.g., minutes
vs milliseconds).

1.6 Experimental Evaluation

Our methodology for finding effective defender strategies includes simulation of
pomdp episodes to learn defender strategies through t-spsa, as well as evaluating
them on the digital twin; see Fig. 12 in the introduction chapter. This section
describes our evaluation results.

Computing environment

The environment for training strategies and running simulations is a tesla p100
gpu. The hyperparameters for the training algorithm are listed in Appendix B.
The digital twin is deployed on a server with a 24-core Intel Xeon Gold 2.10GHz
cpu and 768 gb ram; see Fig. 21 in the methodology chapter.

Evaluation process

We train three defender strategies against the Novice, Experienced, and Expert
attackers until convergence (the attackers are defined in Table 1.4). We run 10′000
training episodes for each attacker to estimate an optimal defender strategy using
t-spsa. After each episode, we evaluate the current defender strategy by running
evaluation episodes on the digital twin and computing various performance metrics.
The 10′000 training episodes and the evaluation constitute one training run. We
run five training runs with different random seeds. A single training run takes
about 4 hours of processing time on a p100 gpu to perform the simulations and
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the strategy training, as well as around 12 hours for evaluating the strategies on
the digital twin.

Baseline strategies

We compare the strategies learned through t-spsa with three baseline defender
strategies. The first baseline prescribes the stop action whenever an ids alert occurs,
i.e., whenever (∆x + ∆y) ≥ 1. The second baseline is obtained by configuring the
snort ids as an Intrusion Detection and Prevention System (idps), which drops
network traffic following its internal recommendation system; see Appendix C for
the snort configuration. To calculate the reward, we define 100 dropped ip packets
of the snort idps to be a stop action of the defender. Lastly, the third baseline is
an ideal strategy that presumes knowledge of the intrusion time and performs all
stop actions at that time.

Baseline algorithms

We evaluate t-spsa by comparing it with three baseline algorithms: Proximal
Policy Optimization (ppo) (Alg. 1, Schulman et al., 2017)13, Heuristic Search
Value Iteration (hsvi) (Alg. 1, Smith and Simmons, 2004), and Shiryaev’s al-
gorithm (Shiryaev, 1963). ppo is a state-of-the-art deep reinforcement learning
algorithm (see Fig. 1.9), hsvi is a state-of-the-art dynamic programming algorithm
for pomdps, and Shiryaev’s algorithm is an optimal algorithm for change detec-
tion. The main difference between t-spsa and the first two baselines (ppo and
hsvi) is that t-spsa exploits the threshold structure expressed in Thm. 1.1. The
main difference between t-spsa and Shiryaev’s algorithm is that t-spsa learns L
thresholds whereas Shiryaev’s algorithm uses a single predefined threshold. We set
this threshold to 0.75 based on a hyperparameter search; see Appendix B.

o Σ φ Σ φ Σ

Actor

Critic

Σ σ

Σ

πθ(a | o)

Jθ(o)

Figure 1.9: Architecture of the neural network used by ppo (Alg. 1, Schulman et
al., 2017); the strategy πθ and the value function Jθ are parameterized by a neural network
with the actor-critic architecture (Sutton and Barto, 1998); Σ represents a linear sum; σ
represents the softmax function; and φ represents the ReLu function.

13See Appendix D of Paper 3 for a derivation of the ppo algorithm.
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Learning intrusion prevention strategies

Figure 1.10 shows the performance of the learned strategies against the three at-
tackers defined in Table 1.4. The red and blue curves represent the results from
the simulator and the digital twin, respectively. The purple and orange curves give
the performance of the snort idps and the baseline strategy that mandates a stop
action whenever an ids alert occurs, respectively. The dashed black curves give the
performance of the baseline that assumes knowledge of the exact intrusion time.
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Figure 1.10: Learning curves obtained during training of t-spsa; red curves show simu-
lation results and blue curves show results from the digital twin; the purple, orange, and
black curves relate to baseline strategies; the rows from top to bottom relate to: NoviceAt-
tacker, ExperiencedAttacker, and ExpertAttacker; the columns from left to right
show performance metrics: episodic reward, empirical prevention probability, empirical
early stopping probability, and the duration of intrusion; the curves show the mean and
95% confidence interval for five training runs with different random seeds.

An analysis of the graphs in Fig. 1.10 leads us to the following conclusions.
The learning curves converge quickly to constant mean values for all attackers and
across all investigated performance metrics. From this observation, we conclude
that the learned strategies have also converged. Second, we observe that the con-
verged values of the learning curves are close to the dashed black curves, which
give an upper bound to an optimal strategy. In addition, we see that the empirical
probability of preventing an intrusion is close to 1 (second leftmost column) and
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that the empirical probability of stopping before the intrusion starts is close to 0
(second rightmost column). This suggests that the learned strategies are close to
optimal. We also observe that all learned strategies do significantly better than
the snort idps baseline and the baseline that stops whenever an ids alert occurs
(leftmost column). Third, although the learned strategies, as expected, perform
better on the simulator than on the digital twin, we are encouraged by the fact
that the curves of the digital twin are close to those of the simulator (cf. the blue
and red curves).

The performance of the strategies learned on the simulator transfers to
the digital twin; see Fig. 12 in the introduction chapter.

Key result.

We note from Fig. 1.10 that the learned strategies do better against NoviceAt-
tacker than against ExperiencedAttacker and ExpertAttacker. For in-
stance, the learned strategies against ExperiencedAttacker and ExpertAt-
tacker are more likely to stop before an intrusion has started (second rightmost
column of Fig. 1.10). This indicates that NoviceAttacker is easier to detect for
the defender as its actions create more ids alerts than those of the other attackers.

Figure 1.11 shows a comparison between our stochastic approximation algorithm
(t-spsa) and the three baseline algorithms.
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Figure 1.11: Comparison between t-spsa and the baselines; all curves show simulation
results; red curves relate to t-spsa; blue curves relate to ppo; orange curves relate to hsvi;
purple curves relate to Shiryaev’s algorithm with threshold α = 0.75; the columns from left
to right relate to: NoviceAttacker, ExperiencedAttacker, and ExpertAttacker;
all curves show the mean and 95% confidence interval for five training runs.

We observe in Fig. 1.11 that both t-spsa (red curves) and ppo (blue curves)
converge to close approximations of an optimal strategy within an hour of train-
ing whereas hsvi (orange curves) does not converge within the measured time.
The slow convergence of hsvi manifests the intractability of using dynamic pro-



86 Paper 1 – Intrusion Prevention through Optimal Stopping

gramming to compute optimal strategies for pomdps (Thm. 6, Papadimitriou and
Tsitsiklis, 1987). We also see in Fig. 1.11 that t-spsa converges significantly faster
than ppo. This is expected since t-spsa considers a smaller space of strategies than
ppo. Finally, we note in Fig. 1.11 that t-spsa outperforms Shiryaev’s algorithm
(purple curves), which demonstrates the benefit of using L thresholds instead of a
single threshold.

1.7 Related Work

Recent works that study security automation using stochastic approximation in-
clude [328, 178, 182, 176, 130, 397, 510, 261, 66, 369, 525, 469, 152, 207, 150, 4,
286, 353, 175, 518, 125, 123, 508, 529, 528, 287, 391, 283, 292, 64, 213, 284, 519,
239, 486, 187, 493, 219, 218, 484, 179, 22, 521, 273, 223, 185, 278, 260, 141, 296,
336, 241, 368, 490, 495, 93, 452, 245, 215, 474]. These works use a variety of al-
gorithms, including Q-learning [130, 510, 369, 494, 391, 64, 486, 22], sarsa [261],
ppo [178, 182, 123, 125, 529], hierarchical reinforcement learning [469], dqn [152,
508, 529, 528, 287, 284, 219], Thompson sampling [207], muzero [150], nfq [4],
ddqn [353, 493], nfsp [274, 497], a2c [292], a3c [187], and ddpg [286, 518].

The previous works differ from this paper in two main ways. First, we formulate
the intrusion prevention problem as a multiple-stopping problem. The other works
formulate the problem as a general mdp14, pomdp, or stochastic game. The advan-
tage of our approach is that we obtain structural properties of optimal strategies,
which have practical benefits. Second, our methodology for experimental evaluation
involves a digital twin in addition to simulations. The advantage of our method
compared to the simulation-only approaches [178, 182, 130, 397, 510, 261, 66, 369,
525, 469, 152, 207] is that the parameters of our simulator are determined by mea-
surements from the digital twin instead of being chosen by a human. Further, the
learned strategies are evaluated on the digital twin, not the simulator. As a conse-
quence, the evaluation results give a higher confidence in the obtained strategies’
operational performance than what simulation results would provide.

Problem formulations based on stopping theory can be found in prior research
on change detection [409, 344, 261, 453, 283, 182]. Compared to these papers,
our approach is more general by allowing multiple stop actions within an episode.
Another difference is that we model intrusion prevention rather than intrusion
detection. Further, compared with traditional change detection algorithms, e.g.,
cusum (Page, 1954) and Shiryaev’s algorithm (Shiryaev, 1963), our algorithm
learns thresholds and does not assume them to be preconfigured.

14The components of an mdp are defined the background chapter; see (1).
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1.8 Conclusion

In this paper, we propose a novel formulation of intrusion prevention based on the
theory of optimal stopping. This formulation allows us to derive that a threshold
strategy is optimal, which has practical benefits. To find and evaluate strategies,
we use a methodology that includes simulation-based optimization and evaluation
on a digital twin. In contrast to a simulation-only approach, our methodology pro-
duces strategies that can be executed in a target infrastructure with a practical
configuration (Figs. 1.10-1.11). The evaluation results show that our stochastic ap-
proximation algorithm (t-spsa), which takes advantage of the threshold structure
(Thm. 1.1), outperforms state-of-the-art algorithms on our use case.

We make assumptions in this paper that limit the practical applicability of the
results: the attacker follows a static strategy, and the defender learns only the times
of taking defensive actions but not the types of actions. Therefore, the question
arises whether our methodology can be extended so that (i) the attacker can pursue
a wide range of realistic strategies and (ii) the defender learns optimal strategies
that express not only when defensive actions need to be taken but also the specific
measure to be executed. We address (i) in Paper 2 and we address (ii) in Paper 3.
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Appendix

A Proof of Theorem 1.1

The main idea behind the proof of Thm. 1.1 is to show that the stopping sets
(Sl)l=1,...,L have the form Sl = [α⋆

l , 1] ⊆ B and that α⋆
l ≥ α⋆

l+1. Toward this goal,
we state the following five lemmas.

Remark 1.3 (Notation). Since b is determined by b(1), i.e., b(0) = 1− b(1), we
use b as a shorthand for b(1).

Lemma 1.1. S1 is a convex subset of B = [0, 1].

Proof. This result was originally proven in (Thm. 12.2.1, Krishnamurthy, 2016).
For completeness, we give the proof here since it is very short. We need to show
that b′,b′′ ∈ S1 =⇒ (λb′ + (1− λ)b′′) ∈ S1 for any λ ∈ [0, 1]. We obtain

J⋆(λb′ + (1− λ)b′′) ≤ λJ⋆(b′) + (1− λ)J⋆(b′′) (Convexity of J⋆; Thm. 2)
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= λQ⋆(b′,S) + (1− λ)Q⋆(b′′,S) (b′,b′′ ∈ S1 (6))
= (λb′ + (1− λ)b′′)Rst (L = 1 (1.3))
= Q⋆(λb′ + (1− λ)b′′,S)
≤ J⋆

(
λb′ + (1− λ)b′′) (J⋆(b) ≜ max

a∈A
Q⋆(b, a))

=⇒ Q⋆(λb′ + (1− λ)b′′,S) = J⋆(λb′ + (1− λ)b′′)
=⇒ (λb′ + (1− λ)b′′) ∈ S1 ∀λ ∈ [0, 1].

Lemma 1.2. For each a ∈ A and l ∈ {1, . . . , L}, fl(· | ·, a) (1.1) is tp-2 [254,
Def. 10.2.1].

Proof. Given any combination of a ∈ A and l ∈ {1, . . . , L}, fl(· | ·, a) (1.1) can be
represented by one of following two row-stochastic matrices:


0 1 ∅

0 1− p p 0
1 0 1 0
∅ 0 0 1

,


0 1 ∅

0 0 0 1
1 0 0 1
∅ 0 0 1

.
The left matrix corresponds to fl(· | ·,C) and fl>1(· | ·,S). The right matrix
represents f1(· | ·,S). To show that fl(· | ·, a) (1.1) is tp-2 [254, Def. 10.2.1], it
suffices to show that all

(3
2
)2 second order minors of both matrices are non-negative.

The second-order minors of the left matrix are

M1,2 = M1,3 = M2,3 = M3,1 = M3,2 = 0
M1,1 = 1
M2,1 = p

M2,2 = M3,3 = 1− p,

where Mi,j denotes the determinant of the submatrix formed by deleting the ith
row and jth column. For the right matrix, all second-order minors are zero.

Lemma 1.3. ES [r(S,S)− r(S,C) | b] is increasing in b for l ∈ {1, . . . , L}.

Proof. By definition of r (1.3), we obtain

ES [r(S, S)− r(S,C) | b] = bRst

L
−
(
Rsla + bRint

L

)
= b

(
Rst −Rint

L

)
−Rsla,

which is increasing in b since Rst > 0 and Rint < 0.
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Lemma 1.4 ((Thm. 10.3.1.1–3, p. 225, Krishnamurthy, 2016)15.). Given two
beliefs b′ ≥ b and two observations o > o16, if fl(· | ·, a) (1.1) and z(· | ·) (1.2) are
tp-2 for all a ∈ A and l ∈ {1, . . . , L} [254, Def. 10.2.1], then the following holds
for each a ∈ A, õ ∈ O, and l ∈ {1, . . . , L}:

1. B(b′, a, õ) ≥ B(b, a, õ);

2. P[o ≥ õ | b′, a] ≥ P[o ≥ õ | b, a]17; and

3. B(b, a,o) ≥ B(b, a,o),

where B is the belief operator (17), as defined in the background chapter.

We now use Lemmas 1.1-1.4 to prove Thm. 1.1. Our proof is based on the same
approach as in (Props. 4.5-4.8, pp. 437-441, Nakai, 1985) and (Thm. 1.C, Thm. 8,
pp. 389-397, Krishnamurthy et al., 2018). The main idea is to show that, if b′ ≥ b,
then b ∈ Sl =⇒ b′ ∈ Sl and b ∈ Sl−1 =⇒ b ∈ Sl. To prove these properties,
we use the value iteration algorithm to establish structural properties of J⋆

l (18)
(Smallwood and Sondik, 1973). Specifically, let J (k)

l , S
(k)
l , and C

(k)
l , denote the

value function, the stopping set, and the continuation set at iteration k of the value
iteration algorithm, respectively. Then, limk→∞ J

(k)
l = J⋆

l , limk→∞ S
(k)
l = Sl, and

limk→∞ C
(k)
l = Cl (Thms. 7.2.1, 7.6.1, Krishnamurthy, 2016). This convergence

means that we can use mathematical induction on the value iterations to establish
structural properties of J⋆

l . Let J (0)
l (b) = 0 ∀b ∈ B. By showing that if the

property holds for J (k)
l (induction hypothesis), it also holds for J (k+1)

l , we establish
(by induction) that the property holds for J⋆

l (18).
For ease of notation, let r(b, a) ≜ ES [r(S, a) | b], Po

a,b ≜ P[o | b, a], Po
b ≜ P[o |

b], and bo
a ≜ B(b, a,o) (17). When bo

S = bo
C, we simply write bo.

Proof of Theorem 1.1.A. It follows from the Bellman equation (18) that

b ∈ Sl−1 ⇐⇒ r(b,S) +
∑
o∈O

Po
S,bJ

⋆
l−2(bo

S) ≥ r(b,C) +
∑
o∈O

Po
C,bJ

⋆
l−1(bo

C)

⇐⇒ r(b,S)− r(b,C) +
∑
o∈O

Po
S,bJ

⋆
l−2(bo

S)− Po
C,bJ

⋆
l−1(bo

C) ≥ 0

(a)⇐⇒ r(b,S)− r(b,C) +
∑
o∈O

Po
b
(
J⋆

l−2(bo)− J⋆
l−1(bo)

)︸ ︷︷ ︸
≜Wl−1(bo)

≥ 0, (1.9)

15In the original proof, the monotone likelihood ratio (mlr) order among beliefs is considered
[254, Def. 10.1.1]; Since B = [0, 1] in our case, the mlr order reduces to the natural order on R.
(To see this, plug in b′(0) = 1 − b′(1) in the mlr definition b′(0)b(1) ≤ b′(0)b(1).)

16Here ≥ refers to the natural order on R. To order the three-dimensional space O, we map it
to a one-dimensional space by associating each observation with a unique natural number.

17The left-hand side distribution stochastically dominates the distribution on the right-hand
side in the first order (Def. 9.2.1, Krishnamurthy, 2016).
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where (a) follows because (i) ot (1.2) is independent of at−1 when l > 1 since
fl>1(· | ·,S) = fl>0(· | ·,C) (1.1); and (iii) the belief operator (17) is independent
of at−1 except for the case when at−1 = S and l = 1, but in that case we obtain
J⋆

0 (b) = 0 ∀b, which means that J⋆
0 (bo

S) = J⋆
0 (bo

C) for all o ∈ O.
We will use (1.9) to show that b ∈ Sl−1 =⇒ b ∈ Sl and thus Sl−1 ⊆

Sl. Since r(b,S) − r(b,C) and Po
b are independent of l, it suffices to show that

Wl(b)−Wl−1(b) ≥ 0 for all b ∈ B and l ∈ {2, 3, . . . , L}. We show this statement by
mathematical induction on k = 0, 1, . . ., where k is the iteration of value iteration
(Smallwood and Sondik, 1973).

For iteration k = 0, we have that W (0)
l (b) = J

(0)
l−1(b)− J (0)

l (b) = 0 = W
(0)
l−1(b)

for all l ∈ {2, 3, . . . , L} and b ∈ B. Hence, the inductive base case holds. Assume
by induction that W (k−1)

l (b) −W (k−1)
l−1 (b) ≥ 0 for all l ∈ {2, 3, . . . , L} and b ∈ B.

We show below that this assumption implies that W (k)
l (b)−W (k)

l−1(b) ≥ 0.
Expanding W (k)

l (b)−W (k)
l−1(b) gives

W
(k)
l (b)−W (k)

l−1(b) = J
(k)
l−1(b)− J (k)

l (b)− J (k)
l−2(b) + J

(k)
l−1(b)

= 2J (k)
l−1(b)− J (k)

l (b)− J (k)
l−2(b)

= 2r(b, a(k)
l−1,b)− r(b, a(k)

l,b )− r(b, a(k)
l−2,b)

+
∑
o∈O

Po
b

(
2J (k−1)

l−1−a
(k)
l−1,b

(bo)− J (k−1)
l−a

(k)
l,b

(bo)− J (k−1)
l−2−a

(k)
l−2,b

(bo)
)
,

where a(k)
l,b denotes the optimal action in belief state b with l stops remaining at

iteration k of value iteration18. Hence, W (k)
l (b)−W (k)

l−1(b) depends on the actions
a

(k)
l,b , a

(k)
l−1,b, and a

(k)
l−2,b. Four combinations of these actions need to be considered:

1. If b ∈ S
(k)
l ∩S

(k)
l−1 ∩S

(k)
l−2, then:

W
(k)
l (b)−W (k)

l−1(b)

= 2r(b,S)− 2r(b,S) +
∑
o∈O

Po
b

(
2J (k−1)

l−2 (bo)− J (k−1)
l−1 (bo)− J (k−1)

l−3 (bo)
)

=
∑
o∈O

Po
b

(
J

(k−1)
l−2 (bo)− J (k−1)

l−1 (bo)−
(
J

(k−1)
l−3 (bo)− J (k−1)

l−2 (bo)
))

=
∑
o∈O

Po
b

(
W

(k−1)
l−1 (bo)−W (k−1)

l−2 (bo)
)
,

which is non-negative by the induction assumption.
18Recall that we encode S and C with 1 and 0, respectively; see §1.4.
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2. If b ∈ S
(k)
l ∩S

(k)
l−1 ∩ C

(k)
l−2, then:

W k
l (b)−W (k)

l−1(b)

= 2r(b,S)− r(b,S)− r(b,C) +
∑
o∈O

Po
b

(
2J (k−1)

l−2 (bo)− J (k−1)
l−1 (bo)− J (k−1)

l−2 (bo)
)

= r(b,S)− r(b,C) +
∑
o∈O

Po
b

(
J

(k−1)
l−2 (bo)− J (k−1)

l−1 (bo)
)
,

which is non-negative because b ∈ S
(k)
l−1 (1.9).

3. If b ∈ S
(k)
l ∩ C

(k)
l−1 ∩ C

(k)
l−2, then:

W
(k)
l (b)−W (k)

l−1(b)

= 2r(b,C)− r(b,S)− r(b,C) +
∑
o∈O

Po
b

(
2J (k−1)

l−1 (bo)− J (k−1)
l−1 (bo)− J (k−1)

l−2 (bo)
)

= r(b,C)− r(b,S) +
∑
o∈O

Po
b

(
J

(k−1)
l−1 (bo)− J (k−1)

l−2 (bo)
)
,

which is non-negative because b ∈ C
(k)
l−1

19.

4. If b ∈ C
(k)
l ∩ C

(k)
l−1 ∩ C

(k)
l−2, then:

W
(k)
l (b)−W (k)

l−1(b)

= 2r(b,C)− r(b,C)− r(b,C) +
∑
o∈O

Po
b

(
2J (k−1)

l−1 (bo)− J (k−1)
l (bo)− J (k−1)

l−2 (bo)
)

=
∑
o∈O

Po
b

(
J

(k−1)
l−1 (bo)− J (k−1)

l (bo)−
(
J

(k−1)
l−2 (bo)− J (k−1)

l−1 (bo)
))

=
∑
o∈O

Po
b

(
W

(k−1)
l (bo)−W (k−1)

l−1 (bo)
)
,

which is non-negative by the induction assumption.

The other cases, e.g., b ∈ C
(k)
l ∩C

(k)
l−1∩S

(k)
l−2, can be discarded due to the induction

assumption. Therefore, Wl(b)−Wl−1(b) ≥ 0 for all l ∈ {2, 3, . . . , L} and b ∈ B.

Proof of Theorem 1.1.B. The proof follows the same chain of reasoning as used in
(Corollary 12.2.2, p. 258, Krishnamurthy, 2016). We know from Lemma 1.1 that
the stopping set S1 is a convex subset of B = [0, 1]. Thus, B = [α⋆, β⋆] for some
values α⋆ and β⋆ where 0 ≤ α⋆ ≤ β⋆ ≤ 1. Hence, it suffices to show that β⋆ = 1.

19It follows by the same derivation as used in (1.9) except that the first inequality is reversed.
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If b = L = 1, the Bellman equation implies that

π⋆
1(b) ∈ arg max

{S,C}

[
Rst + J⋆

0 (∅)︸ ︷︷ ︸
a=S

, Rsla +Rint + EB′ [J⋆
1 (B′)]︸ ︷︷ ︸

a=C

]

= arg max
{S,C}

[
Rst, Rsla +Rint + EB′ [J⋆

1 (B′)]
]

(J⋆
0 (∅) = 0)

= arg max
{S,C}

[
Rst, Rsla +Rint + J⋆

1 (b)
]

(b is absorbing until the stop)

= arg max
{S,C}

[
Rst, (τ − 1)(Rsla +Rint) +Rst

]
, (τ is the stopping time)

where

τ > 1 =⇒ (τ − 1)(Rsla +Rint) +Rst < Rst (Assumption 1.1)

=⇒ arg max
{S,C}

[
Rst, (τ − 1)(Rsla +Rint) +Rst

]
= {S}

=⇒ π⋆
1(b) = S =⇒ b ∈ S1 =⇒ β⋆ = 1 =⇒ S1 = [α⋆, 1].

Corollary 1.1. The stopping set Sl is connected for all l ∈ {1, . . . , L}.

Proof. We use the same shorthand notations as in the proof of Theorem 1.1.A.
Since B = [0, 1] (§1.4), the beliefs are totally ordered according to the standard
order on R. This fact together with the properties Sl−1 ⊆ Sl (Thm. 1.1.A) and
S1 = [α⋆

1, 1] (Thm. 1.1.B) means that Sl is connected if b ∈ Sl =⇒ b′ ∈ Sl for
all b′ ≥ b and l = L,L− 1, . . . , 1. We know from (1.9) that

b ∈ Sl ⇐⇒ r(b,S)− r(b,C) +
∑
o∈O

Po
b
(
J⋆

l−1(bo)− J⋆
l (bo)

)︸ ︷︷ ︸
=Wl(bo)

≥ 0.

Since a) Po
b′ stochastically dominates Po

b in the first order for b′ ≥ b; and b)
B(b, a,o) is non-decreasing in both b and o (Lemma 1.4), it suffices to show that
r(b,S) − r(b,C) + Wl(b) is non-decreasing in b for all l ∈ {1, 2, . . . , L}. We show
this property by mathematical induction on k = 0, 1, . . ., where k is the iteration
of value iteration (Smallwood and Sondik, 1973).

For iteration k = 0, we have J (0)
l (b) = 0 ∀b ∈ B and l ∈ {1, . . . , L}. Thus,

r(b,S)− r(b,C) +W
(0)
l (b) = r(b,S)− r(b,C) + J

(0)
l−1(b)− J (0)

l (b)
= r(b,S)− r(b,C) ∀l ∈ {1, 2, . . . , L},b ∈ B.
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Since r(b,S) − r(b,C) is increasing in b (Lemma 1.3), the inductive base case
holds. Assume by induction that r(b,S) − r(b,C) + W

(k−1)
l (b) is non-decreasing

in b for all l ∈ {1, 2, . . . , L}. We will show that this assumption implies that
r(b,S)− r(b,C) +W

(k)
l (b) is non-decreasing in b for all l ∈ {1, 2, . . . , L}.

Expanding r(b,S)− r(b,C) +W
(k)
l (b) gives

r(b,S)− r(b,C) +W
(k)
l (b) = r(b,S)− r(b,C) + J

(k)
l−1(b)− J (k)

l (b)

= r(b,S)− r(b,C) + r(b, a(k)
l−1,b)− r(b, a(k)

l,b )

+
∑
o∈O

Po
b

(
J

(k−1)
l−1−a

(k)
l−1,b

(bo)− J (k−1)
l−a

(k)
l,b

(bo)
)
,

where a(k)
l,b denotes the optimal action in belief state b with l stops remaining at

iteration k of value iteration20. Hence, W (k)
l (b) depends on the actions a(k)

l,b and
a

(k)
l−1,b. Since S

(k)
l−1 ⊆ S

(k)
l (Thm. 1.1.A) and S

(k)
1 = [α⋆

1, 1] (Thm. 1.1.B), only
three combinations of these actions need to be considered:

1. If b ∈ S
(k)
l ∩S

(k)
l−1, then:

r(b,S)− r(b,C) +W
(k)
l (b)

= r(b,S)− r(b,C) + r(b,S)− r(b,S) +
∑
o∈O

Po
b

(
J

(k−1)
l−2 (bo)− J (k−1)

l−1 (bo)
)

=
∑
o∈O

Po
b

(
r(b,S)− r(b,C) +W

(k−1)
l−1 (bo)

)
,

which is non-decreasing in b by the induction assumption and Lemma 1.4.

2. If b ∈ S
(k)
l ∩ C

(k)
l−1, then:

r(b,S)− r(b,C) +W
(k)
l (b)

= r(b,S)− r(b,C) + r(b,C)− r(b,S) +
∑
o∈O

Po
b

(
J

(k−1)
l−1 (bo)− J (k−1)

l−1 (bo)
)

= 0.

3. If b ∈ C
(k)
l ∩ C

(k)
l−1, then:

r(b,S)− r(b,C) +W
(k)
l (b)

= r(b,S)− r(b,C) + r(b,C)− r(b,C) +
∑
o∈O

Po
b

(
J

(k−1)
l−1 (bo)− J (k−1)

l (bo)
)

20Recall that we encode S and C with 1 and 0, respectively; see §1.4.
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=
∑
o∈O

Po
b

(
r(b,S)− r(b,C) +W

(k−1)
l (bo)

)
,

which is non-decreasing in b by the induction assumption and Lemma 1.4.

Proof of Theorem 1.1.C. Since a) B = [0, 1]; b) z (1.2) is tp-2 by assumption; and
c) fl(· | ·, a) (1.1) is tp-2 for all a ∈ A and l ∈ {1, . . . , L} by Lemma 1.2, it follows
from Cor. 1.1 that Sl is a connected subset of [0, 1] for l ∈ {1, . . . , L}. Further, from
Thm. 1.1.B we know that S1 = [α⋆

1, 1] and from Thm. 1.1.A we know that Sl ⊆
Sl+1 for l ∈ {1, . . . , L − 1}. Therefore, 1 ∈ Sl for all l ∈ {1, . . . , L}. We conclude
that Sl = [α⋆

l , 1] for l ∈ {1, . . . , L} and that α⋆
l ≥ α⋆

l+1 for l ∈ {1, . . . , L− 1}.

B Hyperparameters

The hyperparameters used for the evaluation are listed in Table 1.6 and were ob-
tained through grid search.

Parameters for the pomdp Values
∆xmax,∆ymax,∆zmax 6 · 102, 3 · 102, 102

p,Rst, Rint, Rsla 0.01, 50, −10, 1

Parameters for t-spsa Values
c, ϵ, λ,A, a 1, 0.101, 0.602, 100, 1

Parameters for ppo (Alg. 1, Schulman et al., 2017) Values
lr α, batch, # layers, # neurons, clip ϵ, gae λ, ent-coef 10−4, 4 · 103t, 3, 32, 0.2, 0.95, 10−4

activation function relu

Parameters for hsvi (Alg. 1, Smith and Simmons, 2004) Values
ϵ 0.01

Parameter for Shiryaev’s algorithm (Shiryaev, 1963) Value
α 0.75

Table 1.6: Hyperparameters of the pomdp and the algorithms used for evaluation.

C Configuration of the Infrastructure in Fig. 1.2

The configurations of the components N1, . . . , N31 of the target infrastructure
(Fig. 1.2) are available in Table 1.7 on the next page. (Note that each compo-
nent in Fig. 1.2 is labeled with an identifier Ni.)
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ID (s) OS:Services:Exploitable Vulnerabilities
N1 ubuntu20:snort(community ruleset v2.9.17.1),ssh:-.
N2 ubuntu20:ssh,http Erl-Pengine,dns:ssh-pw.
N4 ubuntu20:http,telnet,ssh:telnet-pw.
N10 ubuntu20:ftp,mongodb,smtp,tomcat,ts3,ssh:ftp-pw.
N12 jessie:ts3,tomcat,ssh:cve-2010-0426,ssh-pw.
N17 wheezy:apache2,snmp,ssh:cve-2014-6271.
N18 deb9.2:irc,apache2,ssh:sql injection.
N22 jessie:proftpd,ssh,apache2,snmp:cve-2015-3306.
N23 jessie:apache2,smtp,ssh:cve-2016-10033.
N24 jessie:ssh:cve-2015-5602,ssh-pw.
N25 jessie: elasticsearch,apache2,ssh,snmp:cve-2015-1427.
N27 jessie:samba,ntp,ssh:cve-2017-7494.
N3,N11,N5-N9 ubuntu20:ssh,snmp,postgresql,ntp:-.
N13−16,N19−21,N26,N28−31 ubuntu20:ntp, irc, snmp, ssh, postgresql:-.

Table 1.7: Configuration of the target infrastructure (Fig. 1.2).

D The t-spsa Algorithm

Algorithm 1.1 contains the pseudocode of t-spsa.

Algorithm 1.1: Threshold-Simultaneous Perturbation Stochastic Approximation.

Input: MP ,θ(1) ∈ RL: the pomdp, initial L thresholds.
N : number of iterations, a, c, λ,A, ϵ: scalar coefficients.

Output: θ(N+1): learned threshold vector.
1: procedure t-spsa(MP , θ(1), N , a, c, λ, A, ϵ)
2: for n ∈ {1, . . . , N} do
3: an ← a

(n+A)ϵ , cn ← c
nλ .

4: for i ∈ {1, . . . , L} do
5: ∆(n)

i ∼ U({−1, 1}). ▷ Discrete uniform distribution on {−1, 1}.
6: Rhigh ∼ Ĵ(θ(n) + cn∆(n)), Rlow ∼ Ĵ(θ(n) − cn∆(n)).
7: for i ∈ {1, . . . , L} do
8:

(
∇̂θ(n)J(θ(n))

)
i
← Rhigh−Rlow

2cn∆(n)
i

. ▷ spsa gradient estimator.

9: θ(n+1) ← θ(n) + an∇̂θ(n)J(θ(n)). ▷ Stochastic approximation.
10: return θ(N+1).
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LEARNING NEAR-OPTIMAL INTRUSION
RESPONSE AGAINST DYNAMIC

ATTACKERS

Kim Hammar and Rolf Stadler

Abstract

We study automated intrusion response and formulate the interaction be-
tween an attacker and a defender as an optimal stopping game where attack
and defense strategies evolve through stochastic approximation and fictitious
play. The game-theoretic modeling enables us to find effective defender strate-
gies against a dynamic attacker, i.e., an attacker that adapts its strategy in
response to the defender strategy. Further, the optimal stopping formulation
allows us to prove that the best responses have threshold properties. To ob-
tain near-optimal defender strategies, we develop Threshold-Fictitious Play
(t-fp), an algorithm that learns equilibria through stochastic approximation.
We show that t-fp outperforms a state-of-the-art algorithm for our use case.
The experimental part of this investigation includes two systems: a simulator
where defender strategies are incrementally learned and a digital twin where
statistics are collected that drive simulation runs and where learned strategies
are evaluated. We argue that this methodology can produce effective defender
strategies for a practical it infrastructure.

†The paper is published as
K. Hammar and R. Stadler (2024), “Learning Near-Optimal Intrusion Responses Against
Dynamic Attackers [183].” IEEE Transactions on Network and Service Management
(TNSM), vol. 21, no. 1, pp. 1158-1177.
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Optimal Stopping [184].”. Machine Learning for Cyber Security Workshop, International
Conference on Machine Learning (ICML), Baltimore, USA. pp. 1-9.
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in Dynamic it Environments [176].” International Conference on Network and Service
Management (CNSM), Thessaloniki, Greece, pp. 359-363.
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In life, as in a game of chess, forethought wins.
— Charles Buxton 1873, Notes of thought.

2.1 Introduction

This paper extends the intrusion prevention use case in Paper 1 to a response
use case that involves a dynamic attacker, i.e., an attacker that adapts its
strategy based on the defender strategy. Like in Paper 1, we consider a

defender that monitors the infrastructure in Fig. 1.2 and can take a fixed num-
ber of actions to respond to potential attacks. However, unlike the previous case,
this paper considers a dynamic attacker that strategically decides when to begin
and end its intrusion to avoid detection. This contrasts with Paper 1, where it
is assumed that the attacker starts the intrusion at a random time and continues
until it is stopped. We formulate the new use case as an optimal stopping game,
namely a stochastic game where both players face an optimal stopping problem
(Dynkin, 1969). The stopping problem for the defender is to decide when to take
defensive actions and the stopping problem for the attacker is to decide when to
begin and end its intrusion. This problem formulation enables us to gain insight
into the structure of best responses, which we prove to have threshold properties.
Based on these properties, we design Threshold-Fictitious Play (t-fp), an efficient
algorithm that iteratively computes near-optimal defender strategies against a dy-
namic attacker. We show that t-fp outperforms a state-of-the-art algorithm for
our use case and that the obtained strategies are effective on a digital twin2.

2.2 Formalizing the Intrusion Response Use Case

We formulate the intrusion response use case described above as a zero-sum stochas-
tic game with one-sided partial observability (a posg)3

Γ ≜ ⟨N ,S, (Ak)k∈N , f, r, γ,b1, T, z,O⟩. (Def. 3.1, Horák et al., 2023) (2.1)
2The digital twin is created using csle, as described in the methodology chapter.
3The components of a posg are defined the background chapter; see (19).
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The game has two players: the (D)efender and the (A)ttacker. In the following,
we describe the components of the game, its evolution, and the players’ objectives.
The requisite notation is listed in Table 2.1.

Notation(s) Description
Γ The intrusion response posg (2.1).
D,A The defender player and the attacker player.
t, T, γ Time step, time horizon, and discount factor.
lt Defender stops remaining at time step t.
L Maximum number of defender stops.
πD, πA Defender and attacker strategies.
π̃D, π̃A Best response strategies (2.6a)–(2.6b).
π⋆

D, π
⋆
A Optimal (equilibrium) strategies (2.7).

N ,S,O Sets of players, states, and observations.
AD,AA Sets of defender and attacker actions.
fl, rl, z Transition (2.2), reward (2.3), and observation (2.4) functions.
st, ot,at = (aD

t , a
A
t ) State, observation, and actions at time step t.

bt ∈ B, rt Defender belief and reward at time step t.
S,C = 1, 0 Stop and continue actions.
τk,i ith stopping time of player k (a realization of the r.v. Tk,i

).
BD,BA Best response correspondences (2.6a)–(2.6b).
JD, JA Defender and attacker objectives (2.5a)–(2.5b).
MP ,M Best response pomdp and mdp for players D and A.
J⋆

l,πA
, J⋆

l,πD
Value functions of MP and cost-to-go function of M.

S (k),C (k) Stopping and continuation sets of player k.
St,At, Ot Random variables with realizations st,at, ot.
Rt,Bt Random variable with realization rt, and random vector with realization bt.

Table 2.1: Variables and symbols used in the model.

Time horizon T

The time horizon T > 1 is a random variable representing the time when the
attacker stops its intrusion or is prevented, depending on which event occurs first.

State space S

The game has three states: st = 0 if no intrusion occurs, st = 1 if an intrusion is
ongoing, and sT = ∅ if the game has ended. Hence, S ≜ {0, 1, ∅}. The initial state
is s1 = 0. Therefore, the initial state distribution b1 ∈ ∆(S) is the degenerate
distribution b1(0) = 1.

Action spaces Ak

Each player k ∈ N can invoke two actions: (S)top and (C)ontinue. The action
spaces are thus AD ≜ AA ≜ {S,C}. Executing action S triggers a change in the
game, while action C is a passive action. The attacker can invoke the stop action
twice: the first to start the intrusion and the second to terminate it. The defender
can invoke the stop action L ≥ 1 times. Each invocation corresponds to a defensive
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action against a possible intrusion. The number of stop actions remaining to the
defender at time t is known to both players and is denoted by lt ∈ {1, . . . , L}. Using
the encoding (S,C) ≜ (1, 0), we can write lt+1 = lt−a(D)

t , where a(D)
t is the defender

action at time t. At each time step, the attacker and the defender simultaneously
choose their actions at ≜ (a(D)

t , a
(A)
t ), where a(k)

t ∈ Ak.

Observation space O

The attacker has complete observability4 and knows the game state, the defender’s
actions, and the defender’s observations. In contrast, the defender has a limited set
of observations ot ∈ O, where O is a finite set5.

Belief space B

Based on its history h(D)
t (20)6, the defender computes the belief state bt(st) ≜

P[St = st | h(D)
t ] ∈ B through (22), as defined in the background chapter. Since ∅

is a terminal state, the only two reachable states while t < T are 0 and 1; hence,
B = ∆({0, 1}) = [0, 1]; see Fig. 16 in the background chapter.

Remark 2.1. Due to the complete observability of the attacker, it can compute
the defender’s belief bt using the same equation as the defender (22).

Transition function fl(s′ | s, a(D), a(A))

At each time step t, a transition from st to st+1 occurs with probability fl(st+1 |
st, a

(D)
t , a

(A)
t ), where fl is defined as

fl>1(0 | 0,S,C) ≜ fl(0 | 0,C,C) = 1 (2.2a)
fl>1(1 | 1, ·,C) ≜ fl(1 | 1,C,C) ≜ 1− ϕl (2.2b)
fl>1(1 | 0, ·,S) ≜ fl(1 | 0,C,S) ≜ 1 (2.2c)
fl>1(∅ | 1, ·,C) ≜ fl(∅ | 1,C,C) ≜ ϕl (2.2d)
fl=1(∅ | ·,S, ·) ≜ fl(∅ | ∅, ·, ·) ≜ fl(∅ | 1, ·,S) ≜ 1. (2.2e)

All other state transitions have probability 0. (2.2a)–(2.2b) define the probabilities
of the recurrent transitions 0 → 0 and 1 → 1. The game stays in state 0 with
probability 1 if the attacker selects action C and lt − a

(D)
t > 0. Similarly, the

game stays in state 1 with probability 1 − ϕl if the attacker chooses action C and
lt−a(D)

t > 0. Here, ϕl denotes the probability that the defender stops the intrusion,
4See Assumption 6 in the problem chapter.
5In our use case, ot relates to the weighted sum of ids alerts triggered during time step t.

We focus on the ids alert metric as it provides sufficient information for detecting the type of
intrusions we consider; see Appendix C for a comparison between different metrics.

6The history is defined in the background chapter; see (20).
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which is a parameter of the use case. The intrusion can be stopped at any time step
either because the attacker terminates the intrusion or as a consequence of previous
stop actions by the defender, i.e., the effect of a defensive action is non-immediate.
We assume that ϕl increases with each stop action that the defender takes.

Remark 2.2. We model the effect of a defensive stop action as non-immediate to
capture that the full effect of the defense may not be realized until the attacker
reaches a certain stage in its intrusion.

(2.2c) captures the transition 0 → 1, which occurs when the attacker chooses
action S and lt − a(D)

t > 0. (2.2d)–(2.2e) define the probabilities of the transitions
to the terminal state ∅, which is reached in three cases: (i) when lt = 1 and the
defender takes the final stop action S (i.e., when lt − a

(D)
t = 0); (ii) when the

intrusion is stopped by the defender with probability ϕl; and (iii) when st = 1 and
the attacker terminates the intrusion (a(A)

t = S = 1). The transition diagram is
shown in Fig. 2.1.

0 1

∅

t ≥ 1
l > 0

t ≥ 2
l > 0

a
(A)
t = S

l = 1,
a

(D)
t = S

a
(A)
t

= S

w.p. ϕl

or lt − a(D)
t = 0

Figure 2.1: State transition diagram of a game episode: each disk represents a state; an
arrow represents a state transition; a label indicates the conditions for the state transition;
a game episode starts in state s1 = 0 with l = L and ends in state sT = ∅.

Reward function rl(s, a(D), a(A))

At time step t, the defender receives the reward rt = rl(st, a
(D)
t , a

(A)
t ) and the

attacker receives the reward7 −rt. The reward function is parameterized by the
defender’s reward for stopping an intrusion (Rst > 0), its cost of taking a defensive
action (Rcost < 0), and its cost while an intrusion occurs (Rint < 0):

rl(∅, ·) ≜ 0 (2.3a)
rl(1, ·,S) ≜ 0 (2.3b)
rl(0,C, ·) ≜ 0 (2.3c)

rl(0,S, ·) ≜
Rcost

lt
lt ∈ {1, 2, . . . , L} (2.3d)

7In other words, the game is zero-sum; see Assumption 5 in the problem chapter.
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rl(1,S,C) ≜ Rst

lt
lt ∈ {1, 2, . . . , L} (2.3e)

rl(1,C,C) ≜ Rint. (2.3f)

(2.3a)–(2.3b) state that the reward is zero in the terminal state and when the
attacker terminates an intrusion. (2.3c) states that the defender incurs no cost
when no attack occurs and it does not take a defensive action. (2.3d) indicates that
the defender incurs a cost when taking a defensive action if no intrusion is ongoing.
(2.3e) states that the defender receives a reward when taking a stop action while
an intrusion occurs. Lastly, (2.3f) indicates that the defender incurs a cost for each
time step during which an intrusion occurs. (The constants Rst, Rcost, and Rint
should be configured to satisfy Assumption 2 in the background chapter.)

Observation function z

At time step t, o ∈ O is drawn from a random variable O with distribution

z(o | s) ≜ P[O = o | S = s]. (2.4)

Note that this distribution depends on the clients that consume services of the
infrastructure, i.e., the clients are implicitly modeled by z (2.4).

Player strategies πk

A (behavior) defender strategy is a function πD ∈ ΠD ≜ {1, . . . , L} × B → ∆(AD).
Likewise, a (behavior) attacker strategy is a function πA ∈ ΠA ≜ {1, . . . , L} × B ×
S → ∆(AA). The strategy profile is π ≜ (πD, πA). (Note that the strategies depend
on l, which is a known parameter; for ease of notation, we use πD(b) and πA(b, s)
as shorthands for πD(b, l) and πA(b, s, l), respectively.)

Objective functionals Jk

The goal of the defender is to maximize the expected discounted cumulative reward
over the time horizon T . Similarly, the attacker’s goal is to minimize the same
quantity8. Consequently, the objective functionals JD and JA are

JD(πD, πA) ≜ E(πD,πA)

[
T∑

t=1
γt−1rl(St,At)

]
(2.5a)

JA(πD, πA) ≜ −JD(πD, πA), (2.5b)

where γ ∈ [0, 1) is the discount factor and E(πD,πA) denotes the expectation of the
random vectors (H(D)

t ,H(A)
t )t∈{1,...,T } (20) when the game is played according to

the strategy profile (πD, πA).
8It follows from the zero-sum assumption; see Assumption 5 in the problem chapter.
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Best response strategies π̃k

A defender strategy π̃D is a best response against πA if it maximizes JD (2.5a).
Conversely, an attacker strategy π̃A is a best response against πD if it minimizes
JD (2.5b). Hence, the best response correspondences are

BD(πA) = arg max
πD∈ΠD

JD(πD, πA) (2.6a)

BA(πD) = arg min
πA∈ΠA

JD(πD, πA). (2.6b)

Remark 2.3. Throughout this paper, we write max min instead of sup inf as the
optimization problems that we consider have solutions; see Thm. 2.1 below.

Remark 2.4. Computation of (2.6a) and (2.6b) are equivalent to computation of
optimal strategies in a pomdp9 and an mdp10, respectively.

Optimal (equilibrium) strategies π⋆
k

An optimal defender strategy π⋆
D is a best response against any attacker strategy

that minimizes JD. Similarly, an optimal attacker strategy π⋆
A is a best response

against any defender strategy that maximizes JD. Hence, when both players follow
optimal strategies, they play best responses against each other:

(π⋆
D, π

⋆
A) ∈ BD(π⋆

A)×BA(π⋆
D). (2.7)

Since no player has an incentive to change its strategy, (π⋆
D, π

⋆
A) is a Nash equilib-

rium (Eq. 1, Nash, 1951). Such a strategy pair can also form a stronger equilibrium,
namely a Perfect Bayesian equilibrium (pbe); see Def. 4 in the background chapter.

Remark 2.5 (Finite and stationary game). Γ satisfies assumptions 1–6 in the
background chapter and the problem chapter.

Remark 2.6 (Equilibrium uniformity). Since Γ is zero-sum, every equilibrium
leads to the same value (Ch. 3, von Neumann and Morgenstern, 1944), regardless
of the strategies employed at equilibrium. Consequently, we do not need to concern
ourselves with equilibrium selection.

2.3 Game-Theoretic Analysis

Finding optimal strategies that satisfy (2.7) is equivalent to finding a perfect
Bayesian equilibrium (pbe) for the posg Γ. We know from Thm. 3 in the back-
ground chapter that Γ has at least one pbe. In this section, we first analyze the
structure of best responses in Γ using optimal stopping theory, and then we describe
an efficient fictitious play algorithm for approximating equilibria.

9The components of a pomdp are defined the background chapter; see (15).
10The components of an mdp are defined the background chapter; see (1).
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Analyzing best responses using optimal stopping theory

A best response for the defender is obtained by solving a pomdp MP (15) and a
best response for the attacker is obtained by solving an mdp M (1). The problem
for the defender is to find a stopping strategy π⋆

D that maximizes JD (2.5a) and
prescribes the optimal stopping times τ⋆

D,1, τ
⋆
D,2, . . . , τ

⋆
D,L. Likewise, the problem

for the attacker is to find a stopping strategy π⋆
A that minimizes JD (2.5b) and

prescribes the optimal stopping times τ⋆
A,1 and τ⋆

A,2; see Fig. 2.2.

Attacker

Defender

t = 1

t = T

τD,1 τD,2 τD,3

τA,1

t

Stopped

Game episode

Intrusion

Figure 2.2: Stopping times of the defender and the attacker in a game episode; τk,j

denotes the jth stopping time of player k ∈ {D, A}; the cross shows the time the intrusion
is stopped; an intrusion starts when the attacker takes the first stop action (at time τA,1);
an episode ends either when the attacker is stopped (as a consequence of defender actions)
or when the attacker terminates its intrusion (at time τA,2).

It follows from Thms. 1–2 in the background chapter that for any strategy
pair (πD, πA), a corresponding pair of pure (stationary) best responses (π̃D, π̃A) ∈
BD(πA) ×BA(πD) exists. Given a pair of stopping strategies (πD, πA) and their
(pure) best responses π̃D ∈ BD(πA) and π̃A ∈ BA(πD), we define two subsets of
the belief space B: the stopping sets and the continuation sets. The stopping sets
contain the belief states where S is a best response:

S
(D)
l,πA

≜ {b | b ∈ B, π̃D(b) = S} and S
(A)
s,l,πD

≜ {b | b ∈ B, π̃A(b, s) = S} .

Similarly, the continuation sets contain the belief states where C is a best response:

C
(D)
l,πA

≜ {b | b ∈ B, π̃D(b) = C} and C
(A)
s,l,πD

≜ {b | b ∈ B, π̃A(b, s) = C} .

Based on Thms. 2 and 3 in the background chapter, and Thm. 1.1 of Paper 1, we
obtain Thm. 2.1 (shown on the next page), which contains an existence result for
pbes and a structural result for best responses in the game. We provide proof in
Appendix A.
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Theorem 2.1 (Existence of equilibria and threshold structure of best responses).

(A) Γ has a pbe. If s = 0 ⇐⇒ b(1) = 0, then it has a pbe in pure strategies.

(B) Assuming z (2.4) is totally positive of order 2 (i.e., tp-2 (Def. 10.2.1, p.
223, Krishnamurthy, 2016)). Then, given an attacker strategy πA ∈ ΠA,
there exist values α̃1 ≥ α̃2 ≥ . . . ≥ α̃L and a best response π̃D ∈ BD(πA) for
the defender that satisfies

π̃D(b) = S ⇐⇒ b(1) ≥ α̃l ∀l ∈ {1, . . . , L}, where α̃l ∈ [0, 1]. (2.8)

(C) Assuming πA(b, 0) = S when b(1) = 0 for all πA ∈ ΠA. Then, given a
defender strategy πD ∈ ΠD that satisfies (2.8), there exist values β̃0,1, β̃1,1,
. . ., β̃0,L, β̃1,L and a best response π̃A ∈ BA(πD) for the attacker that satisfies

π̃A(b, 0) = C ⇐⇒ b(1) ≥ β̃0,l ∀l ∈ {1, . . . , L}, where β̃0,l ∈ [0, 1] (2.9a)
π̃A(b, 1) = S ⇐⇒ b(1) ≥ β̃1,l ∀l ∈ {1, . . . , L}, where β̃1,l ∈ [0, 1]. (2.9b)

Theorem 2.1 tells us that Γ has a pbe. Further, under assumptions generally
met in practice, the best responses have threshold properties; see Fig. 2.3. In the
following, we describe an algorithm that leverages these properties to efficiently
approximate a pbe of Γ.

b(1)
0 1

S
(D)
1,πA

S
(D)
2,πA

...

S
(D)
L,πA

α̃1α̃2α̃L . . .

b(1)
0 1

S
(A)
1,1,πD

S
(A)
1,L,πD

...

β̃1,1β̃1,Lβ̃0,1 . . . β̃0,L
. . .

S
(A)
0,1,πD

S
(A)
0,L,πD

...

Figure 2.3: Illustration of Thm. 2.1; the upper part shows L thresholds α̃1 ≥ α̃2, . . . , ≥ α̃L

in the unit interval that define a best response π̃D ∈ BD(πA) for the defender (2.8); the
lower part shows 2L thresholds β̃0,1, β̃1,1, . . . , β̃0,L, β̃1,L in the unit interval that define a
best response π̃A ∈ BA(πD) for the attacker (2.9).
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Finding equilibria through fictitious play

Computing Perfect Bayesian Equilibria (pbes) for a posg is generally a computa-
tionally intractable problem (Thm. 3.5, Goldsmith and Mundhenk, 2007). How-
ever, approximate solutions can be obtained through iterative methods. One such
method is fictitious play, where players start from random strategies and iteratively
update their strategies based on outcomes of played game episodes (Brown, 1951).
This method evolves through a sequence of iteration steps, illustrated in Fig. 2.4.
Each step includes two stages. First, both players learn best responses. Second,
each player adopts a new strategy, determined by the empirical distribution over its
past best responses. The sequence of iteration steps continues until the strategies
of both players have sufficiently converged to a pbe (Thms. 7.2.4-7.2.5, Shoham
and Leyton-Brown, 2009).

π̃A ∈ BA(πD)

πA

πD

π̃D ∈ BD(πA)

π̃′
A ∈ BA(π′

D)

π′
A

π′
D

π̃′
D ∈ BD(π′

A)

. . .

π⋆
A ∈ BA(π⋆

D)

π⋆
D ∈ BD(π⋆

A)

Figure 2.4: The fictitious play process; horizontal arrows indicate iterations of fictitious
play and vertical arrows indicate the learning of best responses; the process converges to
an equilibrium (π⋆

D, π⋆
A) (Thms. 7.2.4-7.2.5, Shoham and Leyton-Brown, 2009).

Our fictitious play algorithm: T-FP

We present a fictitious play algorithm called Threshold-Fictitious Play (t-fp),
which implements the fictitious play process described above and generates a se-
quence of strategy profiles (πD, πA), (π′

D, π′
A), . . . that converges to a pbe (π⋆

D, π
⋆
A)

(Thms. 7.2.4-7.2.5, Shoham and Leyton-Brown, 2009). During each step of this
process, t-fp learns best responses against the players’ current strategies and then
updates the strategies of both players; see Fig. 2.4.

To learn the best responses, t-fp parameterizes them through threshold vectors
according to Thm. 2.1. The defender’s best response π̃D is parameterized by the
vector θ̃(D) ∈ RL as

π̃D,θ̃(D)(S | b) ≜ φ
(
θ̃

(D)
l ,b

)
, (2.10)
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where11

φ(a,b) ≜
(

1 +
(

b(1)(1− σ(a))
σ(a)(1− b(1))

)−20
)−1

. (2.11)

Here σ(·) is the sigmoid function and a ∈ R. (Note that (2.10)–(2.11) is the same
parameterization as used in Paper 1.) Correspondingly, the attacker’s best response
π̃A is parameterized by θ̃(A) ∈ R2L as

π̃A,θ̃(A)(C | b, 0) ≜ φ
(
θ̃

(A)
l ,b

)
and π̃A,θ̃(A)(S | b, 1) ≜ φ

(
θ̃

(A)
L+l,b

)
. (2.12)

The parameterized strategies are stochastic strategies that approximate threshold
strategies; see Fig. 2.5. σ(θ̃(D)

1 ), σ(θ̃(D)
2 ), . . ., σ(θ̃(D)

L ) are the L thresholds of the
defender, where σ(θ̃(D)

l ) ∈ [0, 1]; see Thm. 2.1.B. Likewise, σ(θ̃(A)
1 ), σ(θ̃(A)

2 ), . . .,
σ(θ̃(A)

2L ) are the 2L thresholds of the attacker, where σ(θ̃(A)
l ) ∈ [0, 1]; see Thm. 2.1.C.

0.5 1

0.5

1

π̃D,θ̃(D)(S | b) (2.10)
threshold σ(θ̃(D)

l )
b(1)

0

Figure 2.5: The stochastic threshold strategy in (2.10), where σ is the sigmoid function
and σ(θ̃(D)

l ) is the threshold (0.5 in this example); the x-axis indicates the defender’s belief
state b(1) ∈ [0, 1]; and the y-axis indicates the probability prescribed by π̃D,θ̃(D) to the stop
action S.

Using the above parameterization, t-fp learns the best responses π̃D,θ̃(D) and
π̃A,θ̃(A) by iteratively updating the threshold vectors θ̃(D) and θ̃(A) through the t-
spsa algorithm described in Paper 112. After this process has finished, the threshold
vectors θ̃(D) and θ̃(A) are added to buffers Θ(D) and Θ(A), which contain the vectors
learned in previous iterations of t-fp. Subsequently, both players update their
strategies based on the empirical distributions over the past vectors in the buffers.
This process is repeated until the strategies have sufficiently converged to a pbe.
The pseudocode of t-fp is listed in Algorithm 2.1 on the next page.

11To avoid division by zero, we only use (2.11) when σ(a) ̸= 0 and b(1) ̸= 1; if σ(θl) = 0 or
b(1) = 1, then π̃D,θ̃(D) (S | b) = 1, π̃A,θ̃(A) (S | b, 1) = 1 and π̃A,θ̃(A) (C | b, 0) = 1.

12t-spsa converges a.s. to a local optimum of (2.6); see (Prop. 1, Spall, 1992).
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Algorithm 2.1: t-fp: Threshold-Fictitious Play.
Input: Γ, δ: the posg and the desired equilibrium precision.

a, c, λ,A, ϵ,N : parameters for t-spsa.
Output: (π⋆

D, π
⋆
A): an approximate Perfect Bayesian Equilibrium (pbe).

1: procedure t-fp(Γ, N, a, c, λ,A, ϵ, δ)
2: Θ(D) ← ∅, Θ(A) ← ∅, δ̂ ←∞.
3: while δ̂ ≥ δ do
4: for k ∈ {D,A} ≜ {1, 2} do
5: θ

(k)
(1) ∼ UkL({−1, 1}). ▷ kL-dimensional uniform distribution.

6: Θ(k) ← Θ(k) ∪ {t-spsa(Γ,θ(k)
(1) , N, a, c, λ,A, ϵ)}.

7: πk ← EmpiricalDistribution(Θ(k)).
8: δ̂ ← Exploitability(πD, πA). ▷ See (2.13) on page 112.
9: return (πD, πA).

2.4 Creating a Digital Twin of the Target Infrastructure

The t-fp algorithm described above approximates a pbe of Γ by simulating game
episodes and updating both players’ strategies through stochastic approximation.
To instantiate this process, we first need to obtain the observation function (2.4).
We estimate this function using samples from a digital twin of the target infras-
tructure. We create this digital twin using csle, as described in the methodology
chapter (Hammar, 2023). The network topology of the target infrastructure is
shown in Fig. 1.2 of Paper 1; its configuration is given in Appendix C of Paper 1.

The digital twin comprises virtual containers and networks that replicate the
functionality and the timing behavior of the target infrastructure. These containers
run the same software and processes as the physical infrastructure. For example,
the container that emulates the gateway in Fig. 1.2 of Paper 1 runs the snort ids,
which generates alerts in real-time. We collect these alerts from the digital twin at
30-second intervals, which allows us to compute the defender observation ot (2.4).
(We define 30s in the digital twin to be 1 time step in the game Γ.) We choose
to define ot based on the ids alert metric as it provides sufficient information for
detecting the type of intrusions we consider in this paper; see Appendix C for a
comparison between different metrics. The value of this metric depends on client
behavior as well as the actions of the defender and the attacker, as described below.

Emulating the clients

The client population is emulated by processes that interact with the virtual con-
tainers of the digital twin by performing a sequence of service invocations, which
are selected uniformly at random from Table 1.3 in Paper 1. Client arrivals per
time step are emulated using a stationary Poisson process with mean λ = 20 and
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exponentially distributed service times with mean µ = 4. The duration of a time
step is 30 seconds.

Defender and attacker actions on the digital twin

The defender and the attacker take actions at time steps t = 1, 2, . . . , T − 1. The
defender executes either a continue action or a stop action. A continue action is
virtual in the sense that it does not trigger any function in the digital twin. A stop
action, however, invokes specific functions in the digital twin. We have implemented
L = 7 stop actions for the defender, listed in Table 2.2. The first stop action revokes
user certificates and recovers user accounts expected to be compromised by the
attacker. The second stop action updates the firewall configuration of the gateway
to drop traffic from ip addresses flagged by the ids13. Stop actions 3–6 trigger the
dropping of traffic that generates ids alerts of priorities 1–4. The final stop action
blocks all incoming traffic.

Stop index Action mitre d3fend technique
1 Revoke user certificates d3-cban certificate revocation.
2 Blacklist ips d3-ntf network traffic filtering.
3 Drop traffic that generates ids alerts of priority 1 d3-ntf network traffic filtering.
4 Drop traffic that generates ids alerts of priority 2 d3-ntf network traffic filtering.
5 Drop traffic that generates ids alerts of priority 3 d3-ntf network traffic filtering.
6 Drop traffic that generates ids alerts of priority 4 d3-ntf network traffic filtering.
7 Block gateway d3-ni network isolation.

Table 2.2: Defender actions executed on the digital twin; shell commands for executing
the actions are listed in (Hammar, 2023); the actions are linked to the corresponding
defense techniques in the mitre d3fend taxonomy (Kaloroumakis and Smith, 2021).

Like the defender, the attacker executes a stop or a continue action during each
time step. The attacker can only take two stop actions during a game episode. The
first determines when the intrusion starts and the second when it terminates; see
§2.2. During an intrusion, the attacker executes a sequence of attack actions drawn
randomly from the actions listed in Table 2.3 on the next page. An attack action
is executed for each time step in the intrusion state s = 1 (2.2).

13The digital twin runs the snort ids (Roesch, 1999); see Appendix C of Paper 1 for the snort
configuration.
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Type Actions mitre att&ck
Reconnaissance tcp syn scan, udp port scan, TA0043 reconnaissance.

tcp null scan, tcp xmas scan, tcp fin scan,
ping scan, tcp connection scan, vulscan.

Brute-force attack telnet, ssh, ftp, cassandra, T1110 brute force.
irc, mongodb, mysql, smtp, postgres.

Exploit cve-2017-7494, cve-2015-3306, cve-2014-6271 T1210 service exploitation.
cve-2010-0426, cve-2015-5602,
cve-2016-10033, cve-2015-1427, exploit of the
cwe-89 weakness on dvwa [454].

Table 2.3: Attacker actions executed on the digital twin; actions that exploit vulnera-
bilities in specific software products are identified by the vulnerability identifiers in the
Common Vulnerabilities and Exposures (cve) database (The MITRE Corporation, 2022);
actions that exploit vulnerabilities that are not described in the cve database are cate-
gorized according to the types of the vulnerabilities they exploit based on the Common
Weakness Enumeration (cwe) list (The MITRE Corporation, 2023); the actions are also
linked to the corresponding attack techniques and tactics in the mitre att&ck taxonomy
(Strom et al., 2018); shell commands and scripts for executing the actions are listed in
(Hammar, 2023); further details about the actions can be found in Appendix D.

Estimating the IDS alert distribution

At the end of every time step in the digital twin, i.e., at the end of each 30s interval,
we collect the number of ids alerts with priorities 1–4 that occurred during the time
step, where priorities 1–4 refer to the snort priorities “very low”, “low”, “medium”,
and “high”, respectively (Roesch, 1999)14. We do so for 23, 000 time steps, which
provides us with a dataset to estimate the distribution of ids alerts. Using this
dataset, we apply expectation-maximization (Dempster et al., 1977) to fit Gaussian
mixture distributions ẑ(· | 0) and ẑ(· | 1) as estimates of z(· | 0) and z(· | 1) (2.4),
which represent the true observation distributions in the target infrastructure.

Figure 2.6 on the next page shows the fitted models over the discrete observa-
tion space O ≜ {0, 1, . . . , 22000}. We note that ẑ(· | 0) and ẑ(· | 1) are (discretized)
Gaussian mixtures with one and three components, respectively. Both mixtures
have the most probability mass within 0–5000. ẑ(· | 1) also has substantial proba-
bility mass at larger values. The stochastic matrix with the rows ẑ(· | 0) and ẑ(· | 1)
has about 241× 106 second-order minors, which are almost all non-negative. This
suggests to us that the tp-2 assumption in Thm. 2.1 can be made (Def. 10.2.1, p.
223, Krishnamurthy, 2016).

14Note that according to snort’s terminology (Roesch, 1999), 1 is the highest priority. We
inverse the labeling in our framework for convenience.



Experimental Evaluation 111

5000 10000 15000 20000

ẑ
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Figure 2.6: Fitted Gaussian mixture models of z (2.4) when no intrusion occurs (st = 0)
and during intrusion (st = 1).

Running a game episode

During a game episode, the state evolves according to the dynamics defined by
(2.2), the defender’s belief state evolves according to (22)15, the players’ rewards
are calculated using the reward function r (2.3), and the defender’s observations
are obtained from ẑ; see Fig. 2.6. The actions of both players are determined by
their respective strategies. If the game runs on the digital twin, the players’ actions
include executing networking and computing functions (see Tables 2.2–2.3), and
the observations are obtained through reading metrics of the digital twin.

2.5 Experimental Evaluation

Our methodology for finding near-optimal defender strategies includes: (i) creating
a digital twin of the target infrastructure to obtain statistics for instantiating the
simulator; (ii) learning equilibrium strategies using the t-fp algorithm; and (iii)
evaluating learned strategies on the digital twin; see Fig. 12 in the introduction
chapter. This section describes the learning process and the evaluation results of
the intrusion response use case.

Learning equilibrium strategies through fictitious play

We run t-fp for 500 iteration steps to estimate a pbe, which is sufficient to meet
the termination condition (line 3 in Algorithm 2.1). These iteration steps generate
a sequence of strategy pairs (πD, πA)1, (πD, πA)2, . . . , (πD, πA)500. At the end of
each iteration step, we evaluate the current strategy pair (πD, πA) by simulating
500 evaluation episodes and executing 5 evaluation episodes on the digital twin.
This process allows us to produce learning curves of the reward (2.3) and the
exploitability (2.13); see Fig. 2.7 on page 113. The 500 training iterations and the

15The equation to compute the belief state is defined in the background chapter.
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associated evaluations constitute one training run. We run four training runs with
different random seeds. A single training run takes about 5 hours of processing time
on the simulator. In addition, it takes around 12 hours to evaluate the strategies
on the digital twin. The hyperparameters of t-fp are listed in Appendix B.

Computing environment

The environment for running simulations and training strategies is a tesla p100
gpu. The emulated infrastructure is deployed on a server with a 24-core intel
xeon gold 2.10 GHz cpu and 768 gb ram; see Fig. 21 in the methodology chapter.

Convergence metric for T-FP

To estimate the convergence of the sequence of strategy pairs generated by t-fp,
we use the approximate exploitability metric

δ̂ ≜ JD(π̂D, πA) + JA(πD, π̂A), (Eq. 3, Timbers et al., 2020) (2.13)

where π̂k denotes an approximate best response for player k and (JD, JA) are defined
in (2.5). The closer δ̂ becomes to 0, the closer (πD, πA) is to an equilibrium.

Baseline algorithms

We compare the performance of t-fp with that of two widely-used algorithms from
previous work [274, 497, 201, 200, 467]. The first algorithm is Neural Fictitious
Self-Play (nfsp) (Alg. 1, Heinrich and Silver, 2016), which is a general fictitious
play algorithm that does not exploit the threshold structures expressed in Thm. 2.1.
The second algorithm is Heuristic Search Value Iteration (hsvi) (Alg. 1, Horák et
al., 2017), a state-of-the-art dynamic programming algorithm for one-sided posgs
like Γ (2.1), which is guaranteed to converge (Thm. 3, Horák et al., 2017).

Baseline strategies

We compare the defender strategies learned through t-fp with three baseline strate-
gies. The first baseline prescribes the stop action when an ids alert occurs, i.e.,
when ot > 0. The second baseline is derived from the snort idps (Roesch, 1999),
which is a de-facto industry standard and can be considered state-of-the-art for our
use case. This baseline uses the snort idps’s recommendation system and takes
a stop action when snort has dropped 100 ip packets (see Paper 1, Appendix C
for the snort configuration). The third baseline assumes prior knowledge of the
intrusion time and performs all L stops during the L subsequent time steps.

Although a growing body of work uses reinforcement learning and game theory
to find intrusion response strategies (see §2.6 for a review of the related work), a
direct comparison between the defender strategies learned through our methodology
and those found in previous work is not feasible for two reasons. First, nearly all
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of the prior works have developed defender strategies for custom simulations [178,
182, 130, 397, 510, 261, 66, 369, 525, 469, 152, 207, 518, 123, 125, 494, 274, 528,
287, 217, 220, 306, 484, 327, 36, 483, 515, 205, 210, 398, 124, 202, 354, 393, 471,
325, 178, 268, 9, 527, 521, 16, 13, 457] and there is no obvious way to map their
solutions to our digital twin. Second, the few prior works that study emulated
infrastructures similar to our digital twin either consider static attackers in fully
observed environments [150, 4, 286, 33, 353, 508, 529, 219, 486] or focus on different
use cases [33, 531].

Evaluating the learned strategies

Figure 2.7 shows the learning curves of the strategies obtained during the fictitious
play process with t-fp and the baselines introduced above.
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Figure 2.7: Learning curves from the fictitious play process with t-fp; the red curve
shows simulation results and the blue curves show results from the digital twin; the purple,
orange, and black curves relate to baseline strategies; the figures show two performance
metrics: approximate exploitability (2.13) and reward (2.3); the curves indicate the mean
and the 95% confidence interval over four training runs with different random seeds.

We observe in Fig. 2.7 that the approximate exploitability (2.13) of the learned
strategies converges to small values (left plot), which indicates that the learned
strategies approximate a pbe both on the simulator and the digital twin. Further,
we see in the right plot that both baseline strategies show decreasing performance as
the attacker updates its strategy. In contrast, the defender strategy learned through
t-fp improves its performance over time. This improvement shows the benefit of
a game-theoretic approach where the defender strategy is optimized against a dy-
namic attacker, i.e., an attacker that adapts its strategy to the defender’s strategy.

Figure 2.8 on the next page compares t-fp with the two baseline algorithms:
nfsp and hsvi. nfsp implements fictitious play and can thus be compared with
t-fp with respect to approximate exploitability (2.13). We observe in the left plot
that t-fp converges much faster than nfsp. We explain the rapid convergence of t-
fp by its design, which exploits the structural properties of the stopping game. The
right plot shows that hsvi reaches an approximation error below 5 within an hour
of processing time. Based on the recent literature, we anticipated a much longer
processing time (Figs. 5-8, Horák et al., 2023). This result suggests to us that
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t-fp and hsvi have similar convergence properties. A more detailed comparison
between t-fp and hsvi is hard to perform due to the different nature of the two
algorithms.
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Figure 2.8: Comparison between t-fp and two baseline algorithms: nfsp and hsvi; all
curves show simulation results; the red curve relates to t-fp; the blue curve to nfsp; the
purple curve to hsvi; the left plot shows the approximate exploitability metric (2.13) and
the right plot shows the hsvi approximation error; the curves depicting t-fp and nfsp
show the mean and the 95% confidence interval over four random seeds.

Figure 2.9 shows the estimated value function Ĵ⋆
l : B → R, where Ĵ⋆

l (b) is the
expected cumulative discounted reward when the game starts in the belief state b,
the defender has l stops remaining, and both players follow equilibrial strategies16.

Ĵ⋆
7 (b) Ĵ⋆

1 (b)

1 b(1)0

−0.25

Figure 2.9: The value function Ĵ⋆
l (b) computed through the hsvi algorithm with approx-

imation error 4; the blue and red curves relate to l = 7 and l = 1, respectively.

We see in Fig. 2.9 that Ĵ⋆
l is piece-wise linear and convex, as expected from

Cor. 1 in the background chapter. The figure indicates that Ĵ⋆
l (b) ≤ 0 for all b ∈ B

and that Ĵ⋆
l (b) = 0 when b(1) = 1. Further, we note that the value of Ĵ⋆

l is minimal
when b(1) is around 0.25 and that the values for l = 1 and l = 7 are very close.
That Ĵ⋆

l (b) ≤ 0 for all b ∈ B and all l ∈ {1, . . . , L} has an intuitive explanation.
For any b, the attacker has the option to never attack if s = 0 or to abort an attack
if s = 1. Both options yield a cumulative reward less than or equal to 0 (2.3). As
a consequence, Ĵ⋆

l (b) ≤ 0 in any equilibrium17. The fact that Ĵ⋆
l (b) = 0 when

b(1) = 1 can be understood as follows. b(1) = 1 means that the defender knows
16See Cor. 1 in the background chapter.
17Recall that the attacker aims to minimize reward.
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that an intrusion occurs and will take defensive actions; see Thm. 2.1.B. Hence,
when b(1) = 1, the only way for the attacker to avoid detection is to abort the
intrusion, which causes the game to end and yields a reward of zero. We interpret
the fact that arg minb(1) Ĵ

⋆
l (b) is around 0.25 as follows. The value of b(1) that

obtains the minimum corresponds to the belief state where the attacker achieves
the lowest expected reward in the game. Negative rewards are obtained when the
defender mistakes an intrusion for no intrusion and vice versa (2.3). Consequently,
the attacker prefers belief states where the defender has a high uncertainty, e.g.,
b(1) = 0.5. At the same time, the attacker does not want b(1) to be so large that
the defender performs all its defensive actions before it gets a chance to attack,
which can explain why we find the minimum to be around 0.25 rather than 0.5.

Lastly, Fig. 2.10 shows the percentage of blocked attacker and client traffic
when running repeated game episodes on the digital twin with different defender
strategies. The x-axis shows the running time, and the y-axis shows the percentage
of blocked traffic per second.
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Figure 2.10: Percentage of blocked attacker and client traffic in the digital twin; the blue
curves show results from the equilibrial strategy learned via t-fp; the purple, orange, and
black curves relate to baseline strategies.

We observe in the upper plot of Fig. 2.10 that all defender strategies block
some client traffic, which is expected considering the false ids alarms generated
by the clients; see Fig. 2.618. The ot > 0 baseline strategy blocks the most client
traffic (orange curves), and the snort idps baseline strategy blocks the least (pur-
ple curves), slightly less than the equilibrial strategy learned through t-fp (blue
curves). We further observe in the lower plot that the equilibrial strategy blocks the
most attacker traffic and that the ot > 0 baseline strategy blocks the least. This
observation suggests that the equilibrial strategy balances the trade-off between
blocking clients and blocking the attacker. In comparison, the ot > 0 baseline

18The defender actions that cause traffic to be dropped are listed in Table 2.2.
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blocks nearly all traffic, and the snort idps baseline blocks too little traffic, failing
to stop the intrusion.

Discussion of the evaluation results

In this paper, we apply our methodology19 to an intrusion response use case that in-
volves a dynamic attacker, i.e., an attacker that adapts its strategy to the defender’s
strategy. The key findings can be summarized as follows:

 Our methodology can efficiently approximate optimal defender strategies for a
practical it infrastructure (Fig. 2.7). While we have not evaluated the learned
strategies in the target infrastructure due to safety reasons, the fact that they
achieve almost the same performance on the digital twin as on the simulator
gives us confidence in their performance in the target infrastructure.

 The theory of optimal stopping provides insight about best responses for at-
tackers and defenders, which enables efficient computation through stochas-
tic approximation (Fig. 2.8). This finding can be explained by the threshold
structures of the best response strategies, which drastically reduce the search
space of possible strategies (Thm. 2.1 and Algorithm 2.1).

 The learned strategies can be efficiently implemented using the threshold
properties. The computational complexity, which is dominated by the com-
putation of the belief state, is upper bounded by O(k|S|2|AA|), where k is a
constant (22).

 Static defender strategies’ performance deteriorates against a dynamic at-
tacker, whereas defender strategies obtained through t-fp improve over time
(Fig. 2.7). This finding is consistent with previous studies that use game-
theoretic approaches (e.g., (Dijk et al., 2013)) and suggests limitations of
static response systems, such as the snort idps (Roesch, 1999).

2.6 Related Work

The literature on game-theoretic modeling in cybersecurity is vast; a good intro-
duction is offered in the textbook by (Alpcan and Basar, 2010). Security games
are modeled in different ways depending on the use case. Examples include: apt
games [116, 210, 398, 36, 483, 517, 186, 312, 502, 446], honeypot placement games
[124, 202, 354], resource allocation games [476, 528], authentication games [393],
distributed denial-of-service games [33, 471], situational awareness games [78, 144],
moving target defense games [399, 327, 450, 451], jamming games [13], data corrup-
tion games [170], security provisioning games [364], and intrusion response games
[325, 178, 150, 268, 9, 527, 205, 531, 284, 493, 484, 521, 16, 270]. These games are

19See the methodology chapter for details about the experimental methodology.
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formulated using various game-theoretic models. For example: stochastic games
[393, 398, 325, 527, 521, 13, 521], extensive-form games [9, 11], Blotto games
[528], differential games [515, 16, 514, 502], hypergames [36, 483], partially ob-
served stochastic games [471, 178, 150, 284, 493], Stackelberg games [471, 268,
531], graph-based games [476, 327], evolutionary games [515, 205, 450], continuous-
kernel games [9], rivalry games [517], and Bayesian games [399]. This paper differs
from the referenced works in two main ways. First, we model the intrusion response
use case as an optimal stopping game. The benefit of our model is that it provides
insight into the structure of best responses through the theory of optimal stopping.
Second, we evaluate obtained strategies on a digital twin. This evaluation method-
ology contrasts with most of the game-theoretic approaches proposed in prior work,
which evaluate strategies analytically or in simulation.

Game-theoretic models based on optimal stopping theory can be found in prior
research on Dynkin games (Dynkin, 1969), (Alario-Nazaret et al., 1982), (Solan and
Vieille, 2002), (Lempa and Matomäki, 2010), (Ekström et al., 2017). Compared
to these models, our model is more general by (i) allowing each player to take
multiple stop actions within an episode; and (ii) by not assuming a game of perfect
information. Another difference is that the referenced papers either study purely
mathematical problems or problems in mathematical finance. To the best of our
knowledge, we are the first to apply the stopping game formulation to the use case of
intrusion response. Our stopping game has similarities with the flipit game (Dijk
et al., 2013) and signaling games (Noe, 1988), both of which are commonplace in
the security literature; see survey (Manshaei et al., 2013). Signaling games have
the same information asymmetry as our game, and flipit uses the same binary
state space to model the state of an attack. The main differences are as follows.
flipit models the use case of advanced persistent threats and is a symmetric non-
zero-sum game. In contrast, our game models an intrusion response use case and
is asymmetric. Compared to signaling games, the main difference is that our game
is a sequential and simultaneous-move game. Signaling games, in comparison, are
typically two-stage games where one player moves in each stage.

Previous game-theoretic studies using digital twins like ours are (Aydeger et
al., 2021) and (Zonouz et al., 2009). Specifically, in (Aydeger et al., 2021), a denial-
of-service use case is formulated as a signaling game, for which a Nash equilibrium
is derived. This equilibrium is then used to design a defense mechanism, which
is evaluated in a software-defined network emulation based on mininet (Lantz et
al., 2010). Compared to this paper, the main differences are that we focus on a dif-
ferent use case than (Aydeger et al., 2021) and that our solution method is based on
stochastic approximation. Similar to this paper, the authors of (Zonouz et al., 2009)
formulate an intrusion response use case as a posg where the defender observes
alerts from the snort ids (Roesch, 1999). In contrast to our approach, however,
the approach of (Zonouz et al., 2009) assumes access to attack-defense trees de-
signed by human experts. Another difference between this paper and (Zonouz et
al., 2009) is the posg. The posg in (Zonouz et al., 2009) has a larger state space
than the posg considered in this paper. Although this makes the posg in (Zonouz
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et al., 2009) more expressive than ours, it also makes the computation of optimal
defender strategies intractable. To estimate optimal defender strategies, the au-
thors of (Zonouz et al., 2009) are forced to approximate their model with one that
has a smaller state space and is fully observed. In comparison, we can efficiently
approximate the equilibria of our game without relying on model simplifications
and without assuming access to attack-defense trees designed by human experts.

2.7 Conclusion

In this work, we apply our methodology for automated security response to an
intrusion response use case. We formulate the interaction between an attacker
and a defender as an optimal stopping game. This formulation gives us insight
into the structure of best responses, which we prove to have threshold properties.
Based on this knowledge, we develop Threshold-Fictitious Play (t-fp), an efficient
algorithm for learning equilibria. The results from running t-fp show that the
learned strategies converge to an approximate Perfect Bayesian Equilibrium (pbe)
and thus to near-optimal strategies (Fig. 2.7). The results also demonstrate that
t-fp converges faster than a state-of-the-art fictitious play algorithm by taking
advantage of threshold properties of best responses (Fig. 2.8). To assess the learned
strategies in an operational environment, we evaluate them on digital twin of the
target infrastructure (Fig. 1.2). The results attest that the strategies achieve almost
the same performance on the digital twin as on the simulator. This result gives
us confidence that the obtained strategies would perform as expected in the target
infrastructure, which is not feasible to evaluate directly for safety reasons.

In the broader context of this thesis, this paper extends the optimal stopping
formulation in Paper 1 to a game-theoretic formulation. The benefit of this ap-
proach is that it allows us to obtain stopping strategies that are optimal against
a dynamic attacker, i.e., an attacker that updates its strategy to circumvent en-
countered defenses. In this paper, we have focused on the problem of learning the
optimal times for taking defensive actions against a dynamic attacker. In the next
chapter of the thesis (Paper 3), we extend the approach presented in this paper
to not only compute when defensive actions need to be taken but also the specific
measures to be executed.
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Appendix

A Proofs

A.1 Proof of Theorem 2.1.A
The existence of Nash and Perfect Bayesian Equilibria (pbe) follows from Thm. 3
in the background chapter. We prove that a pbe in pure strategies exists when
s = 0 ⇐⇒ b(1) = 0 using a proof by construction. It follows from (2.3) that if
s = 0 ⇐⇒ b(1) = 0, then the defender strategy π̃D(b) = S ⇐⇒ b(1) ̸= 0 is
(weakly) dominating20 (Def. 1.1, Fudenberg and Tirole, 1991). Given this defender
strategy, it follows from (2.3) that the pure strategy

π̃A(b, 0) = C and π̃A(b, 1) = S ∀b ∈ B

is (weakly) dominating for the attacker. Hence, (π̃D, π̃A) is a pure pbe.

A.2 Proof of Theorem 2.1.B.
Given Γ and a fixed attacker strategy πA, any best response for the defender π̃D ∈
BD(πA) (2.6a) is an optimal strategy in a pomdpMP (see §2.3). Hence, it suffices
to show that there exists an optimal strategy π⋆

D inMP that satisfies the threshold
structure in (2.8). Conditions for (2.8) to hold and the existence proof are given in
Thm. 1.1 of Paper 1. Since z (2.4) is tp-2 by assumption and all of the remaining
conditions hold by definition of Γ, the statement follows.

A.3 Proof of Theorem 2.1.C.
We start by proving (2.9b). Since f(∅ | 1, a(D),S) = 1 for all a(D) (2.2e), the
problem of selecting the best response action in state s = 1 for the attacker is an
optimal stopping problem. Hence, it suffices to show that S

(A)
1,l,πD

= [β̃1,l, 1] for all
l ∈ {1, . . . , L} and any πD ∈ ΠD that satisfies (2.8). To do this, we first establish a
helpful lemma.

Lemma 2.1. Let J⋆
πD,l denote the optimal cost-to-go function in the best response

mdp for the attacker given a defender strategy πD
21. Then, J⋆

πD,l(b, s) ≤ 0 for all
s ∈ S, b ∈ B, and l ∈ {1, . . . , L}.

Proof. Let π̄A(·, 0) = C and π̄A(·, 1) = S. Then it follows from (2.3) that
J π̄A

πD,l(b, s) ≤ 0 for any πD ∈ ΠD, s ∈ S, b ∈ B, and l ∈ {1, . . . , L}. By opti-
mality, J π̄A

πD,l(b, s) ≥ J⋆
πD,l(b, s). Hence, J⋆

πD,l(b, s) ≤ 0.
20A strategy is weakly dominant if it weakly dominates all other strategies; see (Def. 1.1,

Fudenberg and Tirole, 1991) for the definition of weak and strict dominance.
21The cost is defined as the defender’s reward (2.3), which the attacker seeks to minimize.
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Returning to the proof of (2.9a). When s = 1 and b(1) < α̃l (2.8) we obtain22

from the Bellman equation that the attacker’s best response action ã(A) satisfies

ã(A) ∈ arg min
a(A)∈AA

 0︸︷︷︸
a(A)=S

,EB′

[
Rint + γ J⋆

l,πD
(B′, 1) | b, a(A) = C

]
︸ ︷︷ ︸

a(A)=C

 (a)= {C},

≤ 0 (Lemma 2.1).

where (a) follows from Lemma 2.1 and the fact that Rint < 0. Therefore,
S

(A)
l ⊆ [α̃l, 1]. Now consider the case when b(1) = 1, then the Bellman equation

and (2.3) implies that

ã(A) ∈ arg min
a(A)∈AA


a(A)=S︷︸︸︷

0 ,

a(A)=C︷ ︸︸ ︷
Rst

l
+ γJ⋆

l−1,πD
(b, 1)

 (a)= arg min
a(A)∈AA

0,
min[l−1,τ−1]∑

k=0
γk Rst

l − k


(b)= {S},

where τ ≥ 1 is the next stopping time of the attacker; (a) follows because b(1) = 1 is
an absorbing belief state until the game ends (2.2) and α̃l ≤ 1 for all l ∈ {1, . . . , L}
(Thm. 2.1.B), which means that a(D) = S until the game ends; and (b) follows
because Rst > 0. Hence, b(1) = 1 =⇒ b ∈ S

(A)
1,l,πD

. Since S
(A)
1,l,πD

is convex
(see Lemma 1.1 of Paper 1), it follows that S

(A)
1,l,πD

= [β̃1,l, 1] for some threshold
β̃1,l ≥ α̃l. This proves (2.9b).

Now we turn our attention to (2.9a) and the case when s = 0. Define

rl(b) ≜ EπD,πA,β̃

[ ∞∑
t=1

γt−1rl(St, A
(D), A(A)) | s1 = 1,b1 = b

]
,

where πA,β̃ is the threshold strategy induced by (2.9b). Given this definition, we
can rewrite the Bellman equation in state s = 0 as

J⋆
πD,l(b, 0) = min

a(A)∈AA

[
EA(D),B′

[
rl(0, A(D),S) + γJ⋆

πD,l−A(D)(B′, 1)
]
,

EA(D),B′

[
rl(0, A(D),C) + γJ⋆

πD,l−A(D)(B′, 0)
] ]

= min
τA,1

EπD

[min[T −1,τA,1−1]∑
t=1

γt−1rlt(0, A
(D)
t ,C)+

1T >τA,1

(
γτA,1−1rlt

(0, A(D)
t ,S) + γτA,1rlτA,1+1(BτA,1+1)

)]
,

22Recall that α̃l is the stopping threshold for the defender with l stops remaining
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where τA,1 is the first stopping time of the attacker. Hence, the problem of selecting
the best response action in state s = 0 for the attacker is an optimal stopping
problem. Since S

(A)
0,l,πD

⊆ [0, 1] is convex (see Lemma 1.1 of Paper 1) and 0 ∈ S
(A)
0,l,πD

by assumption, it follows that S
(A)
0,l,πD

= [0, β̃0,l] for some threshold β̃0,l ∈ [0, 1].

B Hyperparameters

The hyperparameters used for the evaluation in this paper are listed in Table 2.4
and were obtained through grid search.

Game parameters Values
Rst,Rcost,Rint,γ, ϕl, L 20, −2, −1, 0.99, 1/2l, 7

t-fp parameters Values
c, ϵ, λ,A, a,N, δ 10, 0.101, 0.602, 100, 1, 50, 0.2

nfsp parameters [192, Alg. 1] Values
lr rl, lr sl, batch, # layers, # neurons, MRL 10−2,5 · 10−3, 64, 2, 128, 2× 105

MSL, ϵ, ϵ-decay, η 2× 106, 0.06, 0.001, 0.1

hsvi parameter [201, Alg. 1] Value
ϵ 3

Table 2.4: Hyperparameters of the posg and the algorithms used for evaluation.

C Distributions of Infrastructure Metrics

The digital twin collects hundreds of metrics every time step. To measure the infor-
mation that a metric provides for detecting intrusions, we calculate the Kullback-
Leibler (kl) divergence DKL(ẑO|s=0 ∥ ẑO|s=1) between the distribution of the met-
ric when no intrusion occurs ẑO|s=0 and during an intrusion ẑO|s=1 (Kullback and
Leibler, 1951):

DKL(ẑO|s=0 ∥ ẑO|s=1) =
∑
o∈O

ẑO|s=0(o) ln
(
ẑO|s=0(o)
ẑO|s=1(o)

)
. (2.14)

Here o ∈ O realizes the random variable O, which represents the metric’s value. (O
is the domain of O.)

Figure 2.11 on the next page shows empirical distributions of the collected met-
rics with the largest kl divergence. We see that the ids alerts have the largest kl
divergence and thus provide the most information for detecting intrusions.
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Figure 2.11: Empirical distributions of selected infrastructure metrics; the red and blue
lines show the distributions when no intrusion occurs and during intrusion, respectively.

D Attacker Actions

The attacker actions and their descriptions are listed in Table 2.5.

Action Description
tcp scan tcp port scan by using syn packets using nmap,

it allows detecting open tcp ports.
udp port scan udp port scan by sending udp packets using nmap,

it allows detecting open udp ports.
ping scan ip scan with icmp ping messages.
vulscan vulnerability scan using nmap.
brute-force attack dictionary attack against a login service using nmap.
cve-2017-7494 exploit remote code execution using the samba.
cve-2015-3306 exploit uses mod_copy in proftpd for remote code execution.
cve-2014-6271 exploit uses a vulnerability in bash for remote code execution.
cve-2016-10033 exploit uses phpmailer for remote code execution.
cve-2015-1427 exploit uses elasticsearch for remote code execution.
exploit of cwe-89 weakness on dvwa [454] injects sql code for sqlLite3.

Table 2.5: Descriptions of the attacker actions; shell commands and scripts for executing
the actions are listed in (Hammar, 2023).
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SCALABLE LEARNING OF INTRUSION
RESPONSE THROUGH RECURSIVE

DECOMPOSITION

Kim Hammar and Rolf Stadler
Abstract

We study automated intrusion response for an it infrastructure and formu-
late the interaction between an attacker and a defender as a partially observed
stochastic game. To solve the game, we follow an approach where attack and
defense strategies co-evolve through fictitious play toward an equilibrium. So-
lutions proposed in previous work prove the feasibility of this approach for
small infrastructures but do not scale to realistic scenarios due to the expo-
nential growth in computational complexity with the infrastructure size. We
address this problem by introducing a method that recursively decomposes
the game into subgames with low computational complexity, which can be
solved in parallel. Applying optimal stopping theory, we show that the best
responses in these subgames exhibit threshold structures, which allows us to
compute them efficiently. To solve the decomposed game, we introduce an
algorithm called Decompositional Fictitious Play (dfp), which learns equilib-
ria through stochastic approximation. We evaluate the learned strategies on
a digital twin. The results demonstrate that the learned strategies approxi-
mate an equilibrium and that dfp significantly outperforms a state-of-the-art
algorithm for a realistic infrastructure configuration.

†The paper is published as
K. Hammar and R. Stadler (2023), “Scalable Learning of Intrusion Response through Re-
cursive Decomposition [185].”. Springer Lecture Notes in Computer Science, vol 14167, pp.
172–192. Decision and Game Theory for Security (GameSec), Avignon, France.
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K. Hammar and R. Stadler (2020), “Finding Effective Security Strategies through Rein-
forcement Learning and Self-Play [178].”. International Conference on Network and Service
Management (CNSM), Izmir, Turkey, 2020, pp. 1-9.
K. Hammar and R. Stadler (2023), “Digital Twins for Security Automation [177].”. IEEE
Network Operations and Management Symposium (NOMS), Miami, USA, pp. 1-6.
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In the face of complexity, an in-principle reductionist may be at the
same time a pragmatic holi.

— Herbert Simon 1962, The architecture of complexity.

3.1 Introduction

In contrast to Paper 1 and Paper 2, this paper considers not only the problem
of when defensive actions need to be taken but also the selection of which
action to execute in order to effectively mitigate an attack. We formulate this

problem as a stochastic game where the attacker and the defender have several
possible actions per node in the infrastructure. This detailed modeling means the
game’s complexity grows exponentially with the number of nodes. To manage this
complexity, we recursively decompose the game into simpler subgames, which allow
detailed modeling while keeping computational complexity low.

The decomposition involves three steps. First, we partition the infrastructure
according to workflows that are isolated from each other. This isolation allows
us to decompose the game into independent subgames (one per workflow) that
can be solved in parallel. Second, the graph structure of a workflow allows us to
decompose the workflow games into node subgames. We prove that these subgames
have optimal substructure (Ch. 15, Cormen et al., 2022), which means that a best
response of the original game can be obtained from best responses of the node
subgames. Third, we show that the problem of selecting which response action to
apply on a node can be separated from that of deciding when to apply the action,
which enables efficient learning of best responses through the application of optimal
stopping theory (Wald, 1947). We use this insight to design an efficient algorithm
called Decompositional Fictitious Play (dfp), which allows scalable approximation
of perfect Bayesian equilibria (pbe).

We summarize the contributions in this paper as follows.

1. We formulate the intrusion response problem as a partially observed stochastic
game and prove that, under assumptions often met in practice, the game
decomposes into subgames that can be solved in parallel.

2. We show that the best responses in these subgames exhibit threshold struc-
tures, which allows us to compute them efficiently.

3. We design dfp, an efficient fictitious play algorithm for approximating a pbe
of the decomposed game.

4. For a realistic use case, we evaluate the learned response strategies against
network intrusions on a digital twin2.

2The digital twin is created using csle, as described in the methodology chapter.
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3.2 Related Work

Networked systems in engineering and science often exhibit a modular topologi-
cal structure that can be exploited for designing control algorithms (Ouyang et
al., 2017). Šiljak first suggested system decomposition for automatic control in
1978 (Šiljak, 1978) and approaches based on decomposition, such as divide and
conquer, layering, and hierarchical structuring, are well established in the design of
large-scale systems, a notable example being the Internet. Similar decomposition
methods are frequently used in robotics and multi-agent systems, as exemplified
by the subsumption architecture (Brooks, 1986). Within the fields of decision- and
game-theory, decomposition is studied in the context of factored decision processes
[402, 234, 422, 44], distributed decision processes [320], factored games [209, 340],
and graph-structured games [235].

Decomposition to automate intrusion response has been studied first in (Huang
et al., 2018), (Rasouli et al., 2018), (Zheng and Castañón, 2013), and (Zan et
al., 2010). The work in (Huang et al., 2018) formulates the interaction between a
defender and an attacker on a cyber-physical infrastructure as a factored Markov
game. They introduce a decomposition based on linear programming. Following
a similar approach, the work in (Zheng and Castañón, 2013) studies a Markov
game formulation and shows that a multi-stage game can be decomposed into a
sequence of one-stage games. In a separate line of work, (Rasouli et al., 2018)
models intrusion response as a minimax control problem and develops a heuristic
decomposition based on clustering and influence graphs. This approach resembles
the work in (Zan et al., 2010), which studies a factored decision process and proposes
a hierarchical decomposition.

In the above works, decomposition is key to obtaining effective strategies for
large-scale systems. Compared to our work, some of them propose decomposition
methods without optimal substructure (Rasouli et al., 2018). Others do not con-
sider partial observability (Huang et al., 2018), (Zheng and Castañón, 2013), or
dynamic attackers (Zan et al., 2010). Most importantly, the above works evaluate
the obtained strategies in a simulation environment. They do not perform evalua-
tion on a digital twin as we report in this paper, which gives higher confidence that
the strategies are effective on the target infrastructure.

3.3 The Intrusion Response Use Case

We consider an intrusion response use case that involves an it infrastructure that
is segmented into zones with virtual nodes that run network services; see Fig. 3
in the introduction chapter. Services are realized by workflows that clients access
through a gateway, which is also open to an attacker. The attacker aims to intrude
on the infrastructure, compromise nodes, and disrupt workflows. To achieve this
goal, it can take three types of actions: reconnaissance, brute-force attacks, and
exploits; see Fig. 7 in the introduction chapter. To prevent the attacker, a defender
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continuously monitors the infrastructure by accessing and analyzing intrusion de-
tection alerts and other statistics. It can take four types of defensive actions to
respond to possible intrusions: migrate nodes between zones, redirect or block net-
work flows, shut down nodes, and revoke node access; see Fig. 3.1 below. When
deciding between these actions, the defender balances two conflicting objectives:
maximize workflow utility towards clients and minimize the cost of intrusion.

dmz

r&d

admin

Old path

New path

Honeypot Application
node

Defender
Revoke certificates

Blacklist IP

(a) Node migration (b) Flow redirect and blocking

(c) Shut down node (d) Access control

Figure 3.1: Defender actions: (a) migrate a node between two zones; (b) redirect or block
traffic flows to a node; (c) shut down a node; and (d) revoke access to a node.

3.4 Formalizing the Intrusion Response Problem

We formalize the above use case as an optimization problem where the goal is
to select an optimal sequence of defender actions in response to a sequence of
attacker actions. We assume a dynamic attacker, which leads to a game-theoretic
formulation. The game is played on the it infrastructure, which we model as
a discrete-time dynamical system whose evolution depends on the actions of the
attacker and the defender. Both actors have partial observability of the system
state. Their observations depend on the traffic generated by clients requesting
service, which we assume can be described by a stationary process.

Modeling the infrastructure and services

Following the description in §3.3, we consider an it infrastructure with application
servers connected by a communication network that is segmented into zones; see
Fig. 3 in the introduction chapter. Overlaid on this physical infrastructure is a
virtual infrastructure with a tree structure that includes nodes, which collectively
offer services to clients. A service is modeled as a workflow, which comprises a
set of interdependent nodes. A dependency between two nodes reflects information
exchange through service invocations. As an example of a virtual infrastructure,
we can think of a microservice architecture where a workflow is defined as a tree of
microservices; see Fig. 4 in the introduction chapter.

Assumption 3.1. Each node belongs to exactly one workflow.
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Assumption 3.1 can always be satisfied in practice by splitting a node that
belongs to multiple workflows into smaller virtual nodes.

Infrastructure We model the virtual infrastructure as a (finite) directed graph
G ≜ ⟨{gw} ∪ V, E⟩. The graph has a tree structure rooted at the gateway gw.
Each node i ∈ V has three state variables. v(R)

i,t represents the reconnaissance state.
v

(R)
i,t = 1 if the attacker has discovered the node, 0 otherwise. v(I)

i,t represents the
intrusion state. v

(I)
i,t = 1 if the attacker has compromised the node, 0 otherwise.

Lastly, v(Z)
i,t indicates the zone in which the node resides. We call a node active if

it is functional as part of a workflow (denoted αi,t = 1). Due to a defender action
(e.g., a shutdown), a node i ∈ V may become inactive (αi,t = 0). The active state
is determined by v(Z)

i,t , i.e, αi,t is a function of v(Z)
i,t .

Workflows We model a workflow w ∈ W as a subtree Gw ≜ ⟨{gw} ∪ Vw, Ew⟩ of
the infrastructure graph. Workflows do not overlap except for the gateway, which
belongs to all workflows.

Modeling actors

The intrusion response use case involves three types of actors: an attacker, a de-
fender, and clients; see Fig. 3 in the introduction chapter.

Attacker At each time t, the attacker takes an action a(A)
t , which is defined as

the composition of the local actions on all nodes a(A)
t ≜ (a(A)

1,t , . . . ,a
(A)
|V|,t) ∈ AA,

where AA is finite. A local action is either a null action (denoted with ⊥) or an
offensive action. An offensive action on a node i may change the reconnaissance
state v(R)

i,t or the intrusion state v(I)
i,t . A node i can only be compromised if it is

discovered, i.e., if v(R)
i,t = 1. We express this constraint as a(A)

t ∈ AA(s(A)
t ).

The attacker state s(A)
t ≜

(
v

(R)
i,t , v

(I)
i,t

)
i∈V ∈ SA evolves as

s(A)
t+1 ∼ fA

(
· | s(A)

t ,a(A)
t ,a(D)

t

)
, (3.1)

where a(D)
t represents the defender action at time t, as defined below.

Defender At each time t, the defender takes action a(D)
t , which is defined as the

composition of the local actions on all nodes a(D)
t ≜ (a(D)

1,t , . . . ,a
(D)
|V|,t) ∈ AD, where

AD is finite. A local action is either a defensive action or a null action ⊥. Each
defensive action a(D)

i,t ̸= ⊥ leads to s(A)
i,t+1 = (0, 0) and may affect v(Z)

i,t+1.
The defender state s(D)

t ≜
(
v

(Z)
i,t

)
i∈V ∈ SD evolves according to

s(D)
t+1 ∼ fD

(
· | s(D)

t ,a(D)
t

)
. (3.2)
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Remark 3.1. By introducing special zones that represent nodes that are shut down
or have their traffic redirected, the effects of all defensive actions in Fig. 3.1 can be
modeled by manipulating the zones v(Z)

1,t , . . . , v
(Z)
|V|,t.

Clients Clients consume infrastructure services by accessing workflows. We
model client behavior through stationary stochastic processes, which affect the
observations available to the attacker and the defender. That is, the clients are
implicitly modeled by the observation function z, as defined below.

Observability and strategies

At each time t, the defender and the attacker both observe ot ≜
(
o1,t, . . . ,o|V|,t

)
∈

O, where O is finite3. ot is drawn from the random vector Ot ≜ (O1,t, . . . ,O|V|,t)
whose marginal distributions zO1 , . . . , zO|V| are stationary and conditionally inde-
pendent given si,t ≜ (s(D)

i,t , s
(A)
i,t ). (Note that zOi

depends on the traffic generated
by clients.) As a consequence, the joint conditional distribution z is given by

z
(
o | s

)
=

|V|∏
i=1

zOi

(
oi | si

)
∀o ∈ O, s ∈ SA × SD. (3.3)

The sequence of observations and states at times 1, . . . , t forms the histories

h(D)
t ≜ (b(D)

1 , s(D)
1 ,a(D)

1 ,o2, . . . ,a(D)
t−1, s

(D)
t ,ot) ∈ HD

h(A)
t ≜ (b(A)

1 , s(A)
1 ,a(A)

1 ,o2, . . . ,a(A)
t−1, s

(A)
t ,ot) ∈ HA,

where s(A) ∼ b(D)
1 and s(D) ∼ b(A)

1 are the initial state distributions.
Based on their respective histories, the defender and the attacker select actions

according to their strategies. The defender’s behavior strategy is defined as πD ∈
ΠD ≜ HD → ∆(AD) and the attacker’s behavior strategy is defined as πA ∈ ΠA ≜
HA → ∆(AA) (Def. 5, Kuhn, 1953).

The intrusion response problem

When selecting the strategy πD, the defender must balance two conflicting objec-
tives: maximize the workflow utility towards its clients and minimize the cost of
intrusion. The weight η ≥ 0 controls the trade-off between these two objectives,
which results in the bi-objective

J ≜
∞∑

t=1
γt−1

∑
w∈W

∑
i∈Vw

ηu
(W)
i,t︸ ︷︷ ︸

workflows utility

− c
(I)
i,t︸︷︷︸

intrusion cost

 , (3.4)

3In our use case, oi,t relates to the number of intrusion alerts associated with node i.
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where γ ∈ [0, 1) is a discount factor, c(I)
i,t ≜ v

(I)
i,t + c(A)(a(D)

i,t ) is the intrusion cost
associated with node i at time t4, and u(W)

i,t expresses the workflow utility associated
with node i at time t.

Assumption 3.2. u(W)
i,t is proportional to the number of active nodes in the subtree

rooted at i.

Given (3.4) and an attacker strategy πA, the intrusion response problem can be
stated as

maximize
πD∈ΠD

E(πD,πA) [J ] (3.5a)

subject to s(D)
t+1 ∼ fD

(
· | s(D)

t ,a(D)
t

)
∀t ≥ 1 (3.5b)

s(A)
t+1 ∼ fA

(
· | s(A)

t ,a(A)
t ,a(D)

t

)
∀t ≥ 1 (3.5c)

ot ∼ z
(
· | s(D)

t , s(A)
t ) ∀t ≥ 2 (3.5d)

a(A)
t ∼ πA

(
· | h(A)

t

)
, a(D)

t ∼ πD
(
· | h(D)

t

)
∀t ≥ 1 (3.5e)

s(A)
1 ∼ b(A)

1 , s(D)
1 ∼ b(D)

1 (3.5f)

a(A)
t ∈ AA(s(A)

t ), (3.5g)

where E(πD,πA) denotes the expectation over the random vectors (H(D)
t ,H(A)

t )t∈{1,2,...}
when following the strategy profile (πD, πA); (3.5b)–(3.5c) are the dynamics con-
straints; (3.5d) describes the observations; (3.5e) captures the actions; (3.5f) defines
the initial state distributions; and (3.5g) is the action constraint of the attacker.

Remark 3.2. As a maximizer of (3.5) exists (see Thm. 3.1 below), we write max
instead of sup throughout this paper.

Solving (3.5) yields an optimal defender strategy against a static attacker with
a fixed strategy. Note that this defender strategy is generally not optimal against a
different attacker strategy. For this reason, we aim to find a defender strategy that
maximizes the minimum value of J (3.4) across all possible attacker strategies5.
This objective can be formally expressed as

maximize
πD∈ΠD

minimize
πA∈ΠA

E(πD,πA) [J ] subject to (3.5b)–(3.5g). (3.6)

Solving (3.6) corresponds to finding a Nash equilibrium (ne) (Eq. 1, Nash, 1951)
of a two-player game6 and can thus be analyzed through game theory.

4c(A) is a non-negative function that represents the operational costs of defender actions.
5See Assumption 5 in the problem chapter.
6A solution to (3.6) can also form a stronger equilibrium, namely a Perfect Bayesian equilib-

rium (pbe), see Def. 4 in the background chapter.
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3.5 The Intrusion Response Game

The maxmin problem in (3.6) defines a stationary, finite, and zero-sum Partially
Observed Stochastic Game with Public Observations (a po-posg)

Γ ≜ ⟨N , (Sk,Ak, fk,b(k)
1 )k∈N , u, γ,O, z⟩. (Horák and Bošanský, 2019) (3.7)

Γ has two players: N ≜ {D,A}, with D being the defender and A being the
attacker. (Sk)k∈N are the state spaces, (Ak)k∈N are the action spaces, and O
is observation space (as defined in §3.4). The transition functions (fk)k∈N are
defined by (3.5b)–(3.5c), the observation function z is defined in (3.3), and the
utility function u(st,a(D)

t ) is the expression within brackets in (3.4). (b(k)
1 )k∈N are

the state distributions at t = 1 and γ is the discount factor.

Game play

When the game starts at t = 1, s(D)
1 and s(A)

1 are sampled from b(D)
1 and b(A)

1 ,
respectively. A play of the game proceeds in time steps t = 1, 2, . . .. At each
time t, the defender observes h(D)

t and the attacker observes h(A)
t . Based on these

histories, both players select actions according to their respective strategies, i.e.,
a(D)

t ∼ πD(· | h(D)
t ) and a(A)

t ∼ πA(· | h(A)
t ). As a result of these actions, five events

occur at time t+ 1: (i) ot+1 is sampled from z; (ii) s(D)
t+1 is sampled from fD; (iii)

s(A)
t+1 is sampled from fA; (iv) the defender receives the utility u(st,a(D)

t ); and (v)
the attacker receives the utility −u(st,a(D)

t ).

Belief states

Based on their histories h(D)
t and h(A)

t , both players form beliefs about the unob-
servable components of the state st, which are expressed through the belief states
b(D)

t (s(A)
t ) ≜ P[s(A)

t | h(D)
t ] and b(A)

t (s(D)
t ) ≜ P[s(D)

t | h(A)
t ]. These beliefs are

updated each time t > 1 as

b(k)
t (s(−k)

t ) = Ck
∑

s(−k)
t−1 ∈S−k

∑
a(−k)

t−1 ∈A−k(st)

b(k)
t−1(s(−k)

t−1 )π(s)
−k(a(−k)

t−1 | s
(−k)
t−1 )· (3.8)

z(ot | st)f−k(s(−k)
t | s(−k)

t−1 ,at−1), (Eq. 1, Horák and Bošanský, 2019)

where k ∈ {D,A} and Ck = 1/P[ot | s(k)
t ,a(k)

t−1, π−k,b(k)
t−1] is a normalizing factor

that makes the components of b(k)
t sum to 1. π

(s)
−k : S−k → ∆(A−k) is the stage

strategy for the opponent, which is assumed to be known. The initial beliefs at t = 1
are the degenerate distributions b(D)

1 (02|V|) = 1 and b(A)
1 (s(D)

1 ) = 1, where 0n is
the n-dimensional zero-vector and s(D)

1 is given by the infrastructure configuration
(see §3.4).
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Best response strategies

A defender strategy π̃D ∈ ΠD is a best response against πA ∈ ΠA if it maximizes J
(3.4). Similarly, an attacker strategy π̃A is a best response against πD if it minimizes
J (3.4). Hence, the best response correspondences are

BD(πA) ≜ arg max
πD∈ΠD

E(πD,πA)[J ] (3.9a)

BA(πD) ≜ arg min
πA∈ΠA

E(πD,πA)[J ]. (3.9b)

Optimal (equilibrium) strategies

An optimal defender strategy π⋆
D is a best response against any attacker strategy

that minimizes J . Similarly, an optimal attacker strategy π⋆
A is a best response

against any defender strategy that maximizes J . Hence, when both players act
optimally, their strategies form a Nash equilibrium (ne)

(π⋆
D, π

⋆
A) ∈ BD(π⋆

A)×BA(π⋆
D). (Eq. 1, Nash, 1951) (3.10)

Since the players’ beliefs are consistent, (π⋆
D, π

⋆
A) can also form a pbe 7.

Theorem 3.1 (Existence of equilibria and best responses).

(A) A game Γ with instantiation described in §3.4 has a pbe.

(B) The best response correspondences (3.9) in Γ with the instantiation described
in §3.4 satisfy |BD(πA)| > 0 and |BA(πD)| > 0 ∀(πA, πD) ∈ ΠA ×ΠD.

Proof. (A) follows from the following sufficient conditions: (i) Γ is stationary, finite,
and zero-sum; (ii) Γ has public observations; and (iii) γ ∈ [0, 1). Due to these
conditions, the existence proof in (Thm. 1, Horák and Bošanský, 2019) can be
used, which shows that Γ can be modeled as a finite game in extensive form, for
which the proof of Thm. 3 in the background chapter applies. In the interest
of space, we do not restate the proof. To prove (B), we note that obtaining a
pair of best responses (π̃D, π̃A) ∈ BD(πA) × BA(πD) for a given strategy pair
(πA, πD) ∈ ΠA × ΠD amounts to solving two finite and stationary pomdps8 with
discounted utilities. It then follows from Thm. 2 in the background chapter that a
pair of pure best responses (π̃D, π̃A) exists.

The space complexity of Γ increases exponentially with the number of
nodes; see Fig. 3.2. This growth exemplifies the curse of dimensionality:
more state variables result in a combinatorial explosion of possible states.

Challenge: The curse of dimensionality (Bellman, 1957).

7While the definition of a pbe (Def. 4) in the background chapter is presented in terms of a
one-sided posg, the adaption of the definition to a po-posg is immediate.

8The components of a pomdp are defined the background chapter; see (15).
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Figure 3.2: Growth of |S|, |O|, and |Ak| in function of the number of nodes |V|; the
curves are computed using |Z| = 10, |O(V)| = 100, and |A(V)

D | = |A(V)
A | = 10.

3.6 Decomposing the Intrusion Response Game

In this section, we present the main contribution of the paper. We show how to
address the curse of dimensionality by recursively decomposing the game Γ into
independent subgames. Due to their independence, the subgames have optimal
substructure (Ch. 15, Cormen et al., 2022), which means that a best response of
the original game can be obtained from best responses of the subgames. We further
show that best responses of the subgames can be computed in parallel and that the
space complexity of a subgame is independent of the number of nodes |V|.

Theorem 3.2 (Decomposition theorem).
Under assumptions 3.1–3.2, the following holds.

(A) A game Γ with the instantiation described in §3.4 can be decomposed into
independent workflow subgames Γ(w1), . . . ,Γ(w|W|).

(B) Each subgame Γ(w) can be further decomposed into independent node subgames
(Γ(i))i∈Vw with space complexities independent of |V|.

(C) For each subgame Γ(i), a best response for the defender can be character-
ized by switching curves, under the assumption that the observation functions
zO1|s(A) , . . . , zO|V||s(A) (3.3) are totally positive of order 2 (i.e., tp-2 (Def.
10.2.1, Krishnamurthy, 2016)).

Statements A and B express that Γ decomposes into simpler subgames, which
consequently can be solved in parallel. This decomposition implies that the largest
game tractable on a given compute platform scales linearly with the number of
processors. Further, statement C says that a best response for the defender in each
subgame can be characterized by switching curves, which can be estimated effi-
ciently. In the following sections, we provide proofs of Thm. 3.2.A–C. The requisite
notation is given in Table 3.1 on the next page.
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Notation(s) Description
G,Gw Infrastructure tree, subtree of w.
V, E Sets of nodes and edges in G.
Vw, Ew Sets of nodes and edges in Gw.
Z,W Sets of network zones and workflows.
AD,AA(st) Defender and attacker action spaces at time t.
A(V)

D ,A(V)
A (st) Action spaces per node at time t, Ak = (A(V)

k )|V|.
O(V) Observation space per node at time t, O = (O(V))|V|.
v

(I)
i,t , v

(Z)
i,t , v

(R)
i,t Intrusion state, zone, and reconnaissance state of i ∈ V at time t.

V
(I)

i,t , V
(Z)

i,t , V
(R)

i,t Random variables with realizations v(I)
i,t , v

(Z)
i,t , v

(R)
i,t .

Γ,N po-posg (3.7), set of players (§3.5).
SD,SA Defender and attacker state spaces (§3.5).
S ≜ SD × SA State space (§3.5).
u,O Utility function and observation space (§3.5).
st = (s(D)

t , s(A)
t ) State at time t (§3.5).

at = (a(D)
t ,a(A)

t ) Action at time t (§3.5).
ot,ut Observation, utility at time t (§3.5).
a(k)

t ,h(k)
t Action and history of player k at time t (§3.5).

Bk,b(k)
t Belief space and belief state of player k (§3.5).

π̃k, ã(k) Best response strategy and action of player k (§3.5).
St,Ot,At Random vectors with realizations st,ot,at (§3.5).
Ut,B(k)

t ,H(k)
t Random vectors with realizations ut,b(k)

t ,h(k)
t (§3.5).

πk, z Strategy of player k, observation function (§3.5).
u

(w)
i,t Workflow utility of node i at time t.
⊥, an(i) Null action, set of i and its ancestors in G.
αi,t Active status of node i at time t.
fA, fD Attacker and defender transition functions.
Bk Best response correspondence of player k (3.9).
c

(I)
i,t Intrusion cost associated with node i at time t (3.4).
c(A) Action cost function.

Table 3.1: Variables and symbols used in the model.

Proof of Theorem 3.2.A

Following the instantiation of Γ described in §3.4, the state, observation, and action
spaces factorize as

S = (Z × {0, 1}2)|V|, O = (O(V))|V|, and Ak = (A(V)
k )|V| k ∈ {D,A}, (3.11)

where O(V), A(V)
D , and A(V)

A denote the local observation and action spaces for
each node. Assumption 3.1 together with (3.11) implies that Γ can be decomposed
into subgames Γ(w1), . . . ,Γ(w|W|). To show that the subgames are independent, it
suffices to show that they are observation-independent, transition-independent, and
utility-independent (Defs. 32, 33, 35, Seuken and Zilberstein, 2008).

From (3.3) we have

z
(
oi,t | s(D)

t , s(A)
t

)
= z
(
oi,t | s(D)

i,t , s
(A)
i,t

)
(3.12)
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for all oi,t ∈ O(V), st ∈ S, and t ≥ 1. Therefore, Γ(w1), . . . ,Γ(w|W|) are observation-
independent (Def. 33, Seuken and Zilberstein, 2008).

From the modeling in §3.4 and (3.1)–(3.2) we have

fD(s(D)
i,t+1 | s

(D)
t ,a(D)

t ) = fD(s(D)
i,t+1 | s

(D)
i,t ,a

(D)
i,t ) (3.13a)

fA(s(A)
i,t+1 | s

(A)
t ,a(A)

t ,a(D)
t ) = fA(s(A)

i,t+1 | s
(A)
i,t ,a

(A)
i,t ,a

(D)
i,t ) (3.13b)

for all st+1, st ∈ S,ai,t ∈ A(V), i ∈ V, and t ≥ 1. Consequently, Γ(w1), . . . ,Γ(w|W|)

are transition-independent (Def. 32, Seuken and Zilberstein, 2008).
Following (3.4) and the definition of u(W)

i,t we can rewrite u(st,a(D)
t ) as

u(st,a(D)
t ) =

∑
w∈W

≜uw

((
si,t,a(D)

i,t

)
i∈Vw

)
︷ ︸︸ ︷∑
i∈Vw

ηu
(W)
i,t − c

(I)
i,t (a(D)

i,t , v
(I)
i,t ) =

∑
w∈W

uw

((
si,t,a(D)

i,t

)
i∈Vw

)
.

(3.14)

The final expression in (3.14) is a sum of workflow utility functions, each of which
depends only on the states and actions of one workflow. Hence, Γ(w1), . . . ,Γ(w|W|)

are utility independent (Def. 35, Seuken and Zilberstein, 2008).

π
(w1)
k

π
(w2)
k

π
(w|W|)
k

h(k)
w1,t

h(k)
w2,t

h(k)
w|W|,t

...
⊕

a(k)
w1,t

a(k)
w2,t

a(k)
w|W|,t

a(k)
t

Figure 3.3: Theorem 3.2.A.

Theorem 3.2.A is illustrated in Fig. 3.3. Arrows
indicate inputs and outputs; ⊕ denotes vector con-
catenation; and k ∈ {D,A} denotes the player. The
figure shows that the strategy πk can be decom-
posed into |W| independent substrategies, one per
workflow w ∈ W. These strategies are indepen-
dent in the sense that each of them only depends
on local information related to a specific work-
flow, i.e., the workflow history h(k)

w,t ≜ (h(k)
j,t )j∈Vw .

The output of each workflow strategy is a work-
flow action a(k)

w,t ≜ (a(k)
j,t )j∈Vw , which defines the

actions on each node that belongs to the work-
flow. These workflow actions are concatenated to obtain the action in Γ, i.e.,
a(k)

t = a(k)
w1,t ⊕ a(k)

w2,t,⊕ . . .⊕ a(k)
w|W|,t

.

Proof of Theorem 3.2.B

Our goal is to show that a workflow subgame Γ(w) decomposes into independent
node-level subgames (Γ(i))i∈Vw . We know from (3.11) that the space complexities
of these subgames are independent of |V|. Further, (3.12) and (3.13) imply that
the subgames are observation-independent and transition-independent, respectively
(Def. 32, 33, Seuken and Zilberstein, 2008). Hence, it only remains to show that
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they are utility independent (Def. 35, Seuken and Zilberstein, 2008). Using the
decomposition in (3.14), we obtain

uw

((
si,t,a(D)

i,t

)
i∈Vw

)
=
∑

i∈Vw

ηu
(W)
i,t − c

(I)
i,t (a(D)

i,t , v
(I)
i,t )

=
∑

i∈Vw

ηu
(W)
i,t − v

(I)
i,t − c

(A)(a(D)
i,t )

(a)=
∑

i∈Vw

ηk|an(i)|αi,t − v(I)
i,t − c

(A)(a(D)
i,t )︸ ︷︷ ︸

≜ui(si,t,a(D)
i,t

)

=
∑

i∈Vw

ui(si,t,a(D)
i,t ), (3.15)

where an(i) denotes the set of node i and its ancestors in the infrastructure graph
G and k is a constant of proportionality. (a) follows from Assumption 3.2, which
implies that the workflow utility of a node depends on its active state αi,t and the
number of ancestors in G. Since ui in (3.15) is independent of the states and actions
of the other nodes, Thm. 3.2.B follows. .

π
(1)
k

h(k)
1,t ⊕

π
(2)
k

h(k)
2,t ⊕

π
(|Vw|)
k

h(k)
|Vw|,t⊕

...
⊕(a(k)

2,t ) a(k)
w,t

(a(k)
|Vw|,t)

(a(k)
1,t )|an(0)|

|an(1)|

|an(|Vw|)|

Figure 3.4: Theorem 3.2.B.

Theorem 3.2.B is illustrated in Fig. 3.4.
Arrows indicate inputs and outputs; ⊕ de-
notes vector concatenation; and k ∈ {D,A}
denotes the player. The figure shows that
the workflow strategy π

(w)
k can be decom-

posed into |Vw| independent substrategies,
one per node i ∈ Vw. These strategies are
independent in the sense that each of them
only depends on local information related
to a specific node, i.e., the node history
h(k)

i,t ≜ (b(k)
i,1 , s

(k)
i,1 ,a

(k)
i,1 ,oi,2,a(k)

i,t−1, s
(k)
i,t ,oi,t).

The output of each node strategy is a node
action a(k)

i,t ∈ A
(V)
k . These node actions are concatenated to obtain the workflow

action, i.e., a(k)
w,t = a(k)

1,t ⊕ a(k)
2,t ,⊕ . . .⊕ a(k)

|Vw|,t.

Proof sketch of Theorem 3.2.C

The full proof of this result is technical and not needed elsewhere in the paper; we
relegate it accordingly to the appendix; see Appendix E. The main idea of the proof
can be outlined as follows. First, we note that a subgame Γ(i) (Thm. 3.2.B) can
only be in three attack states: it can be unknown to the attacker, it can be known,
or it can be compromised. Consequently, the defender’s belief space B(i)

D is the
unit 2-simplex. Second, we note that a defender strategy can be represented in an
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auto-regressive manner by appealing to the chain rule of probability. Such a repre-
sentation allows to decompose the strategy into two (dependent) substrategies, one
strategy for deciding which action to take and another strategy for deciding when to
take it. Through this separation, we can analyze the latter problem using optimal
stopping theory. In particular, we can apply (Thm. 12.3.4, Krishnamurthy, 2016),
which states that there exists a switching curve Υ that partitions B(i)

D into two
connected sets: a stopping set S

(i)
D where it is a best response to take a defensive

action and a continuation set C
(i)
D where waiting is a best response.

sub-simplex B(i)
D,e1

joining e2 and e3

Stopping set
S

(i)
D

b̂(D)
5

b̂(D)
4

b̂(D)
3

b̂(D)
2

b̂(D)
1

b̂(D)
6

b̂(D)
7

b̂(D)
8
b̂(D)

9

Continuation set
C

(i)
D

Belief space
B(i)

D

L(e1, b̂(D)
3 )

Switching curve
Υ

Threshold belief state αb̂8

e1
(1, 0, 0)

e2
(0, 1, 0)

e3
(0, 0, 1)

Figure 3.5: Theorem 3.2.C.

The argument behind the existence
of a switching curve is as follows.
On any line segment L(e1, b̂(D)) in
B(i)

D that starts at e1 and ends at
the subsimplex joining e2 and e3 (de-
noted with b̂(D) ∈ B(i)

D,e1
), all be-

lief states are totally ordered with re-
spect to the Monotone Likelihood Ra-
tio (mlr) order (Def. 10.1.1, Krishna-
murthy, 2016). Furthermore, the utility
function in the subgames is supermod-
ular (3.4). As a consequence, Topkis’s
theorem (Thm. 6.3, Topkis, 1978) im-
plies that the best response strategy on
L(e1, b̂(D)) is monotone with respect to the mlr order. Consequently, there ex-
ists a threshold belief state αb̂(D) on L(e1, b̂(D)) where the best response strategy
switches from waiting to taking action. Since B(i)

D can be covered by the union of
lines L(e1, b̂(D)), the thresholds αb̂(D)

1
, αb̂(D)

2
, . . . yield a switching curve; see Fig. 3.5.

3.7 Approximating Equilibria of the Decomposed Game

To approximate a perfect Bayesian equilibrium (pbe) of Γ (3.7) we develop a ficti-
tious play algorithm called Decompositional Fictitious Play (dfp), which estimates
a pbe based on the decomposition presented above. The pseudocode is listed in
Alg. 3.19 on the next page. dfp implements the fictitious play process described
in (Brown, 1951) and generates a sequence of strategy profiles (πD, πA), (π′

D, π′
A),

. . . that converges to a pbe (π⋆
D, π

⋆
A) (Thms. 7.2.4–7.2.5, Shoham and Leyton-

Brown, 2009). During each step of this process, dfp learns best responses against
the players’ current strategies and then updates both players’ strategies (lines 4–
8 in Alg. 3.1). To obtain the best responses, it first finds best responses for the
node subgames as constructed in the proof of Thm. 3.2.B (lines 10–14), and then
it combines them using the method described in §3.6 (lines 15–20).

9In Alg. 3.1, ⊕ denotes vector concatenation.
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Algorithm 3.1: dfp: Decompositional Fictitious Play.
Input: p-solver: a pomdp solver, δ: convergence criterion, Γ: the po-posg.
Output: An approximate pbe (πD, πA).

1: procedure dfp(p-solver, δ, Γ)
2: Initialize πD, πA, δ̂.
3: while δ̂ ≥ δ do
4: in parallel for k ∈ {D,A} then
5: πk ←local-best-responses(p-solver,Γ, k, π−k).
6: π̃k ←composite-strategy(Γ,πk).
7: πk ←average-strategy(πk, π̃k).
8: δ̂ ←exploitability(π̃D,π̃A) (3.16).
9: return (πD, πA).

10: procedure local-best-responses(p-solver, Γ, k, π−k)
11: πk ← ().
12: in parallel for w ∈ W, i ∈ Vw then
13: πk ← πk⊕ p-solver(Γ, π−k, k, i).
14: return πk.
15: procedure composite-strategy(Γ, πk)
16: return πk ← Procedure λ(s(k)

t ,b(k)
t ).

17: a(k)
t ← ().

18: for w ∈ W, i ∈ Vw do
19: a(k)

t ← a(k)
t ⊕ (π(i)

k (s(k)
i,t ,b

(k)
i,t )).

20: return a(k)
t .

Computing best responses Each iteration of dfp involves computing a best
response for the attacker and the defender. While Thm. 3.2 allows us to decompose
this computation into |V| subproblems that can be solved in parallel, we are still left
with the task of solving the subproblems. This task corresponds to computing best
responses in the subgames (Γ(i))i∈V defined above. These computations amount
to solving 2|V| Partially Observed Markov Decision Processes (pomdps)10. The
principal method for solving a pomdp is dynamic programming. However, dynamic
programming is intractable in our case, as demonstrated in Fig. 3.6 on the next
page. To find the best responses, we instead resort to approximation algorithms.
More specifically, we use the Proximal Policy Optimization (ppo) algorithm (Alg.
1, Schulman et al., 2017) to approximate a best response for the attacker11, and we
leverage the threshold structure of Thm. 3.2.C to approximate a best response for
the defender through stochastic approximation12.

10|V| pomdps for the defender’s best response and |V| pomdps for the attacker’s best response;
the components of a pomdp are defined the background chapter; see (15).

11See Appendix D for details about ppo.
12See Appendix F for details about computing a local best response for the defender.
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Figure 3.6: Runtimes of dynamic programming when computing a best response for the
attacker in a subgame Γ(i) via Sondik’s value iteration algorithm (Sondik, 1978); we note
that even for a minimal observation space O(V) the runtime increases exponentially with
the discount factor γ and the number of zones |Z|.

3.8 System Identification

The dfp algorithm described above approximates a pbe of Γ (3.7) by simulating
games and updating both players’ strategies through ppo and stochastic approxi-
mation. We use a digital twin of the target infrastructure to identify the parameters
required to instantiate these simulations and evaluate the learned strategies. We
create this digital twin using csle, as described in the methodology chapter (Ham-
mar, 2023). The topology of the target infrastructure is shown in Fig. 3 in the
introduction chapter, and the configuration is listed in Appendix C.

The digital twin comprises virtual containers and networks that replicate the
functionality and the timing behavior of the target infrastructure. These containers
run the same software and processes as the physical infrastructure, including the
snort intrusion detection system (ids), which monitors network traffic and logs
alerts in real-time. These alerts are tagged with ip addresses of the containers that
caused them. We aggregate these alerts per container in the digital twin at 30-
second intervals. (30s in the digital twin corresponds to 1 time step in the game Γ.)
This aggregation allows us to compute the observations o1,t,o2,t, . . . ,o|V|,t, where
oi,t is defined as the number of intrusion alerts associated with node i at time t,
weighted by priority (3.3). These observations depend on client behavior as well as
the actions of the attacker and the defender, as described below.

Emulating the client population in the digital twin

The client population is emulated by processes in docker containers. Clients
interact with application nodes through the gateway by consuming workflows; see
Fig. 3 in the introduction chapter. A client’s workflow and sequence of service
invocations are selected uniformly at random. Client arrivals per time step are
emulated using a stationary Poisson process with rate λ = 50 and exponentially
distributed service times with mean µ = 4.
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Emulating the attacker in the digital twin

The attacker’s actions are emulated by executing scripts that automate exploits;
see Table 3.2.

Type Actions
Reconnaissance tcp syn scan, udp port scan, tcp xmas scan, vulscan, ping-scan.

Brute-force telnet, ssh, ftp, cassandra,irc, mongodb, mysql, smtp, postgres.

Exploit cve-2017-7494, cve-2015-3306, cve-2010-0426, cve-2015-5602
cve-2014-6271, cve-2016-10033, cve-2015-1427, cwe-89 on dvwa [454].

Table 3.2: Attacker actions executed on the digital twin; further details about the actions
can be found in Appendix D of Paper 2 and in the methodology chapter.

Emulating the defender in the digital twin

We implement four types of response actions to emulate the defender; see Fig. 3.1
on page 126. To emulate the node migration action, we remove all virtual network
interfaces of the emulated node and add a new interface that connects it to the
new zone. To emulate the flow migration/blocking action, we add rules to the flow
tables of the emulated switches that match all flows towards the node and redirect
them to a given destination. To emulate the node shut down action, we shut down
the virtual container corresponding to the emulated node. Finally, to emulate the
access control action, we reset all user accounts on the emulated node.

Estimating the observation distributions

As our target infrastructure consists of 64 nodes (see Appendix C), there are 64
alert distributions zO1 , . . . , zO64 (3.3). We estimate these distributions using data
from the digital twin. Specifically, at the end of every time step (i.e., every 30-
second interval) in the digital twin, we collect the number of intrusion alerts during
the time step and compute the vector ot = (o1,t,o2,t, . . . ,o|V|,t), which contains
the total number of intrusion alerts per node, weighted by priority.

For the evaluation in this paper, we collect M = 104 i.i.d. samples. Based on
these samples, we compute the empirical distributions ẑO1 , . . . , ẑO64 as estimates
of zO1 , . . . , zO64 , where ẑOi

a.s.→ zOi as M → ∞13; see Fig. 3.7 on the next page.
We observe in Fig. 3.7 that the distributions differ between nodes, which can be
explained by the different services provided by the nodes; see Appendix C. We
further observe that the distributions during intrusion have more probability mass
at larger values than the distributions when no intrusion occurs.

13It follows by the Glivenko-Cantelli theorem; see (Glivenko and Cantelli, 1933).
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ẑO2
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ẑO17
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ẑO28
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ẑO54
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Figure 3.7: Empirical observation distributions ẑO1 , . . . , ẑO|V| as estimates of
zO1 , . . . , zO|V| in the target infrastructure; Oi is a random variable representing the num-
ber of ids alerts related to node i ∈ V, weighted by priority; the x-axes show the node-local
observation spaces O(V); the y-axes show ẑOi (oi | si) (3.3).
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Remark 3.3. The stochastic matrices with the rows ẑOi|s(A)
i

=(0,0) and ẑOi|s(A)
i

̸=(0,0)
have 250 × 109 second-order minors, which are almost all non-negative. This sug-
gests that the tp-2 assumption in Thm. 3.2.C can be made.

3.9 Experimental Evaluation

Our methodology for finding near-optimal defender strategies includes learning
equilibrium strategies via the dfp algorithm and evaluating these strategies on
the digital twin; see Fig. 12 in the introduction chapter. This section describes the
evaluation results.

Experiment setup

The instantiation of Γ (3.7) and the hyperparameters are listed in Appendix A. The
topology of the target infrastructure is depicted in Fig. 3 in the introduction chapter,
and its configuration is available in Appendix C. The digital twin is deployed on a
server with a 24-core intel xeon gold 2.10 GHz cpu and 768 gb ram. Simulations
of Γ and executions of dfp run on a cluster with 2xtesla p100 gpus, 4xrtx8000
gpus, and 3x16-core intel xeon 3.50 GHz cpus; see Fig. 21 in the methodology
chapter.

Convergence metric

To estimate the convergence of the sequence of strategy pairs generated by dfp, we
use the approximate exploitability metric

δ̂ = E
π̂D,πA

[J ]− E
πD,π̂A

[J ] , (Eq. 3, Timbers et al., 2020) (3.16)

where J is defined in (3.4) and π̂k denotes an approximate best response for player
k. The closer δ̂ becomes to 0, the closer (πD, πA) is to an equilibrium.

Baseline algorithms

We compare the performance of our approach (πdecomposition) with that of two base-
lines: πfull and πworkflow. Baseline πfull is the strategy obtained when attempting to
solve the full game without decomposition, and πworkflow is the strategy obtained
when attempting to solve the game decomposed on the workflow level only (i.e., us-
ing the decomposition in Thm. 3.2.A but not the decomposition in Thm. 3.2.B). We
compare the performance of dfp with that of Neural Fictitious Self-Play (nfsp)
(Alg. 1, Heinrich and Silver, 2016) and ppo (Alg. 1, Schulman et al., 2017), which
are the most popular algorithms among related works.
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Baseline strategies

We compare the defender strategies learned through dfp with three baselines. The
first baseline selects actions uniformly at random. The second baseline assumes
prior knowledge of the opponent’s actions and acts optimally based on this infor-
mation. The last baseline acts according to the following heuristic: shut down a
node i ∈ V when an ids alert occurs, i.e., when oi,t > 0.

Learning best responses against static opponents

We first examine whether our method can discover effective strategies against a
static opponent strategy, which in game-theoretic terms is the problem of finding
best responses. The static strategies are defined in Appendix B. We compare the
scalability of πdecomposition with that of πworkflow and πfull on synthetic infrastruc-
tures with varying number of nodes |V| and workflows |W|. Further, we compare
the convergence rate when exploiting Theorem 3.2.C to compute a best response
with that of ppo. Figure 3.8 shows the evaluation results.
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Figure 3.8: Best response learning via decomposition; (a) shows learning curves in sim-
ulation; the curves show the mean and 95% confidence interval for five random seeds; (b)
shows the speedup of our approach when computing best responses with different number of
parallel processes; the speedup is calculated as Sn = T1

Tn
, where Tn is the completion time

with n processes; and (c) shows an estimated switching curve (Thm. 3.2.C).
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The red, purple, and pink curves in Fig. 3.8.a represent the results obtained
with πdecomposition; the blue and beige curves represent the results obtained with
πworkflow; the orange and green curves represent the results obtained with πfull; and
the dashed black lines relate to the baseline strategy that assumes prior knowledge
of the opponent’s strategy. We note that all the learning curves of πdecomposition

converge near the dashed black lines, which suggests that the learned strategies are
close to best responses. In contrast, the learning curves of πworkflow and πfull do not
converge near the dashed black lines within the measured time. This is expected
as πworkflow and πfull cannot be parallelized like πdecomposition. The parallelization
speedup is shown in Fig. 3.8.b. Lastly, we note in the rightmost plot of Fig. 3.8.a
that the optimal stopping approach, which exploits the statement in Thm. 3.2.C,
converges significantly faster than ppo. An example of a learned optimal stopping
strategy based on the switching curve in Fig. 3.5 is shown in Fig. 3.8.c.

Learning equilibrium strategies through fictitious play

Figure 3.9 shows the learning curves of the strategies obtained during the dfp
execution and the baselines introduced above. The red curves represent the results
from the simulator; the blue curves show the results from the digital twin; the green
curve gives the performance of the random baseline; the orange curve relates to the
oi,t > 0 baseline; and the dashed black line gives the performance of the baseline
strategy that assumes prior knowledge of the attacker actions.
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Figure 3.9: Equilibrium learning via dfp; the red curves show simulation results and
the blue curves show results from the digital twin; the green, orange, purple, and black
curves relate to baselines; the figures show approximate exploitability (3.16) and normalized
utility; the curves indicate the mean and the shaded areas indicate the standard deviation
over three random seeds.

We observe in Fig. 3.9.a that the approximate exploitability (3.16) of the learned
strategies converges to small values (left plot), which indicates that the learned
strategies approximate an equilibrium both on the simulator and on the digital twin.
Further, we see from the middle plot that both baseline strategies show decreasing
performance as the attacker updates its strategy. In contrast, the defender strategy
learned through dfp improves its performance over time.
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Figure 3.9.b compares dfp with nfsp on the simulator. nfsp implements fic-
titious play and can thus be compared with dfp with respect to approximate ex-
ploitability (3.16). We observe that dfp converges significantly faster than nfsp.
The fast convergence of dfp in comparison with nfsp is expected as dfp is paral-
lelizable while nfsp is not.

Discussion of the evaluation results

In this paper, we show how our methodology14 for automated security response
can scale to high-dimensional system models by leveraging recursive decomposition.
The key findings can be summarized as follows.

 Our methodology approximates optimal defender strategies for a practical it
infrastructure (Fig. 3.9.a). While we have not evaluated the learned strate-
gies on the target infrastructure for safety reasons, their performance on the
digital twin gives us confidence in their expected performance on the target
infrastructure.

 Decomposition provides a scalable approach to automate intrusion response
for it infrastructures (Fig. 3.8.a and Fig. 3.9.b). The intuition behind this
finding is that decomposition allows the design of efficient divide-and-conquer
algorithms that can be parallelized (Thm. 3.2.A–B and Alg. 3.1).

 The theory of optimal stopping provides insight into optimal defender strate-
gies, which enables efficient computation of best responses (Fig. 3.9.a). This
property can be explained by the threshold structures of the best responses,
which drastically reduce the search space of possible strategies (Thm. 3.2.C).

 Static defender strategies’ performance deteriorates against a dynamic at-
tacker whereas defender strategies learned through dfp improve over time
(Fig. 3.9.a). This finding is consistent with previous studies that use game-
theoretic approaches and suggests fundamental limitations of static response
systems, such as (Wazuh Inc, 2022).

3.10 Conclusion

We show how our methodology for automated security response can scale to high-
dimensional system models by leveraging recursive decomposition. We present the
decomposition through an intrusion response use case, which we model as a partially
observed stochastic game. We prove a decomposition theorem stating that the game
decomposes recursively into subgames that can be solved efficiently in parallel and
that the best responses exhibit threshold structures. This decomposition provides
us with a scalable approach to learn near-optimal defender strategies. We develop

14See the methodology chapter for details about the experimental methodology.
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Decompositional Fictitious Play (dfp) – an algorithm for approximating equilibria.
To assess the learned strategies for a target infrastructure, we evaluate them on a
digital twin. The results demonstrate that dfp converges in reasonable time to
near-optimal strategies, both in simulation and on the digital twin. At the same
time, a state-of-the-art algorithm makes little progress toward an optimal strategy.

In the broader context of this thesis, this paper extends the problem formula-
tions presented in Paper 1 and Paper 2. While those works focus on determining
the optimal timing for defensive actions, this paper broadens the scope to also ad-
dress the question of which actions should be executed. In the next chapter of the
thesis, we show how our methodology can be generalized to a different use case,
namely intrusion tolerance.
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Appendix

A Hyperparameters and Game Instantiation

We instantiate Γ (3.7) for the experimental evaluation as follows. Client ar-
rivals are sampled from a stationary Poisson process Po(λ = 50), and service
times are exponentially distributed with mean µ = 4. In addition to migrating
a node, the defender can shut it down or redirect its traffic to a honeynet, which
we model with the zones S,R ∈ Z. A node i ∈ V is shutdown if v(Z)

i,t = S

and have its traffic redirected if v(Z)
i,t = R. The set of local attacker actions is

A(V)
A = {⊥, reconnaissance,brute-force, exploit}, which we encode as {0, 1, 2, 3}.

These actions have the following effects on the state st: a(A)
i,t = 1 =⇒ v

(R)
i,t = 1,

a(A)
i,t = 2 =⇒ v

(I)
i,t = 1 with probability 0.3, and a(A)

i,t = 3 =⇒ v
(I)
i,t with proba-

bility 0.4. We enforce a tree structure on the target infrastructure by disregarding
the redundant edges in the r&d zone; see Fig. 3 in the introduction chapter. The
remaining parameters are listed in Table 3.3 on the next page.
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Game parameters Values
uw,t, A(V)

D
∑

i∈Vw
1gw→ti, Z ∪ {access control,⊥}

|O(V)|, γ, η, |Z|, |W|, |V| 103, 0.9, 0.4, 6, 10, 64
u

(w)
i (⊥, l), u(w)

i (S, l),u(w)
i (R, l), u(w)

i (2, l) 0, 10 + l, 15 + l, 0.1 + l

u
(w)
i (3, l), u(w)

i (4, l), u(w)
i (5, l), u(w)

i (0.8, l) 0.5 + l, 1 + l, 1.5 + l, 2 + l

topology G and s(D)
1 see Fig. 3

|Vw1 |,|Vw2 |,|Vw3 |,|Vw4 |,|Vw5 |,|Vw6 | 16, 16, 16, 16, 6, 4
|Vw7 |,|Vw8 |,|Vw9 |,|Vw10 | 6, 4, 6, 6

ppo parameters [396, Alg. 1]
lr α, batch, # layers, # neurons, clip ϵ 10−5, 4 · 103t, 4, 64, 0.2
gae λ, ent-coef, activation 0.95, 10−4, ReLU

nfsp parameters [192, Alg. 1]
lr RL, lr SL, batch, # layers,# neurons, MRL 10−2, 5 · 10−3, 64, 2,128, 2× 105

MSL,ϵ, ϵ-decay, η 2× 106, 0.06, 0.001, 0.1
Stochastic approximation parameters

c, ϵ, λ,A, a,N, δ 10, 0.101, 0.602, 100, 1, 50, 0.2

Table 3.3: Hyperparameters.

B Static Defender and Attacker Strategies

The static defender and attacker strategies for the evaluation described in §3.9 are
defined in (3.17)–(3.18). (w.p is short for “with probability”.)

πD(h(D)
t )i =


⊥ w.p 0.95

j ∈ Z w.p 0.05
|Z|+ 1

(3.17)

πA(h(A)
t )i =



⊥ if v(I)
i,t = 1

⊥ w.p 0.8 if v(R)
i,t = 0

⊥ w.p 0.7 if v(R)
i,t = 1, v(I)

i,t = 0

recon w.p 0.2 if v(R)
i,t = 0

brute w.p 0.15 if v(R)
i,t = 1, v(I)

i,t = 0

exploit w.p 0.15 if v(R)
i,t = 1, v(I)

i,t = 0.

(3.18)

C Configuration of the Infrastructure in Figure 3

The configuration of the target infrastructure is available in Tables 3.4 and 3.5 on
the subsequent pages; the network topology is shown in Fig. 3 in the introduction
chapter.



ID(s) Type Operating system Zone Services Vulnerabilities
1 Gateway ubuntu 20 - snort (ruleset v2.9.17.1), ssh, openflow v1.3, ryu sdn controller -
2 Gateway ubuntu 20 dmz snort (ruleset v2.9.17.1), ssh, ovs v2.16, openflow v1.3 -
28 Gateway ubuntu 20 r&d snort (ruleset v2.9.17.1), ssh, ovs v2.16, openflow v1.3 -
3,12 Switch ubuntu 22 dmz ssh, openflow v1.3 , ovs v2.16 -
21, 22 Switch ubuntu 22 - ssh, openflow v1.3, ovs v2.16 -
23 Switch ubuntu 22 admin ssh, openflow v1.3, ovs v2.16 -
29-48 Switch ubuntu 22 r&d ssh, openflow v1.3, ovs v2.16 -
13-16 Honeypot ubuntu 20 dmz ssh, snmp, postgres, ntp -
17-20 Honeypot ubuntu 20 dmz ssh, irc, snmp, ssh, postgres -
4 App node ubuntu 20 dmz http, dns, ssh cwe-1391
5, 6 App node ubuntu 20 dmz ssh, snmp, postgres, ntp -
7 App node ubuntu 20 dmz http, telnet, ssh cwe-1391
8 App node debian jessie dmz ftp, ssh, apache 2,snmp cve-2015-3306
9,10 App node ubuntu 20 dmz ntp, irc, snmp, ssh, postgres -
11 App node debian jessie dmz apache 2, smtp, ssh cve-2016-10033
24 Admin system ubuntu 20 admin http, dns, ssh cwe-1391
25 Admin system ubuntu 20 admin ftp, mongodb, smtp, tomcat, ts 3, ssh -
26 Admin system ubuntu 20 admin ssh, snmp, postgres, ntp -
27 Admin system ubuntu 20 admin ftp, mongodb, smtp, tomcat, ts 3, ssh cwe-1391
49-59 Compute node ubuntu 20 r&d spark, hdfs -
60 Compute node debian wheezy r&d spark, hdfs, apache 2,snmp, ssh cve-2014-6271
61 Compute node debian 9.2 r&d irc, apache 2, ssh cwe-89
62 Compute node debian jessie r&d spark, hdfs, ts 3, tomcat, ssh cve-2010-0426
63 Compute node debian jessie r&d ssh, spark, hdfs cve-2015-5602
64 Compute node debian jessie r&d samba, ntp, ssh, spark, hdfs cve-2017-7494

Table 3.4: Configuration of the target infrastructure shown in Fig. 3 of the introduction chapter; each row contains the configuration
of one or more nodes; vulnerabilities in specific software products are identified by the vulnerability identifiers in the Common
Vulnerabilities and Exposures (cve) database (The MITRE Corporation, 2022); vulnerabilities that are not described in the cve
database are categorized according to the types of the vulnerabilities they exploit based on the Common Weakness Enumeration
(cwe) list (The MITRE Corporation, 2023). (Note that each component in Fig. 3 is labeled with an identifier i.)
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ID Name Zone Nodes
1 spark 1 r&d 1, 21, 22, 28, (29− 32), (33− 34), (41− 42), (49− 52).
2 spark 2 r&d 1, 21, 22, 28, (29− 32), (35− 36), (43− 44), (53− 56).
3 spark 3 r&d 1, 21, 22, 28, (29− 32), (37− 38), (45− 46), (57− 60).
4 spark 4 r&d 1, 21, 22, 28, (29− 32), (39− 40), (47− 48), (61− 65).
5 Web 1 dmz 1, 2, 3, 4, 5, 6.
6 Web 2 dmz 1, 2, 3, 7.
7 Storage 1 dmz 1, 2, 3, 8, 9, 10.
8 Mail 1 dmz 1, 2, 3, 11.
9 Admin 1 admin 1, 21, 22, 23, 24, 25.
10 Admin 2 admin 1, 21, 22, 23, 25, 26.

Table 3.5: Workflows of the target infrastructure (Fig. 3 in the introduction chapter).

D Proximal Policy Optimization

πθ(a5 | o)
πθ(a4 | o)
πθ(a3 | o)

πθ(a2 | o)
πθ(a1 | o)

Jθ(o)

o

Figure 3.10: The actor-critic ar-
chitecture in ppo; a neural network
represents a control strategy πθ(a |
o) and a value function Jθ(o).

We use Proximal Policy Optimization (ppo)
(Alg. 1, Schulman et al., 2017) to approximate
a best response for the attacker; see §3.7. This
procedure involves parameterizing the attacker
strategy as πA,θ(a(A)

t | ot, s(A)
t ), where θ is the

parameter vector of a neural network with the
actor-critic architecture; see Fig. 3.10 (Sutton
and Barto, 1998). ppo implements the policy
gradient method (Sutton et al., 1999) and builds
on the classical reinforce policy gradient al-
gorithm (Williams, 1987). In the following, we
start by describing reinforce, and then we ex-
plain how ppo modifies the general algorithm.

For ease of notation, we drop the player
subscripts and superscripts, i.e., we write π
and s instead of πA and s(A). Moreover, in-
stead of writing πθ(at | ot, st), we simply write
πθ(at | ot) as st does not affect the main steps of the derivation apart from mak-
ing the expressions more verbose. The learning process of reinforce is iterative
and produces a sequence of strategies πθ(1) , πθ(2) , . . .. Each iteration consists of
two steps. First, the current strategy πθ(i) is executed on the simulator to collect
training histories (h(k)

T )M
k=1. Second, the strategy is updated through stochastic

gradient ascent: θ(i+1) ← θ(i) + η∇θ(i)Eπ
θ(i) [J ] (3.4), where η is the step size and

∇θ(i)Eπ
θ(i) [J ] is the (likelihood ratio) policy gradient, which can be derived as

∇θ(i)Eπ
θ(i) [J ] = ∇θ(i)

( ∑
hT ∈HT

P [hT | πθ(i) ]

≜u(hT )︷ ︸︸ ︷∑
(st,at)∈hT

u(st,at)
)
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(a)=
∑

hT ∈HT

P [hT | πθ(i) ]
P [hT | πθ(i) ]

∇θ(i)P [hT | πθ(i) ]u(hT )

= EHT
[∇θ(i) ln (P [HT | πθ(i) ])u(HT )]

= EHT

[
∇θ(i) ln

(
b1(S1)

T∏
t=2

z(Ot | St)f(St | St−1,At−1)πθ(i)(At−1 | Ot−1)
)
u(HT )

]

= EHT

[(
T∑

t=1
∇θ(i) ln πθ(i)(At | Ot)

)
u(HT )

]
(3.19)

(b)
≈ 1
M

M∑
k=1

(
T∑

t=1
∇θ(i) ln πθ(i)(a(k)

t | o(k)
t )
)
u(h(k)

T ),

where o1 = (s1,b1); (a) uses the log-gradient trick; and (b) approximates the
expectation EHT

using i.i.d. sample histories h(1)
T , . . . ,h(M)

T .
ppo extends reinforce with techniques from trust-region optimization. The

key insight is that large changes to the strategy make the learning process unstable.
To remedy this issue, ppo constrains the strategy updates to be within a trust
region, where the changes to the strategy are small. This can be achieved by
bounding the divergence DKL(πθ(i) ∥ πθ(i+1)). However, enforcing this constraint is
impractical due to the large computational complexity. Therefore, ppo adds a soft
constraint to the policy gradient objective. In reinforce, this objective is

max
π

θ(i)
EHT

[(
T∑

t=1
πθ(i)(At | Ot)

)
u(HT )

]
.

In ppo, this objective is changed to maximize

EHT

[
min

[
T∑

t=1

πθ(i)(At | Ot)
πθ(i−1)(At | Ot)

A(Ot,At),
T∑

t=1
clip

(
πθ(i)(At | Ot)
πθ(i−1)(At | Ot)

, ϵ

)
A(Ot,At)

]]
,

where A(ot,at) ≜ ut +E[Jθ(ot+1)]−Jθ(ot) is the advantage function and clip(x, ϵ)
constrains the value of x to the range [1−ϵ, 1+ϵ], where ϵ is a hyperparameter15. If
x is within this range, it remains unchanged; otherwise, it is clipped to the nearest
boundary value: 1 − ϵ or 1 + ϵ. By taking the minimum of the regular objective
and the clipped objective, the optimization process is incentivized to make small
updates to πθ(i) that improves the advantage A(Ot,At).

Remark 3.4 (Discount factor for the policy gradient). In our derivation of the pol-
icy gradient (3.19), we omit the discount factor γ to obtain the most mathematically
accurate gradient expression (Nota and Thomas, 2020). However, in practice, we
use the discount factor to enhance convergence properties and focus the optimization
on near-term utilities.

15Jθ is the critic output of the neural network; see Fig. 3.10.
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E Proof of Theorem 3.2.C

The idea behind this proof is that the problem of selecting which defensive action
to apply in a subgame Γ(i) (Thm. 3.2.B) against a given attacker strategy can be
separated from the problem of deciding when to apply it. Through this separation,
we can analyze the latter problem using optimal stopping theory. We perform this
separation by decomposing a(D)

i,t into two subactions: a(D,1)
i,t and a(D,2)

i,t . The first
subaction a(D,1)

i,t ̸= ⊥ determines the defensive action and the second subaction
a(D,2)

i,t ∈ {S,C} determines when to take it. Specifically, if a(D,2)
i,t = C, then a(D)

i,t =
⊥; otherwise a(D)

i,t = a(D,1)
i,t . Using this action decomposition, at each time t, a

strategy π
(i)
D in Γ(i) is a joint distribution over A(D,1)

i,t and A(D,2)
i,t , which means

that it can be represented in an auto-regressive manner as

π
(i)
D (a(D,1)

i,t ,a(D,2)
i,t | h(D)

i,t ) (3.20)
(a)= π

(i)
D (a(D,1)

i,t | h(D)
i,t )π(i)

D (a(D,2)
i,t | h(D)

i,t ,a
(D,1)
i,t )

(b)= π
(i)
D (a(D,1)

i,t | b(D)
i,t , s

(D)
i,t )π(i)

D (a(D,2)
i,t | b(D)

i,t , s
(D)
i,t ,a

(D,1)
i,t )

(c)= π
(i)
D (a(D,1)

i,t | s(D)
i,t )π(i)

D (a(D,2)
i,t | b(D)

i,t , s
(D)
i,t ,a

(D,1)
i,t ),

where (a) follows from the chain rule of probability; (b) holds because (s(D)
i,t ,b

(D)
i,t )

is a sufficient statistic for s(A)
i,t (Def. 4.2, Lem. 5.1, Thm. 7.1, Kumar and

Varaiya, 1986); and (c) follows because a(D,1)
i,t ̸= ⊥ resets the belief state to

b(D)
i,t+1((0, 0)) = 1. Consequently, the action is independent of b(D)

i,t .
The strategy decomposition in (3.20) means that we can obtain a best response

in Γ(i) by jointly optimizing two substrategies: π(i,1)
D and π

(i,2)
D . The former corre-

sponds to solving an mdp16 M (D,1) with state space s(D)
i ∈ Z and the latter cor-

responds to solving a set of optimal stopping pomdps (M (D,2)
i,s(D),a(D))s(D)∈Z,a(D)∈A(V)

D

with state space17 s(A)
i ∈ {(0, 0), (1, 0), (1, 1)} ≜ {0, 1, 2}18. The transition matrices

for each stopping problem are of the form:1− p p 0
0 1− q q
0 0 1

 and

1 0 0
1 0 0
1 0 0

 , (3.21)

16The components of an mdp are defined the background chapter; see (1).
17The state of the stopping pomdp for node i corresponds to s(A)

i,t . This state is defined as
s(A)

i,t = (v(R)
i,t , v

(I)
i,t ), where v

(R)
i,t and v

(I)
i,t are binary variables that represent the reconnaissance

state and the intrusion state, respectively.
18Since a(D,1)

i,t ̸= ⊥ effectively resets the stopping problem, each stopping problem can be
defined with a single stop action rather than multiple stop actions; see Lemma 4.4 of Paper 4 for
a proof.



Computing a local best response for the defender 151

where p is the probability that the attacker performs reconnaissance and q is the
probability that the attacker compromises the node. The left matrix in (3.21) relates
to a(D,2)

i,t = C and the right matrix relates to a(D,2)
i,t = S. The non-zero second order

minors of the matrices are (1−p)(1−q), pq, 1−q, 1−p, p, and (1−p)q, which implies
that the matrices are tp-2 (Def. 10.2.1, Krishnamurthy, 2016). Further, (3.4) and
(3.15) implies that the utility function ui,2 of the stopping problems satisfies

ui,2(0, a) ≥ ui,2(1, a) ≥ ui,2(2, a) a ∈ {S,C} (3.22a)
ui,2(s,S)− ui,2(s,C) = ui,2(s+ 1,S)− ui,2(s+ 1,C) s ∈ {0, 1}. (3.22b)

(3.22a) follows because the defender’s utility associated with a node i reduces when
the attacker compromises the node (3.15). (Recall that state 0 represents the
healthy state, 1 represents the reconnaissance state, and 2 represents the intrusion
state.) The structure in (3.22b) implies that the utility function is supermodular
given the action encoding (C,S) = (0, 1). This modularity is a direct consequence
of (3.15), which implies that the immediate utility of taking a defensive action is
independent of the state s.

Since the distributions zO1|s(A) , . . . , zO|V||s(A) are tp-2 by assumption, it follows
from (Thm. 12.3.4, Krishnamurthy, 2016) that there exists a switching curve Υ
that partitions B(i)

D into two connected sets: a stopping set S
(i)
D where a(D,2)

i,t = S is
a best response and a continuation set C

(i)
D where a(D,2)

i,t = C is a best response.

F Computing a Local Best Response for the Defender

We use a combination of dynamic programming and stochastic approximation to
find a local best response for the defender based on Thm. 3.2.C. We first solve
the mdp defined in Appendix E via the value iteration19 algorithm (Eq. 6.21,
Krishnamurthy, 2016), which can be done efficiently due to full observability. After
solving the mdp, we approximate the optimal switching curves defined in Appendix
E with the following linear approximation (Eq. 12.18, Krishnamurthy, 2016).

πD(b(D)) =

S if
[
0 1 θ

] [b(D)

−1

]
> 0

C otherwise
(3.23)

subject to θ ∈ R2, θ2 > 0, and θ1 ≥ 1,

where b(D) ∈ ∆({0, 1, 2}) is a 2-dimensional probability vector in the unit 2-simplex.
The coefficients θ in (3.23) are estimated through the t-spsa algorithm de-

scribed in Paper 1.

19Value iteration is defined in the background chapter; see (8).
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INTRUSION TOLERANCE FOR
NETWORKED SYSTEMS THROUGH
TWO-LEVEL FEEDBACK CONTROL

Kim Hammar and Rolf Stadler

Abstract

We formulate intrusion tolerance for a system with service replicas as a
two-level game: a local game models intrusion recovery and a global game
models replication control. For both games, we prove the existence of equilib-
ria and show that the best responses have a threshold structure, which enables
efficient computation of strategies. The local and global control problems can
be formulated as classical problems in operations research, namely, the ma-
chine replacement problem and the inventory replenishment problem. Based
on this formulation, we design tolerance, a novel control architecture for
intrusion-tolerant systems. State-of-the-art intrusion-tolerant systems can be
understood as instantiations of our architecture with heuristic control strate-
gies. Our analysis shows the conditions under which such heuristics can be
significantly improved through game-theoretic reasoning. This reasoning al-
lows us to derive the optimal (equilibrium) control strategies and evaluate
them against 10 types of network intrusions on a testbed. The results demon-
strate that our game-theoretic control strategies can significantly improve ser-
vice availability and reduce the operational cost of state-of-the-art intrusion-
tolerant systems. In addition, our game strategies can ensure any chosen
level of service availability and time-to-recovery, bridging the gap between
theoretical and operational performance.

†The results and the problem formulation are published as:
K. Hammar and R. Stadler (2024), “Intrusion Tolerance for Networked Systems through
Two-Level Feedback Control [181].” IEEE Dependable Systems and Networks Conference
(DSN), Brisbane, Australia, pp. 338-352.

The game-theoretic analysis is published as:
K. Hammar and R. Stadler (2024), “Intrusion Tolerance as a Two-Level Game [180].”.
Springer Lecture Notes in Computer Science, vol 14908, pp. 3-23. Decision and Game
Theory for Security (GameSec), New York, USA.
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A distributed system is one in which the failure of a computer you didn’t
even know existed can render your own computer unusable.

— Leslie Lamport 1987, email correspondence.

4.1 Introduction

As our reliance on online services grows, there is increasing demand for
reliable systems that provide service without disruption. Traditionally,
the main causes of disruption in networked systems have been hardware

failure and power outages (Avižienis, 1976). While tolerance against these types of
failures is important, a growing source of disruptions is network intrusion, impacting
an estimated 75% of organizations each year (Netwrix, 2024).

Intrusions fundamentally differ from hardware failures as an attacker can behave
arbitrarily, i.e., Byzantine, which leads to unanticipated failure behavior. Due to the
high costs of such failures and the fact that it is impractical to prevent all intrusions,
the ability to tolerate intrusions becomes necessary (Ganin et al., 2016). This
ability is particularly important for safety-critical systems, e.g., aircrafts (Wensley
et al., 1978), real-time control systems (Sims, 1997)(Lala and Harper, 1994), power
systems (Babay et al., 2019), nuclear plants (Lala, 1986), control-planes for software
defined networks (Sakic et al., 2018), scada systems (Nogueira et al., 2018), (Kirsch
et al., 2014), and e-commerce applications (Soikkeli et al., 2023).

The common approach to building an intrusion-tolerant system is to replicate
the system across a set of nodes, which allows compromised and crashed nodes
to be substituted by healthy nodes. This approach to intrusion tolerance includes
three main building blocks: (i) a protocol for service replication that tolerates a
subset of compromised and crashed nodes; (ii) a replication strategy that adjusts
the replication factor; and (iii) a recovery strategy that determines when to recover
potentially compromised nodes (Deswarte et al., 1991). Replication protocols that
satisfy the condition in (i) are called Byzantine fault-tolerant (bft) and have been
studied extensively; see survey (Distler, 2021). Few prior works have studied (ii)
and (iii). Current intrusion-tolerant systems typically use a fixed replication factor
(Babay et al., 2018) and rely on inefficient recovery strategies, such as periodic
recovery (Castro and Liskov, 2002), heuristic rule-based recovery (Veríssimo et
al., 2003), or manual recovery by system administrators (Reiter, 1995).

In this paper, we address the above limitations and present a game-theoretic
model that allows us to characterize optimal recovery and replication strategies for
intrusion-tolerant systems. We formulate intrusion tolerance for a system with ser-
vice replicas as a game with two levels: local and global. The local game involves
node controllers that independently perform intrusion recovery, and the global game
involves a system controller that manages the replication factor; see Fig. 4.1. Both
games are modeled as stochastic zero-sum games and incorporate safety constraints.
We prove the existence of constrained perfect Bayesian and Markov equilibria in
the local and global games, respectively. We also derive a threshold structure of the
best responses, which enables efficient computation of strategies. Based on these
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insights, we design a control architecture for intrusion-tolerant systems, which we
call tolerance: Two-level recovery and replication control with feedback. To as-
sess the performance of tolerance, we implement it in an emulation environment
where we run 10 types of network intrusions. The results show that tolerance can
achieve higher service availability and lower operational cost than state-of-the-art
intrusion-tolerant systems.

. . .
π1(b1) π2(b2) π3(b3) π4(b4) πNt

(bNt
)

Belief
transmissions

Node controllers

Replicated
system

System controller
π(b1, . . . ,bNt

)
b1 b2 b3 b4 bNt

Figure 4.1: Two-level feedback control for intrusion tolerance; node controllers with
strategies π1, . . . , πNt compute belief states b1, . . . , bNt and make local recovery decisions;
a global system controller with strategy π receives belief states and manages the replication
factor Nt.

In the context of this thesis, this paper demonstrates the generality of our
methodology2 by applying it to a different type of response use case than those
studied in papers 1–3, namely intrusion tolerance. Our contributions can be sum-
marized as follows:

1. We present a novel formulation of intrusion tolerance as a two-level game.
The local game models intrusion recovery, and the global game models repli-
cation control. Leveraging this model, we derive optimal (equilibrium) control
strategies against a dynamic attacker, for which we provide theoretical guar-
antees.

2. We prove the existence of equilibria and that the best responses have a thresh-
old structure. Based on these insights, we design efficient algorithms for com-
puting the best responses.

3. We present and evaluate tolerance, a novel control architecture for
intrusion-tolerant systems that uses two levels of control to decide when to
perform recovery and when to increase the replication factor.

4. We implement tolerance in an emulation environment and evaluate its
performance against 10 types of network intrusions. The results show that
tolerance can improve service availability and reduce the operational cost
of state-of-the-art intrusion-tolerant systems.

2See the methodology chapter for details about our experimental methodology.
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4.2 The Intrusion Tolerance Use Case

We consider a set of nodes collectively offering a service to a client population; see
Fig. 4.2. Each node is segmented into two domains: an application domain, which
runs a service replica, and a privileged domain, which runs security and control
functions. The replicas are coordinated through a replication protocol that relies
on digital signatures and guarantees correct service if no more than f nodes are
compromised or crashed simultaneously.

. . .
Clients

api gateways

Compute nodes

Storage nodes

Service
replica 1

Service
replica 2

Service
replica 3

Service
replica 4

Client interface & load balancer

Figure 4.2: The intrusion tolerance use case: a replicated system offers a service to
a client population; the system should maintain correct service to the clients even if an
attacker compromises a subset of replicas.

Clients access the service through gateways, which also are accessible to an
attacker. The attacker aims to intrude on the system and compromise replicas
while avoiding detection. We assume that the attacker a) does not have physical
access to nodes; b) cannot forge digital signatures; and c) can only access the
service replicas, not the privileged domains (i.e., we consider the hybrid failure
model (Correia et al., 2007)). Apart from these restrictions, the attacker can control
a compromised replica in arbitrary, i.e., Byzantine, ways. It can shut it down, delay
service responses, communicate with other replicas, etc.

To prevent the number of compromised and crashed nodes from exceeding f ,
we consider three types of response actions: (i) recover compromised nodes; (ii)
evict crashed nodes from the system; and (iii) add new nodes. Each action incurs
a cost that must be weighed against the security benefit.
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4.3 Background on Intrusion-Tolerant Systems

Research on fault-tolerant systems has almost a century-long history, with the sem-
inal work made by von Neumann [478] and Shannon [311] in 1956. The early work
focused on tolerance against hardware failures. Since then the field has broadened
to include tolerance against software bugs, operator mistakes, and malicious attacks
[30, 31, 32, 103, 266]. The common approach to build a fault-tolerant service is
redundancy, whereby the service is provided by a set of replicas. Through such re-
dundancy, compromised and crashed replicas can be substituted by healthy replicas
as long as they can coordinate their service responses. This coordination problem
is known as the consensus problem.

Consensus

Consensus is the problem of reaching agreement among distributed nodes subject
to failures (Cachin et al., 2011). This problem can be solved under synchrony and
failure assumptions. The main synchrony options are (i) the synchronous model,
which mandates an upper bound on the communication delay between nodes; (ii)
the partially synchronous model, which warrants an upper bound but allows for
periods of instability where the bound is violated; and (iii) the asynchronous model,
where no bound exists. Similarly, the main failure options are (i) the crash-stop
failure model, where nodes fail by crashing; (ii) the Byzantine failure model, where
nodes fail arbitrarily; and (iii) the hybrid failure model, where nodes fail arbitrarily
but are equipped with trusted components that fail by crashing (Dwork et al., 1988),
(Dolev et al., 1987).

Theorem 4.1 (Solvability of the consensus problem).

1. Consensus is not solvable in the asynchronous model.

2. Consensus is solvable in the partially synchronous model with N nodes and
at most N−1

2 crash-stop failures, N−1
3 Byzantine failures, and N−1

2 hybrid
failures.

3. Consensus is solvable in the synchronous model with N nodes and at most
N − 1 crash-stop failures, N−1

2 Byzantine failures, and N−1
2 hybrid failures.

Theorem 4.1 summarizes several decades of research; hence, the proofs are scat-
tered across the literature. The proof of Theorem 4.1.1 is available in (Thm. 1,
Fischer et al., 1985). The proof of Theorem 4.1.2 is available in (Thm. 1, Bracha
and Toueg, 1985), (Thms. 5.8, 5.11, Attiya and Welch, 2004), (Thm. 2, Santos
Veronese, 2010), and (Thm. 1, Yandamuri et al., 2021). The proof of Theorem 4.1.3
is available in (Thm. 5.2, Attiya and Welch, 2004), (Cor. 14, Katz and Koo, 2006),
and (Thm. 1, Abraham et al., 2019). Since several of these proofs span multiple
pages, we omit them here for brevity. The main proof technique is to model the
system using i/o automata (Lynch, 1996).
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Remark 4.1 (flp). While Thm. 4.1.1 states that deterministic consensus cannot
be guaranteed in the asynchronous model (Thm. 1, Fischer et al., 1985), it does
not rule out probabilistic consensus systems. In such systems, consensus can be
reached with probability 1, but it is still possible (though with probability measure
0) that some execution of the system does not reach consensus.

Intrusion-tolerant systems

Intrusion-tolerant systems extend fault-tolerant systems with intrusion detection,
recovery, and response (Goseva-Popstojanova et al., 2001). We call a system
intrusion-tolerant if it remains secure and operational while intrusions occur
(Deswarte et al., 1991). Theorem 4.1 provides the basis for designing an intrusion-
tolerant system and indicates the number of nodes required to tolerate f compro-
mised nodes. However, the theorem does not provide guidance on the likelihood
that the threshold f will be exceeded. Quantifying this likelihood is the objective
of reliability theory.

Reliability theory

The reliability of a system is defined as the probability that the system performs its
task under the operating conditions encountered (Barlow and Proschan, 1965). If
T (F) is a random variable representing the time to failure (e.g., compromise), then
the reliability function can be defined as R(t) ≜ P[T (F) > t] and the mean time to
failure (mttf) is E[T (F)]. In the context of intrusion tolerance, we also consider
the metrics average time-to-recovery T (R), average availability T (A), and frequency
of recovery F (R). When measuring service availability for a replicated system, we
assume the primary-partition model (Birman, 1997) to circumvent the cap theorem
(Thm. 2, Gilbert and Lynch, 2002). Specifically, in the case of a network partition,
only one partition is permitted to remain operational (to maintain consistency) and
we consider the system to be available as long as one partition is operational.

4.4 The tolerance Control Architecture

In this section, we describe tolerance: a two-level control architecture for
intrusion-tolerant systems; see Fig. 4.3 on the next page. It is a distributed system
with Nt ≥ 2f + 1 +k nodes connected through an authenticated network (Lamport
et al., 2010), where k is the number of nodes that can be in recovery simultaneously.
Each node runs a service replica. The replicas are coordinated through a reconfig-
urable consensus protocol that guarantees correct service if no more than f nodes
are compromised or crashed simultaneously; e.g., reconfigurable minbft (§4.2, San-
tos Veronese, 2010)3. tolerance uses two levels of control: local and global. On
the local level, each node runs a node controller that monitors the service replica
through alerts from an Intrusion Detection System (ids). Based on these alerts, the
controller estimates the replica’s state, i.e., whether it is compromised or not, and

3A reconfigurable consensus protocol allows dynamic addition and removal of nodes.
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decides when it should be recovered. As each recovery incurs a cost, the challenge
for the controller is to balance the recovery costs against the security benefits. To
guarantee correct service, at most k nodes can recover simultaneously.

tolerance

Node 1
Privileged domain

Application domain
Service
replica

Node controlleridss
alerts

reco-
very

Virtualization layer
Hardware

Node 2
Privileged domain

Application domain
Service
replica

Node controlleridss
alerts

reco-
very

Virtualization layer
Hardware

Node Nt
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Application domain
Service
replica

Node controlleridss
alerts

reco-
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Virtualization layer
Hardware

. . .

Consensus protocol

System controller
State estimate Evict or add State estimate Evict or add State estimate Evict or add

. . .
Service requests Responses

Clients Attacker

Intrusion attempts

Figure 4.3: The tolerance architecture: Two-level recovery and replication control
with feedback; Nt nodes provide a replicated service to clients; service responses are co-
ordinated through an intrusion-tolerant consensus protocol; local node controllers decide
when to recover and a global system controller manages the replication factor Nt.

The global level includes a system controller that collects state estimates from
the nodes and adjusts the replication factor Nt. When deciding if Nt should be
increased, the controller faces a classical dilemma in reliability theory (Barlow and
Proschan, 1965). On the one hand, it aims to achieve high redundancy to maximize
service availability. On the other hand, it does not want an excessively large and
costly system. Since the only task of the system controller is to execute control
actions and communicate with the node controllers, it can be deployed on a standard
crash-tolerant system, e.g., a raft-based system (Ongaro and Ousterhout, 2014).
For this reason, we consider the probability that the system controller crashes
negligible. (See Assumption 4.1 on page 161 for details.)

Similar to the vm-fit and the worm-it architectures (Distler et al., 2011),
(Reiser and Kapitza, 2007), (Correia et al., 2007), each node in tolerance is seg-
mented into two domains: a privileged domain, which can only fail by crashing,
and an application domain, which may be compromised by an attacker. The con-
trollers and the idss execute in the privileged domain, whereas the service replicas
execute in the application domain. The separation between the two domains can
be realized in several ways. One option is to use a secure coprocessor to execute
the privileged domain (e.g., ibm 4758) (Castro and Liskov, 2002)(Yandamuri et
al., 2021). Another option is implementing the privileged domain using dedicated
hardware modules, such as a smart card or an fpga (Distler, 2021). A third op-



160 Paper 4 – Intrusion Tolerance through Two-Level Control

tion, which does not require special hardware, is to use a security kernel to run the
privileged domain, as in the worm-it architecture (Correia et al., 2007). A fourth
option, used in the vm-fit architecture (Distler et al., 2011), is to separate the ap-
plication domain from the privileged domain using a secure virtualization layer that
can be formally verified (Dam et al., 2013). tolerance implements the last option
for the following reasons: (i) virtualization enables efficient recovery of a compro-
mised replica by replacing its virtual container (Reiser and Kapitza, 2007); and (ii)
virtualization simplifies implementation of software diversification, which reduces
the correlation between compromise events across nodes (Garcia et al., 2011).

Correctness

Definition 4.1 (Correct service). tolerance provides correct service if the
healthy replicas satisfy the following properties:

Each request is eventually executed. (Liveness)
Each executed request was sent by a client. (Validity)
Each replica executes the same request sequence. (Safety)

Proposition 4.1 (Correctness). tolerance provides correct service if

An attacker cannot forge digital signatures. (P1.A)
An attacker cannot access the privileged domains. (P1.B)
Network links are authenticated and reliable [84, p. 42]4. (P1.C)
At most k nodes recover simultaneously. (P1.D)
At most f nodes are compromised or crashed simultaneously. (P1.E)
Nt ≥ 2f + 1 + k. (P1.F)
The system is partially synchronous [84, §2.5.3]. (P1.G)

Proof. (P1.A)–(P1.C) imply the hybrid failure model. (P1.D)-(P1.F) state that at
least f+1+k nodes are healthy. These properties together with the tolerance thresh-
old f = Nt−1−k

2 of the consensus protocol (e.g., minbft (Santos Veronese, 2010),
§4.2) imply (Safety) (Thm. 4.1, (Thms. 1–2, Santos Veronese, 2010)). Next, it
follows from (P1.G) that the healthy nodes will eventually agree on the response to
any service request, which allows to circumvent flp (Thm. 1, Fischer et al., 1985)
and achieve (Liveness). Finally, (Validity) is ensured by the consensus protocol
(e.g., minbft (§4.2, Santos Veronese, 2010)).

4In an authenticated network, nodes can verify each other’s digital signatures. In a reliable
network, the following properties are satisfied: a) reliable delivery: if a healthy node p sends a
message m to a healthy node q, then q eventually delivers m (i.e., network partitions eventually
heal); b) no duplication: no message is delivered by a node more than once; c) no creation: if
some node q delivers a message m with sender p, then m was previously sent to q by node p [84,
p. 42].
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Assumptions (P1.A), (P1.C), (P1.D), (P1.G) imply that the system uses stan-
dard cryptographic mechanisms and network equipment. Similarly, (P1.E)–(P1.F)
can always be met by tuning f and Nt. The strongest assumption is (P1.B), which
implies that the controllers are securely separated from the service replicas. As
explained on page 159, this separation can be realized in several ways.

Proposition 4.1 implies that, to guarantee correct service (Def. 4.1), the con-
trollers must ensure (in expectation) that: a) the number of compromised and
crashed nodes is at most f , which is achieved by recovery; and b) the number of
nodes satisfies Nt ≥ 2f + 1 + k, which is achieved by replacing crashed nodes. In
the following section, we model the problem of meeting these two constraints while
minimizing operational cost as a game with a local and a global level. On the local
level, node controllers minimize cost while meeting a), and on the global level, the
system controller minimizes cost while meeting b). At the same time, an attacker
aims to maximize the cost of the system.

Remark 4.2 (Extension of Prop. 4.1). tolerance can be extended in two ways
to provide confidentiality in addition to (Safety), (Liveness), and (Validity). One
approach is forcing all replicas to send messages through a firewall that filters faulty
messages containing confidential data (Yin et al., 2002). Another option is crypto-
graphic techniques such as verifiable secret sharing (Padilha and Pedone, 2011).

4.5 Modeling Intrusion Tolerance as a Two-Level Game

Our game-theoretic model is based on the following assumptions.

Assumption 4.1. The probability that the system controller crashes is negligible.

Assumption 4.2. Compromise and crash events are statistically independent
across nodes.

Assumption 4.3. (P1.D) is enforced by the system implementation.

Assumption 4.4. The attacker has access to the controllers’ observations.

Since the system controller is not accessible by an attacker, Assumption 4.1
can be satisfied by deploying the system controller on a crash-tolerant system,
e.g., a raft-based system. In such a system, we can make the failure probability
negligible by using a large number of replicas, ensuring that the likelihood of a
majority crashing at the same time is vanishingly small. Assumption 4.2 can be
satisfied by a) distributing the nodes geographically, which reduces the likelihood
of simultaneous power outages; and b) employing software diversification, which
reduces the likelihood that different nodes have the same vulnerabilities (Garcia
et al., 2011). Assumption 4.3 can be met through proper implementation design
(Sousa et al., 2007). Lastly, Assumption 4.4 holds for insider attacks and reflects
that it is generally not known what information is available to the attacker.

Our model is presented in the following; notation is listed in Table 4.1.
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Notation(s) Description
Nt, Nt, f Set of nodes, number of nodes, tolerance threshold (Prop. 4.1).
T (R) Average time-to-recovery when an intrusion occurs.
F (R), T (A) Frequency of recovery, average service availability (4.4).
T (F), k Time to system failure (Fig. 4.10), # parallel recoveries (Prop. 1).
R(t), Ri(t) Reliability function for the system and for a node (Fig. 4.10).
Ji, J Objectives of node controller i (4.4) and the system controller (4.7).
π

(C)
i,t , π

(A)
i,t Control and attack strategy for node i (4.5).

π̃
(C)
i,t , π̃

(A)
i,t Best response control and attack strategy for node i (4.5).

π
(C),⋆
i,t , α⋆

i Equilibrium recovery strategy and best response threshold for node i (4.5).
π⋆

i,t, π
(A),⋆
i,t Equilibrium strategy profile of Game 4.1 for node i, attacker equilibrium strategy.

i(C)
i,t , i

(A)
i,t Information feedback for the controller and the attacker at time t in Game 4.1 (4.2).

I(C)
i,t , I

(A)
i,t Random vectors with realizations i(C)

i,t , i
(A)
i,t (4.2).

si,t, oi,t State (4.1) and observation (4.2) of node i at time t.
bi,t Belief state of node i at time t (4.3).
Si,t, Oi,t,Bi,t Random variables with realizations si,t (4.1), oi,t (4.2), bi,t (4.3).
a

(C)
i,t , ci,t Action and cost of the node controller i at time t (4.5).
A

(C)
i,t , Ci,t Random variables with realizations a(C)

i,t and ci,t (4.5).
a

(A)
i,t , A

(A)
i,t Action of the attacker on node i at time t (4.5).

SN,ON State and observation spaces of nodes.
W,R = 0, 1 The (W)ait and (R)ecovery actions (Fig. 4.6.a).
H,C = 0, 1 The (H)ealthy and (C)ompromised node states (Fig. 4.6.a).
∅ The crashed node state (Fig. 4.6.a).
fN,i, zi Transition (4.1) and observation (4.2) functions for node i.
cN(si,t, ai,t) Cost function for a node (4.4).
pA,i Probability that an attack against node i is successful (4.1).
pC,i Probability that node i crashes in the healthy state (4.1).
∆R Maximum allowed time between node recoveries (4.5).
St, st State of the system controller at time t, st realizes St.
a

(C)
t , ct Action and cost of the system controller at time t.
A

(C)
t , Ct Random variables with realizations a(C)

t , ct (4.8).
a(A)

t ,A(A)
t Action of the attacker in Game 4.2 (4.8).

fS Transition function of Game 4.2.
SS State space of Game 4.2.
smax Maximum number of nodes in Game 4.2.
π(C), π(A) Control and attack strategy in Game 4.2 (4.8).
π̃(C), π̃(A) Best response control and attack strategy in Game 4.2 (4.8).
π(C),⋆, π(A),⋆ Equilibrium control and attack strategies in Game 4.2 (4.8).
π,π⋆ Strategy profile and equilibrium strategy profile in Game 4.2 (4.8).
ϵA Lower bound on the average service availability (4.8).

Table 4.1: Variables and symbols used in the model.

The local intrusion recovery game

The local game involves two players: a node controller that aims to minimize
operational cost by performing intrusion recovery and an attacker that aims to
maximize that cost. The attacker can perform two actions to achieve its goal:
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(i) compromise the node’s service replica; and (ii) trigger excess recoveries by the
deliberate generation of false intrusion alarms.

Let Nt ≜ {1, 2, . . . , Nt} be the set of nodes and π(C)
i,t the corresponding behavior

control strategy at time t (Def. 5, Kuhn, 1953). Controller i takes one of two actions
a

(C)
i,t : (R)ecover or (W)ait. Similarly, the attacker follows a behavior strategy π

(A)
i,t

and takes one of two actions a(A)
i,t : (A)ttack or (F)alse alarm.

Node i has state si,t ∈ SN with three values: ∅ if it is crashed, C if it is
compromised, and H if it is healthy; see Fig. 4.4. The evolution of si,t can be
written as si,t+1 ∼ fN,i(· | si,t, a

(C)
i,t , a

(A)
i,t ), where fN,i is defined as

fN,i(∅ | ∅, ·, ·) ≜ 1 (4.1a)
fN,i(∅ | H, ·, ·) ≜ fN,i(∅ | C, ·, ·) ≜ pC,i (4.1b)
fN,i(H | H,W,A) ≜ (1− pA,i)(1− pC,i) (4.1c)
fN,i(H | H, ·,F) ≜ fN,i(H | H or C,R, ·) ≜ fN,i(C | C,W, ·) ≜ (1− pC,i) (4.1d)
fN,i(C | H,W,A) ≜ (1− pC,i)pA,i. (4.1e)

pA,i ∈ (0, 1) is the probability that an attack on node i is successful and pC,i ∈ (0, 1)
is the probability that the node crashes during the time interval [t, t + 1]. These
parameters can be set based on domain knowledge or be obtained through system
measurements. Companies such as Google, Meta, and ibm have documented proce-
dures for estimating such parameters, e.g., (Ford et al., 2010), (Meza et al., 2018).

(4.1a)–(4.1b) capture the transitions to the crashed state ∅, which is absorbing5.
Next, (4.1c)–(4.1d) define the transitions to the healthy state H after the controller
takes action R. Lastly, (4.1e) captures the transition to the compromised state C
when an intrusion occurs. All other transitions have probability 0. It follows from
(4.1) that the number of time steps until a node fails (crash or compromise) is
geometrically distributed; see Fig. 4.4.
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t

P[Si,t = C ∪ Si,t = ∅ | a(C)
i,t = W, a

(A)
i,t = A ∀t]

(a) State transition diagram of node i (4.1). (b) Failure (crash or compromise) probability.

Figure 4.4: a) disks represent states, arrows represent transitions, labels indicate con-
ditions for transition, self-transitions are not shown; b) the probability that a node is
compromised (C) or crashed (∅) if no recoveries occur; curves relate to min[pA,i + pC,i, 1].

5A crashed node can be restarted and appears as a new node in our model.
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Observability The attacker has complete observability in the sense that it knows
the state si,t, the controller’s action a

(C)
i,t , and the controller’s observation. In

contrast, the controller has a restricted view. It only has access to an observation
oi,t ∈ O, which is based on the number of ids alerts received during the time interval
[t−1, t] (O is finite). Consequently, the information feedback for the controller and
the attacker at time t are

i(C)
i,t ≜ (oi,t) and i(A)

i,t ≜ (si,t, a
(C)
i,t−1, oi,t), where oi,t ∼ zi(· | a(A)

i,t−1). (4.2)

Remark 4.3 (General observation spaces). While we focus on the ids alert metric
in this paper, alternative sources of metrics can be used. A comparison between
different metrics is available in (Paper 2, Appendix C).

Remark 4.4 (Modeling clients). The clients are implicitly modeled by zi (4.2).

Both the controller and the attacker have perfect recall, which means that they
remember their respective history h(j)

i,t ≜ (bi,1, (a(j)
i,l−1, i

(j)
i,l )l=2,...,t), where j ∈ {C,A}

(Def. 7, Kuhn, 1953)6. Based on this history, the controller uses the belief operator7

B (22) to compute the belief state

bi,t(si) ≜ P[Si,t = si | h(C)
i,t ], (4.3)

as defined in the background chapter.
Since bi,t(C) (4.3) is a sufficient statistic for si,t (Def. 4.2, Lem. 5.1, Thm. 7.1,

Kumar and Varaiya, 1986), we can define π(C)
i,t as a function [0, 1] → ∆({W,R}).

Similarly, since the attacker has complete observability, it can also compute bi,t(C),
and hence we can define π(A)

i,t as a function SN× [0, 1]→ ∆({A,F}). (Strategies can
be time-dependent, as the subscript t indicates.)

Proposition 4.2. Let Xi,t represent the number of recoveries of node i that oc-
curred by time t and define Ti,∅ ≜ inft[si,t = ∅]. If (i) (π(C)

i , π
(A)
i ) are stationary;

and (ii) π(C)
i (R | B(h(C)

i,t )(C)) > 0 for some h(C)
i,t where P[h(C)

i,t | (π(C)
i , π

(A)
i )] > 0

and B is the belief operator (22), then (Xi,t)
Ti,∅
t=1 is a renewal process.

Proof. To establish that (Xi,t)
Ti,∅
t=1 is a renewal process, we need to show that a) the

times between recoveries are independent and identically distributed (i.i.d.); and b)
(Xi,t)

Ti,∅
t=1 are not all zero with probability 1 (Ch. 3.2, Barlow and Proschan, 1965).

a) follows from (i) and the Markov properties of (π(C)
i , π

(A)
i ) and fN,i (4.1). b)

follows from (ii).
6See Assumption 4 in the background chapter.
7The belief operator (22) defined in the background chapter assumes an observation function

of the form zi(· | s) whereas this paper assumes an observation function of the form zi(· | a
(A)
i,t−1);

however, this change does not affect the derivation.
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Controller objective When selecting the strategy π(C)
i,t , the controller balances

two conflicting goals: minimize the average time-to-recovery T (R)
i and minimize the

frequency of recovery F (R)
i . The weight η > 1 controls the trade-off between these

two objectives, which leads to the cost

Ji ≜ Ti,∅(η T (R)
i + F

(R)
i ) =

Ti,∅∑
t=1

ηsi,t(1− a(C)
i,t ) + a

(C)
i,t =

Ti,∅∑
t=1

cN(si,t, a
(C)
i,t ), (4.4)

Time-to-recovery.

Frequency of recovery.

where Ti,∅ ≜ inft[si,t = ∅], cN is the cost function, and (H,C,W,R) ≜ (0, 1, 0, 1).
The objective in (4.4) corresponds to the cumulative cost optimality criterion.

The following lemma establishes a relationship between (4.4) and the discounted
optimality criterion. It is key for our subsequent analysis.

Lemma 4.1 (Connection between discounted and cumulative optimality).

EH(A)
i,Ti,∅

,Ti,∅
[Ji] = EH(A)

i,Ti,∅

[ ∞∑
t=1

γt−1cN(Si,t, A
(C)
i,t )

]
, where γ ≜ (1− pC,i).

Proof. For ease of notation, let Ct ≜ cN(Si,t, A
(C)
i,t ). Then

EH(A)
i,Ti,∅

,Ti,∅
[Ji] = EH(A)

i,Ti,∅
,Ti,∅

Ti,∅∑
t=1

Ct

 = EH(A)
i,Ti,∅

 ∞∑
Ti,∅=1

Ti,∅∑
t=1

P[Ti,∅]Ct


(a)= EH(A)

i,Ti,∅

 ∞∑
t=1

∞∑
Ti,∅=t

P[Ti,∅]Ct

 (b)= EH(A)
i,Ti,∅

 ∞∑
t=1

∞∑
Ti,∅=t

pC,i(1− pC,i)Ti,∅−1Ct


= EH(A)

i,Ti,∅

 ∞∑
t=1

CtpC,i

∞∑
Ti,∅=t

γTi,∅−1

 (c)= EH(A)
i,Ti,∅

 ∞∑
t=1

Ct(1− γ)
∞∑

Ti,∅=t

γTi,∅−1


= EH(A)

i,Ti,∅

 ∞∑
t=1

Ct(1− γ)γt−1
∞∑

Ti,∅=1
γTi,∅−1

 (d)= EH(A)
i,Ti,∅

[ ∞∑
t=1

γt−1Ct

]
.

In (a), we use the fact that
∑∞

Ti,∅=1
∑Ti,∅

t=1 φ(t, Ti,∅) is an infinite series with con-
straints 1 ≤ t ≤ Ti,∅ ≤ ∞, which is equivalent to

∑∞
t=1
∑∞

Ti,∅=t φ(t, Ti,∅). (b)
follows because Ti,∅ ∼ Ge(pC,i) (4.1). (c) uses 1− γ = 1− (1− pC,i) = pC,i. In (d),
we use that

∑∞
Ti,∅=1 γ

Ti,∅ = (1− γ)−1 is a convergent geometric series.

Based on Lemma 4.1, we model intrusion recovery as a zero-sum game where
the controller and the attacker aim to minimize and maximize Ji (4.4), respectively.
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Game 4.1 (Local intrusion recovery game.).

minimize
π

(C)
i,t

maximize
π

(A)
i,t

E(π
(C)
i,t

,π
(A)
i,t

) [Ji | bi,1(C) = 0] (4.5a)

subject to τi,k − τi,k−1 ≤ ∆R, τi,k ≜ inf
t>τi,k−1

[a(C)
i,t = R] ∀k ≥ 1 (4.5b)

si,t+1 ∼ fN,i(· | si,t, a
(C)
i,t , a

(A)
i,t ) ∀t ≥ 1 (4.5c)

oi,t+1 ∼ zi(· | a(A)
i,t ) ∀t ≥ 1 (4.5d)

a
(C)
i,t ∼ π

(C)
i,t (· | bi,t(C)) ∀t ≥ 1 (4.5e)

a
(A)
i,t ∼ π

(A)
i,t (· | bi,t(C), si,t) ∀t ≥ 1, (4.5f)

where t = 1, 2, . . .; τi,0 ≜ 0; bi,1(C) defines the initial state distribution; (4.5b)
is a bounded-time-to-recovery (btr) constraint; (4.5c) is the dynamics constraint;
(4.5d) captures the observations; and (4.5e)–(4.5f) capture the actions. Game 4.1 is
a zero-sum partially observed stochastic game8 with one-sided partial observability
that satisfies assumptions 1–4 in the background chapter.

Remark 4.5. Throughout this paper, we write min max (4.5a) instead of inf sup
as the optimization problems we consider have solutions (see Thms. 4.2–4.4 below).

Remark 4.6 (Expected cost). We choose to minimize the expected cost (4.5a) to
model the controllers’ preferences. This approach is justified by the fact that the
preference relations of the controllers satisfy the von Neumann-Morgenstern axioms
(p. 26, von Neumann and Morgenstern, 1944), as we show in Appendix E.

Remark 4.7 (Bounded time-to-recovery). The btr constraint (4.5b) with ∆R <
∞ ensures that undetectable intrusions are eventually recovered. It also implies
that the optimal recovery strategy may be time-dependent.

Equilibrium analysis A control strategy π̃
(C)
i,t in Game 4.1 is a best response

against an attacker strategy π(A)
i,t if it minimizes (4.5). Likewise, an attacker strategy

π
(A)
i,t is a best response against π(C)

i,t if it maximizes (4.5). When both players follow
best responses, their strategy pair is a Nash equilibrium (ne) π⋆

i = (π(C),⋆
i,t , π

(A),⋆
i,t ).

Such an equilibrium, together with the belief operator in (4.3), can also form a
stronger equilibrium, namely a Perfect Bayesian equilibrium (pbe). Before showing
that such equilibria exist, we prove the following lemma.

Lemma 4.2. Game 4.1 can be represented in extensive form.

Proof. The proof is illustrated in Fig. 4.5.

8The components of a posg are defined the background chapter; see (19).
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Figure 4.5: Game 4.1 in extensive form; we use the extensive form notation described in (Myerson, 1997); a filled circle denotes
a decision node; an unfilled circle denotes a chance node; the first label next to each node indicates the player who makes the
decision; N denotes nature; the second label next to each node and the dashed lines indicate the information sets; e.g., the label
C.h(C)

i,1 indicates a decision node for the (C)ontroller in the information set determined by h(C)
i,1 ; a zig-zag branch is a short-hand

for many branches; a triangle indicates a subgame; see Def. 2 in the background chapter for the definition of a subgame; branches
to the terminal state ∅ are omitted to improve readability (at each time step, the game transitions to ∅ with probability pC,i (4.1)).
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Theorem 4.2 (Existence of equilibria and best responses in Game 4.1).

(A) For each strategy pair πi in Game 4.1, there exists a pair of best responses.

(B) Game 4.1 has a pbe.

(C) If si,t = H ⇐⇒ bi,t(C) = 0, then Game 4.1 has a pure pbe.

(D) The average equilibrium cost of Game 4.1 is not larger than 1.

Proof. By definition, the best response problems in Game 4.1 correspond to finite
Partially Observable Markov Decision Processes (pomdps)9. Lemma 4.1 implies
that these pomdps can be formulated with the discounted cost optimality criterion.
Claim (A) thus follows from Thm. 2 in the background chapter. (B) follows from
Lemma 4.1 and Thm. 3 in the background chapter. (C) follows from Thm. 2.1.1
of Paper 2. Lastly, to see why (D) holds, consider the control strategy that always
recovers, i.e., π(C)

i,t (R | ·) = 1. It follows from (4.4) that the average cost incurred
by this strategy is 1.
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Average equilibrium cost in Game 4.1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.8

1 alpha vectors E
π̃

(C)
i,t

[ Ji

Ti,∅
| bi,1(C)] (4.4)

bi,t(C)
α⋆

wait region recovery region

(a) Average equilibrium cost in Game 4.1 as a function of pA,i and η (4.5).

(b) The controller’s average best response value (4.4).

Figure 4.6: a) the ellipse indicates the place where the equilibrial strategy for the defender
is to almost always recover; b) the dashed red lines indicate alpha-vectors α(1),α(2), . . .,
where E

π̃
(C)
i,t

[Ji | bi,1(C)] = maxi[1 − bi,1(C), bi,1(C)]Tα(i) (Def. 1, Sondik, 1978); hyper-
parameters are listed in Appendix G.

Theorem 4.2 guarantees the existence of a strategy pair π⋆
i that solves (4.5).

Such a pair can be computed using the hsvi algorithm (Alg. 3, Horák et al., 2023),
9The components of a pomdp are defined the background chapter; see (15).
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see Fig. 4.6.a. The theorem also establishes that when one player’s strategy is fixed,
a best response for the opponent exists. Such a strategy can be computed using
standard solution algorithms for pomdps. Figure 4.6.b shows the expected cost for
a best response π̃(C)

i,t . We note that π̃(C)
i,t has a threshold structure, as stated below.

Theorem 4.3 (Threshold structure of best responses in Game 4.1).
For any π(A)

i,t in Game 4.1, there exists a best response π̃(C)
i,t that satisfies

π̃
(C)
i,t (bi,t(C)) = R ⇐⇒ bi,t(C) ≥ α⋆

i,t ∀t, where α⋆
i,t ∈ [0, 1] is a threshold. (4.6)

Corollary 4.1 (Stationary threshold). As ∆R →∞, all thresholds converge to α⋆
i .

Theorem 4.3 states that there exists a best response for the controller that
performs recovery when the belief (4.3) exceeds a threshold (4.6). Further, Cor. 4.1
states that when there are no periodic recoveries (i.e., when ∆R =∞), the threshold
is independent of time. We prove Thm. 4.3 and Cor. 4.1 by showing that the region
of the belief space where recovery is a best response is a connected interval [α⋆

i , 1].
To show this property, we leverage the optimal stopping theory developed in Paper
1 and the concavity of E

π̃
(C)
i,t

[Ji | bi,1(C)] (4.4); see Thm. 2 in the background
chapter. We provide detailed proof in Appendix A.

Numerical evaluation Computing a best response in Game 4.1 is equivalent
to solving a pomdp, which generally is pspace-hard (Thm. 6, Papadimitriou and
Tsitsiklis, 1987). However, Thm. 4.3 and Cor. 4.1 imply that we can parameterize
π̃

(C)
i,t with a finite number of thresholds. Given such parametrization, we formulate

the best response problem as a parametric optimization problem, which can be
solved efficiently with standard optimization algorithms. Algorithm 4.1 contains
the pseudocode of our solution.

Algorithm 4.1: Parametric optimization to obtain a best response in Game 4.1.

Input: Game 4.1, an attacker strategy π(A)
i,t , and a parametric optimizer po.

Output: An approximate best response control strategy π̂i,θ,t.
1: procedure Threshold Optimization(Game 4.1, π(A)

i,t , po)
2: if ∆R <∞, d← ∆R − 1, else d← 1.
3: Θ← [0, 1]d. ▷ Parameter space.

4: πi,θ,t(bi,t(C)) ≜
{

R if bi,t(C) ≥ θt.

W otherwise.
▷ Threshold strategy.

5: Ji,θ ← E
πi,θ,t,π

(A)
i,t

[Ji] (4.4). ▷ Black-box objective.
6: π̂i,θ,t ← po(Θ, Ji,θ). ▷ Simulation-based optimization.
7: return π̂i,θ,t.
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Remark 4.8. Algorithm 4.1 is a generalization of the t-spsa algorithm described
in Paper 1. t-spsa can be seen as an instantiation of Alg. 4.1 with spsa (Fig. 1,
Spall, 1998) as the parametric optimizer. However, Alg. 4.1 can be instantiated
with many other types of parametric optimizers as well, as demonstrated below.

We evaluate Alg. 4.1 on instantiations of Game 4.1 with different values of ∆R
for the btr constraint (4.5b). Hyperparameters are listed in Appendix G. The
computing environment for the evaluation is a server with a 24-core intel xeon
gold 2.10 GHz cpu and 768 gb ram; see Fig. 21 in the methodology chapter.

Baselines For each instantiation of Game 4.1, we run Alg. 4.1 with four opti-
mization algorithms: Simultaneous Perturbation Stochastic Approximation (spsa)
(Fig. 1, Spall, 1998), Bayesian Optimization (bo) (Alg. 1, Shahriari et al., 2016),
Cross Entropy Method (cem) (Alg. 1, Moss, 2020), and Differential Evolution
(de) (Fig. 3, Storn and Price, 1997). We compare the results with two baselines:
Incremental Pruning (ip) (Fig. 4, Cassandra et al., 1997), which is a dynamic
programming algorithm, and Proximal Policy Optimization (ppo) (Alg. 1, Schul-
man et al., 2017), a reinforcement learning algorithm10. The results are shown in
Fig. 4.7 below and Table 4.2 and Fig. 4.8 on the subsequent page.

5 10 15 20 25
100

101

102

103 cem de bo spsa ip

∆R

T
im

e
(m

in
)

Figure 4.7: Mean compute time of Alg. 4.1 for different values of ∆R and different para-
metric optimizers: spsa, bo, cem, and de, as well as a dynamic programming baseline:
ip; the error bars indicate the 95% confidence interval based on 20 measurements; hyper-
parameters are available in Appendix G.

10See Appendix D of Paper 3 for a derivation of the ppo algorithm.
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Figure 4.8: Convergence curves of Alg. 4.1 for computing a best response control strategy in Game 4.1 (the local intrusion recovery
game); the curves relate to different parametric optimizers: spsa, bo, cem, de, and ppo; the curves show the mean value from
evaluations with 20 random seeds and the shaded areas indicate the 95% confidence interval divided by 10.

Method ∆R = 5 ∆R = 15 ∆R = 25 ∆R =∞
Time (min) Ji

Ti,∅
(4.4) Time (min) Ji

Ti,∅
(4.4) Time (min) Ji

Ti,∅
(4.4) Time (min) Ji

Ti,∅
(4.4)

cem [316, Alg. 1] 1.04 0.12 ± 0.01 8.84 0.17 ± 0.06 14.48 0.19± 0.08 11.81 0.16± 0.01
de [443, Fig. 3] 2.35 0.12 ± 0.03 8.98 0.17 ± 0.01 15.45 0.18 ± 0.02 22.68 0.16± 0.01
bo [403, Alg. 1] 29.18 0.12 ± 0.02 62.57 0.17 ± 0.05 90.26 0.18 ± 0.12 9.07 0.15 ± 0.06
spsa [436, Fig. 1] 10.78 0.18± 0.01 88.35 0.58± 0.40 123.85 0.77± 0.48 4.20 0.20± 0.02
ppo [396, Alg. 1] 28.20 0.18± 0.01 30.01 0.19± 0.02 30.33 0.21± 0.07 28.95 0.21 +±0.09
ip [88, Fig. 4] 11.11 0.12 237.06 0.17 743.73 0.18 > 10000 not converged

Table 4.2: Computing a best response for the controller in Game 4.1 using Alg. 4.1 (upper rows) and baselines (lower rows);
columns represent ∆R; subcolumns indicate the computational time (left) and the average cost (right); numbers indicate the mean
and the 95% confidence interval based on 20 random seeds.



172 Paper 4 – Intrusion Tolerance through Two-Level Control

We observe in the first three rows of Table 4.2 that most of the algorithms that
utilize Thm. 4.3 find near-optimal recovery strategies for all ∆R. By contrast, ip
becomes computationally intractable as ∆R →∞ (bottom row of Table 4.2). The
convergence times are shown in Fig. 4.7.b and Fig. 4.8. We observe that cem, bo,
de, and ppo find near-optimal strategies within an hour of computation, whereas
spsa does not converge. The divergence of spsa is probably due to a poor selection
of hyperparameters.

Figure 4.9 shows a comparison between the operational cost (4.4) incurred by
the equilibrium strategy in Game 4.1 and the periodic recovery strategy used in
many state-of-the-art intrusion-tolerant systems (Distler, 2021).

101 102 103 104 105 106

0.5

1

Intrusion cost η

Ji

T∅
(4.4)

5 10 15 20

0.2

0.3

0.4

Equilibrium strategy Periodic strategy Always recover
DKL( no intrusion ‖ intrusion )

Ji

T∅
(4.4)

Benefit of strategic recovery

Figure 4.9: Comparison between the operational cost incurred by equilibrium and periodic
strategies in Game 4.1 as functions of η (4.4) and the kl divergence between zi(· | F) and
zi(· | A) (4.2); hyperparameters are listed in Appendix G; the values were computed using
the hsvi algorithm (Alg. 3, Horák et al., 2023); when computing the value of the periodic
strategy, we restricted the strategy space of the controller to the class of periodic strategies.

We note in Fig. 4.9 that the cost of the equilibrium strategy remains consis-
tently lower than the cost of the periodic strategy. However, we also observe that
the benefit of the equilibrium strategy reduces when a) the Kullback-Leibler (kl)
divergence between zi(· | F) and zi(· | A) (4.2) decreases (right plot), i.e., when
the intrusion detection accuracy decreases; and b) when the intrusion cost η (4.4)
becomes very large (left plot), in which case it is optimal to always perform recovery.

Game-theoretic recovery strategies can significantly reduce the operational
cost of state-of-the-art intrusion-tolerant systems if an accurate intrusion
detection model is available and the cost of recovery is significant. Other-
wise, periodic recovery strategies can be optimal.

Key insight.
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The global replication game

The global game involves two players: a system controller that adjusts the replica-
tion factor Nt to maintain service availability and minimize operational cost, and
an attacker aiming to maximize that cost. At each time t, the system controller
receives the belief states b1,t, . . . ,bNt,t from the nodes and decides whether or not
Nt should be increased; see Fig. 4.1 on page 155. Similarly, at each time t, the
attacker selects a subset of nodes to attack. A node that fails to send bi,t at time
t is considered crashed by the controller11, which evicts the node and decrements
Nt by 1. We define the state of the game to represent the number of healthy nodes
as estimated by the controller. The state space thus is SS ≜ {0, 1, . . . , smax} with
initial state s1 = N1 Here smax is the maximum number of nodes, which is de-
fined by the available hardware. The state evolves as st+1 ∼ fS(· | st, a

(C)
t ,a(A)

t ),
where a

(C)
t ∈ {0, 1} is the number of nodes added by the controller at time t,

a(A)
t ∈ {F,A}Nt is the attacker action, and fS is the transition function, which

depends on the local control strategies in Game 4.1.

System reliability analysis Proposition 4.1 implies that correct service is guar-
anteed if st > f , where f is the tolerance threshold. The mean time to failure
(mttf) E[T (F)] thus equals the mean hitting time of a state where st ≤ f :

E[T (F) | S1 = s1] = E(St)t≥1

[
inf {t | t ∈ N, t ≥ 1, St ≤ f} | S1 = s1

]
.

Consider the case where the system controller and the node controllers are
passive, i.e., when there are never recoveries or additions of nodes. In this case, the
set of states where service is disrupted is absorbing. Therefore,

E[T (F) | S1 = s1] =


0 if s1 ≤ f

1 +
∑

s′∈SS

Ps1,s′E[T (F) | S1 = s′] if s1 > f,

which defines a system of |SS| linear equations, one for each state s ∈ SS. (P ∈
[0, 1]|SS|2 is the transition probability matrix.) The reliability function of the system
is R(t) = P[T (F) > t] = P[St > f ]. Applying the Chapman-Kolmogorov equation,
(Eq. 2.12, Krishnamurthy, 2016), we have that R(t) =

∑
s∈S′

S

(
eT

s1
Pt
)

s
, where es1

is the s1-basis vector and S ′
S ≜ {s | s > f, s ∈ SS}; see Fig. 4.10.b on the next page.

11Note that this automatic eviction means the controller never has to explicitly remove a node;
hence we can define the controller’s action space as {0, 1} rather than {−1, 0, 1}.
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(a) Mean time to failure (mttf).

(b) The reliability function R(t) ≜ P[T (f) > t].

Figure 4.10: The mttf and the reliability function in Game 4.2 when all controllers are
passive; T (F) is a random variable representing the time when Nt < 2f + k + 1 with f = 3
and k = 1 (Prop. 4.1); N1 is the initial number of nodes in the system; hyperparameters
are listed in Appendix G.

Controller objective Increasing the replication factor Nt improves service avail-
ability T (A) but increases cost; see Fig. 4.10.a. (T (A) is the fraction of time steps
where service is available.) The goal of the controller is thus to find the optimal
cost-redundancy trade-off, i.e., to minimize

J ≜ lim
T →∞

[
T∑

t=1

a
(C)
t

T

]
subject to T (A) ≥ ϵA, (4.7)

where ϵA is the chosen lower bound on service availability. For instance, if ϵA =
0.999, then at most 8.4 hours of service disruption per year is allowed; see Table 4.3
on the next page. Note that the availability constraint can be written in terms of
the state st as

lim
T →∞

[
T∑

t=1

1st≥f+1

T

]
≥ ϵA.

Remark 4.9 (Nodes vs. throughput). (4.7) indicates that the number of nodes
should be minimized. This objective reflects the fact that the more nodes there are
in the system, the lower the throughput of the consensus protocol. This trade-off is
evident in our experimental evaluation of tolerance (see Fig. 4.13 on page 180).
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ϵA (4.7) Allowed service downtime per year
0.7 108 days.
0.8 72 days.
0.9 36 days.
0.95 18 days.
0.99 3 days.
0.999 8 hours.
0.9999 52 minutes.
0.99999 5 minutes.
0.999999 31 seconds.
1 0 seconds.

Table 4.3: Allowed service downtime for different values of ϵA (4.7).

Given (4.7) and the Markov property of st, we define the controller and the
attacker strategies as π(C) : SS → ∆({0, 1}) and π(A) : SS → ∆({F,A}Nt), re-
spectively. (We restrict the strategies to be time-independent, as stationary best
responses and equilibria exist; see Thm. 4.4 below.) Based on these definitions, we
model replication control as a constrained, zero-sum, stochastic game.

Game 4.2 (Global replication game.).

minimize
π(C)

maximize
π(A)

E(π(C),π(A)) [J | s1 = N1] (4.8a)

subject to E(π(C),π(A))

[
T (A)

]
≥ ϵA (4.8b)

st+1 ∼ fS(· | st, a
(C)
t ,a(A)

t ) ∀t ≥ 1 (4.8c)

a
(C)
t ∼ π(C)(· | st), a

(C)
t = 1 if st ≤ f ∀t ≥ 1 (4.8d)

a(A)
t ∼ π(A)(· | st) ∀t ≥ 1, (4.8e)

where (4.8b) is the availability constraint; (4.8c) is the dynamics constraint;
and (4.8d)–(4.8e) capture the actions. Note that Game 4.2 satisfies Assumption 1,
Assumption 2, and Assumption 4 in the background chapter.

Remark 4.10 (Partition tolerance). To circumvent the cap theorem (Thm. 2,
Gilbert and Lynch, 2002) and satisfy (4.8b) in the presence of network partitions, we
use the primary-partition model (Birman, 1997): in the case of a network partition,
only one partition is permitted to remain operational (to maintain consistency) and
we consider the system to be available as long as one partition is operational.

Equilibrium analysis When both the controller and the attacker play best re-
sponse, their strategy pair is a Nash equilibrium (ne) π⋆. Due to the Markov prop-
erty of the strategies, π⋆ can also form a stronger equilibrium, namely a Markov
perfect equilibrium (mpe).

Definition 4.2 (Markov perfect equilibrium (mpe) (Def. 5, Deng et al., 2022)). A
strategy pair π⋆ is a Markov perfect equilibrium if each player follows a Markovian
behavior strategy and π⋆ is a ne regardless of the initial state.
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Since Game 4.2 is a finite constrained stochastic game, we obtain the following
theorem by combining (Thm. 4.3, Altman, 1999) and (Thm. 2.1, Altman and
Shwartz, 2000).

Theorem 4.4 (Existence of equilibria and best responses in Game 4.2). Assuming

fS(st+1 | st, a
(C)
t ,a(A)

t ) > 0 ∀st+1, st, a
(C)
t ,a(A)

t . (T4.1)

∃π(C) such that E(π(C),π(A))

[
T (A)

]
≥ ϵA ∀π(A). (T4.2)

Then, the following holds.

(A) For each strategy pair π in Game 4.2, a pair of stationary best responses can
be obtained through linear programming.

(B) Game 4.2 has a constrained, stationary mpe.

Definition 4.3 (Unichain). A stochastic game is unichain if, for any stationary,
Markovian strategy profile π, the state process (St)T

t=1 has a single recurrent class.

Assumption (T4.1) implies that Game 4.2 is unichain, i.e., the Markov chain
induced by any strategy profile π is irreducible. (T4.2) implies that the constraint
in (4.8b) is feasible, i.e., a Slater condition (Slater, 1959)(Altman, 1999). Under
these assumptions, Thm. 4.4 guarantees the existence of an mpe for Game 4.2.
The theorem also establishes that, when the strategy of one player is fixed, there
always exists a best response for the opponent that can be computed in polynomial
time using linear programming (Thm. 4.3, Altman, 1999). This linear program12

is listed in Alg. 4.2 on page 178. By contrast, computing an mpe generally means
solving a ppad-complete problem (Thm. 1, Deng et al., 2022). Fortunately, upon
examination of (4.8), we find that Game 4.2 has a special structure that allows
efficient computation of equilibria.

Theorem 4.5 (Threshold structure of best responses in Game 4.2).
Given (T4.1), (T4.2), any attacker strategy π(A), and assuming

Eπ[St+1 | St = s+ 1] = Eπ[St+1 | St = s] + 1 ∀π, t ≥ 1, (T5.1)

then there exist two strategies π(C)
λ1

and π(C)
λ2

that satisfy

π
(C)
λ1

(s) = 1 ⇐⇒ s ≤ β1 and π
(C)
λ2

(s) = 1 ⇐⇒ s ≤ β2 ∀s ∈ SS, (4.9)

and a (stochastic) best response control strategy π̃(C) that satisfies

π̃(C)(s) = κπλ1(s) + (1− κ)πλ2(s) ∀s ∈ SS, (4.10)

where κ ∈ [0, 1], λ1, λ2 ≥ 0 are Lagrange multipliers, and β1, β2 ≥ f are thresholds.
12This linear program is the dual of (12) in the background chapter (Altman, 1999).
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Remark 4.11. The randomization in (4.10) is required to ensure that the service
availability constraint is satisfied in expectation (Thm. 4.4, Altman, 1999).

Assumption (T5.1) says that an additional healthy node at time t increases the
expected number of healthy nodes at time t + 1 by 1. Under this assumption,
Thm. 4.5 states that there exists a best response for the controller that can be
written as a mixture of two threshold strategies; see Fig. 4.11. Such a strategy is
(weakly) decreasing in the sense that the fewer healthy nodes there are, the more
likely it is that the controller will add a node, which is intuitive. This structure
means that a (weakly) dominating strategy for the attacker is to minimize the
expected number of healthy nodes E[S] (Def. 1.1, Fudenberg and Tirole, 1991).

Corollary 4.2 (Dominating attacker strategy). Given (T5.1) and assuming each
π(C) satisfies (4.10), then an attacker strategy that minimizes E[S] is (weakly) dom-
inating13 (Def. 1.1, Fudenberg and Tirole, 1991).

Corollary 4.2 means that, under assumption (T5.1), we can obtain an mpe of
Game 4.2 by computing a best response of each player independently. Due to the
independence, this computation can be done in polynomial time using the linear
program of Thm. 4.4; see Alg. 4.2 on the next page.

Remark 4.12 (Equilibrium uniformity). Since Game 4.1 and Game 4.2 are zero-
sum, every equilibrium leads to the same value (Ch. 3, von Neumann and Morgen-
stern, 1944), regardless of the strategies employed at equilibrium. Consequently,
we do not need to concern ourselves with equilibrium selection.

0

1
κ

β1 β2

π̃(C)(a(C) = 0 | s)

s

Figure 4.11: Illustration of Thm. 4.5.

The proofs of Thm. 4.5 and Cor. 4.2
involve a combination of techniques
from cmdp theory and lattice program-
ming. We defer the proofs to Appendix
C. However, for the coherence of our ar-
gument, we outline the main steps here.
To prove Thm. 4.5, we formulate the
best response cmdp for the controller as
a discounted mdp through Lagrangian
relaxation (Thm. 3.7, Altman, 1999).
Then, leveraging Topkis’ theorem, we
show that there exists a best response threshold strategy for any non-negative
Lagrange multiplier, discount factor in [0, 1), and attacker strategy (Thm. 6.1,
Topkis, 1978). Next, we use the vanishing discount method to establish that the
threshold structure applies under the average cost optimality criterion (4.7). Then
the proof of Thm. 4.5 follows from standard results in cmdp theory (Thm. 12.7,
Altman, 1999). Finally, the corollary is obtained by analyzing the Bellman equation
that is induced by Thm. 4.5.

13A strategy is weakly dominant if it weakly dominates all other strategies.
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Algorithm 4.2: Linear program for computing a best response in Game 4.2.

Input: Game 4.2, an attacker strategy π(A), a linear programming solver lps.
Output: A best response control strategy π̃(C) in Game 4.2.

1: procedure Linear best response programming(Game 4.2, π(A), lps)
2: Let fS(s′ | s, a(C), π(A)) denote the transition function induced by π(A).
3: Solve the following linear program using lps.

minimize
ρ

∑
s∈SS

∑
a(C)∈{0,1}

a(C)ρ(s, a(C)) (a(C) is the cost.) (4.11)

subject to
ρ(s, a(C)) ≥ 0 ∀s ∈ SS, a

(C) ∈ {0, 1} (ρ is an occupancy measure.)∑
s∈SS

∑
a(C)∈{0,1}

ρ(s, a(C)) = 1

∑
a(C)∈{0,1}

ρ(s′, a(C)) =
∑
s∈SS

∑
a(C)∈{0,1}

ρ(s, a(C))fS(s′ | s, a(C), π(A)) ∀s′ ∈ SS

∑
s∈SS

∑
a(C)∈{0,1}

ρ(s, a(C))1s≥f+1 ≥ ϵA.

4: Let ρ⋆ denote the solution to (4.11).
5: Define

π̃(C)(a(C) | s) ≜


ρ⋆(s, a(C))∑

â(C)∈{0,1} ρ
⋆(s, â(C)) if

∑
â(C)∈{0,1}

ρ⋆(s, â(C)) ≥ 0

arbitrary otherwise,

6: return π̃(C).

Numerical evaluation Figure 4.12.a on the next page shows the compute time
to obtain a best response in Game 4.2 using Alg. 4.2. We note that Alg. 4.2
enables us to compute a best response control strategy within a couple of min-
utes, even for systems with up to 1000 nodes. Figure 4.12.b shows a comparison
between the service availability achieved by the equilibrium strategy and the fixed-
replication strategy that is used in many state-of-the-art intrusion-tolerant systems
(Distler, 2021). As depicted in the figure, the equilibrium strategy guarantees a
high service availability for the system’s lifetime. In contrast, the availability of the
fixed replication strategy degrades over time.
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Figure 4.12: Plot a) shows the compute time to obtain a best response in Game 4.2 via
the linear program in Alg. 4.2; the error bars indicate the 95% confidence interval based
on 20 runs; smax is the maximum number of nodes; plot b) shows the availability of the
equilibrium strategy and two fixed replication strategies with different number of nodes N1;
hyperparameters are listed in Appendix G.

Game-theoretic replication strategies can guarantee a high service avail-
ability. By contrast, many state-of-the-art intrusion-tolerant systems are
based on fixed replication strategies, for which no such guarantee has been
given.

Key insight.

4.6 Testbed Implementation of tolerance

We implement tolerance as a proof-of-concept on our testbed. The implementa-
tion includes three layers.

The physical layer

The physical layer contains a cluster with 13 nodes connected through an Ethernet
network; see Fig. 4 in the methodology chapter. Specifications of the nodes can
be found in Table 4.4 on the next page. Nodes communicate via message passing
over authenticated channels14. Each node runs (i) a service replica in a docker
container (Merkel, 2014); (ii) a node controller (§4.4); and (iii) the snort ids with
ruleset v2.9.17.1 (Roesch, 1999).

14In an authenticated network, nodes can verify each other’s digital signatures.
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Server Processors Network ram (gb)
1, r 715 2u two 12-core amd opteron 12×GbE 64.
2, r 715 2u two 12-core amd opteron 12×GbE 64.
3, r 715 2u two 12-core amd opteron 12×GbE 64.
4, r 715 2u two 12-core amd opteron 12×GbE 64.
5, r 715 2u two 12-core amd opteron 12×GbE 64.
6, r 715 2u two 12-core amd opteron 12×GbE 64.
7, r 715 2u two 12-core amd opteron 12×GbE 64.
8, r 715 2u two 12-core amd opteron 12×GbE 64.
9, r 715 2u two 12-core amd opteron 12×GbE 64.
10, r 630 2u two 12-core intel xeon e 5- 2680 12×GbE 256.
11, r 740 2u 1 20-core intel xeon gold 5218r 2× 10GbE 32.
12, supermicro 7049 2 tesla p 100, 1 16-core intel xeon 100MbE 126.
13, supermicro 7049 4 rtx 8000, 1 24-core intel xeon 10GbE 768.

Table 4.4: Specifications of the physical nodes.

The virtualization layer

Each service replica is a state machine and runs a web service (Schneider, 1990).
This service offers two deterministic operations: (i) a read operation, which returns
the current state of the service; and (ii) a write operation, which updates the state.
Replicas run reconfigurable minbft (§4.2, Santos Veronese, 2010) to coordinate
these operations. The throughput of our implementation of minbft is shown in
Fig. 4.13. A description of minbft is available in Appendix F.
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Figure 4.13: Average throughput of our implementation of minbft; error bars indicate
the 95% confidence interval based on 1000 samples.

Remark 4.13. Figure 4.13 motivates the cost function in (4.7), i.e., the number
of nodes should be kept small to maximize throughput.

Clients access the service by issuing requests that are sent to all replicas. Each
request has a unique identifier that is digitally signed. After sending a request, the
client waits for a quorum of f + 1 identical replies with valid signatures.

Remark 4.14 (Pigeonhole principle). A quorum is necessary to guarantee a correct
response since the client does not know which replicas are compromised (Prop. 4.1).
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The control layer

Node controllers collect ids alerts and decide when to recover service replicas. When
a replica is recovered, it starts with a new container, and its state is initialized
with the (identical) state from f + 1 other replicas (Garcia et al., 2019)(Reiser
and Kapitza, 2007). The system controller is implemented by a crash-tolerant
system that runs the raft protocol (Ongaro and Ousterhout, 2014). When it
decides to evict or add a node, it triggers a view change in minbft (§4.2, Santos
Veronese, 2010).

4.7 Experimental Evaluation of tolerance

In this section, we evaluate our implementation of tolerance and compare it with
state-of-the-art intrusion-tolerant systems. We follow the experimental methodol-
ogy described in the methodology chapter.

Evaluation setup

An evaluation run evolves in time steps of 60 seconds and lasts for 120 time steps.
It starts with N1 nodes from Table 4.4, each of which runs a service replica; see
Table 4.5. At each time step, one or more replicas may be recovered by the node
controllers, and a new node may be added by the system controller. When a replica
is recovered, its container is replaced with a container selected randomly from the
list in Table 4.5. Similarly, when a new node is added, a node from the list in
Table 4.4 is started.

Replica ID Operating system Vulnerabilities
1 ubuntu 14 ftp weak password.
2 ubuntu 20 ssh weak password.
3 ubuntu 20 telnet weak password.
4 debian 10.2 cve-2017-7494.
5 ubuntu 20 cve-2014-6271.
6 debian 10.2 cwe-89 on dvwa [454].
7 debian 10.2 cve-2015-3306.
8 debian 10.2 cve-2016-10033.
9 debian 10.2 cve-2010-0426, ssh weak password.
10 debian 10.2 cve-2015-5602, ssh weak password.

Table 4.5: Containers running the service replicas.

Each replica has one or more vulnerabilities that can be exploited by the at-
tacker using the steps listed in Table 4.6 on the next page. After compromising a
replica, the attacker randomly chooses between a) participating in the consensus
protocol; b) not participating; and c) participating with randomly selected mes-
sages. Replicas are interconnected through Gbit/s connections with 0.05% packet
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loss (emulated with netem (Hemminger, 2005)). They receive a stream of service
requests sent by a client over 100 Mbit/s connections with 0.1% packet loss.

Replica ID Intrusion steps
1 tcp syn scan, ftp brute force.
2 tcp syn scan, ssh brute force.
3 tcp syn scan, telnet brute force.
4 icmp scan, exploit of cve-2017-7494.
5 icmp scan, exploit of cve-2014-6271.
6 icmp scan, exploit of cwe-89 on on dvwa [454].
7 icmp scan, exploit of cve-2015-3306.
8 icmp scan, exploit of cve-2016-10033.
9 icmp scan, ssh brute force, exploit of cve-2010-0426.
10 icmp scan, ssh brute force, exploit of cve-2015-5602.

Table 4.6: Steps to compromise service replicas.

Each replica runs a set of background services in addition to the replicated
service to emulate ids events for a realistic system; see Table 4.7.

Background services Replica ID(s)
ftp, ssh, mongodb, http, teamspeak 1.
ssh, dns, http 2.
ssh, telnet, http 3.
ssh, samba, ntp 4.
ssh 5, 7, 8, 10.
dvwa, irc, ssh 6.
teamspeak, http, ssh 9.

Table 4.7: Background services of the service replicas.

These background services are consumed by a population of background clients,
who arrive with a Poisson rate λ = 20 and have exponentially distributed service
times with mean µ = 4 time steps. All parameters for the evaluation are listed in
Appendix G except zi (4.2), which we estimate with the empirical distribution ẑi;
see Fig. 4.14 on the next page. We compute ẑi based on M = 25, 000 i.i.d. samples
from our testbed (Hammar, 2023), knowing that ẑi

a.s.→ zi as M → ∞15. In prac-
tice, ẑi may be implemented using any statistical intrusion detection method (e.g.,
anomaly detection (Fuchsberger, 2005)). Similarly, the model parameters (e.g., the
probability that a node crashes) can be defined based on domain knowledge or
system measurements (Ford et al., 2010).

Remark 4.15 (System identification). The collection of samples and the estima-
tion of zi (4.2) corresponds to the system identification step in our experimental
methodology (see the methodology chapter for details).

15It follows by the Glivenko-Cantelli theorem; see (Glivenko and Cantelli, 1933).
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Figure 4.14: Empirical distributions ẑ1(· | si), . . . , ẑ10(· | si) as estimates of z1, . . . , z10
(4.2) for the containers in Table 4.5.

Baseline control strategies

We compare the control strategies of tolerance with those used in current
intrusion-tolerant systems, whereby we choose three baseline strategies: no-
recovery, periodic and periodic-adaptive. The first baseline, no-recovery,
does not recover or add any nodes, which corresponds to the strategy used in tradi-
tional intrusion-tolerant systems, such as rampart [367] and secure-ring [242].
The second baseline, periodic, recovers nodes every ∆R time steps but does not
add any new nodes. This is the strategy used in most of the intrusion-tolerant
systems proposed in prior work, including pbft [89], vm-fit [119, 366], worm-it
[100], prrw [434, 433], maftia [445], recover [435], scit [214, 326], coca [524],
spire [35], itcis-prr [432], crutial [57], sbft [161], bft-smart [56], upright
[97], and skynet [145]. The third baseline, periodic-adaptive, recovers nodes
every ∆R time steps and adds a node when oi,t ≥ 2E[Oi,t] (4.2), which approxi-
mates the heuristic strategies used in [384], sitar [77], itsi [337], and itua [345,
421].



184 Paper 4 – Intrusion Tolerance through Two-Level Control

Evaluation results

The results are summarized in Fig. 4.15 and Table 4.8. The brown bars relate to the
equilibrial strategies of Games 4.1 and 4.2. The red bars relate to the case where
the controllers follow best response strategies against a (different) static attacker.
The blue, green, and pink bars relate to the baselines.
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Figure 4.15: Comparison between our game-theoretic strategies and the baselines;
columns represent performance metrics; x-axes indicate values of ∆R; rows relate to the
number of initial nodes N1; error bars indicate the 95% confidence interval from evalua-
tions with 20 random seeds.

The leftmost column in Fig. 4.15 shows the average availability for different val-
ues of ∆R. We observe that the game-theoretic strategies achieve close to 100% ser-
vice availability in all cases we studied. By contrast, no-recovery leads to around
0% availability. The availability achieved by periodic and periodic-adaptive is
in-between; they achieve a high availability when ∆R is small (i.e., when recoveries
are frequent) and a low availability when ∆R → ∞. We note in Table 4.8 (on the
next page) that increasing N1 from 3 to 9 doubles the availability achieved by no-
recovery but has a negligible impact on the performance of the other strategies.

The middle column in Fig. 4.15 shows the average time-to-recovery T (R). We
observe that T (R) of the game-theoretic strategies is an order of magnitude smaller
than that of periodic and periodic-adaptive and two orders of magnitude
smaller than that of no-recovery. This result illustrates the benefit of feedback
control, which allows the system to react promptly to intrusions.

Finally, the rightmost column in Fig. 4.15 shows the average frequency of re-
covery F (R). We note that F (R) of the equilibrium strategy is about the same
as periodic and periodic-adaptive. As expected, F (R) is higher for the best
response strategy than the equilibrium strategy. This result demonstrates the ex-
ploitability of the best response, allowing the attacker to trigger excess recoveries.



Control strategy ∆R = 15 ∆R = 25 ∆R =∞
T (A) T (R) F (R) T (A) T (R) F (R) T (A) T (R) F (R)

N1 = 3
best response 0.99 ± 0.01 1.43± 0.09 0.09± 0.01 0.99 ± 0.01 1.43 ± 0.09 0.09± 0.01 0.99 ± 0.01 1.43± 0.09 0.09± 0.01
equilibrium 0.99 ± 0.01 1.138 ± 0.08 0.06± 0.01 0.99 ± 0.01 1.138 ± 0.0 0.06± 0.01 0.99 ± 0.01 1.138 ± 0.08 0.06± 0.01
no-recovery 0.08± 0.06 103 ± 0.00 0.00 ± 0.00 0.08± 0.06 103 ± 0.00 0.00 ± 0.00 0.08± 0.06 103 ± 0.00 0.00 ± 0.00
periodic 0.97± 0.01 6.06± 1.16 0.065± 0.01 0.93± 0.01 8.64± 1.48 0.04± 0.01 0.08± 0.06 103 ± 0.00 0.00 ± 0.00
periodic-adaptive 0.95± 0.02 5.42± 0.93 0.05± 0.01 0.94± 0.02 6.57± 1.01 0.03± 0.01 0.09± 0.04 103 ± 0.00 0.00 ± 0.00

N1 = 6
best response 0.99 ± 0.01 1.47± 0.07 0.07± 0.01 0.99 ± 0.01 1.47± 0.07 0.07± 0.01 0.99 ± 0.01 1.47± 0.07 0.07± 0.01
equilibrium 0.99 ± 0.01 1.42 ± 0.06 0.05± 0.01 0.99 ± 0.01 1.42 ± 0.07 0.05± 0.01 0.99 ± 0.01 1.42 ± 0.06 0.05± 0.01
no-recovery 0.16± 0.06 103 ± 0.00 0.00 ± 0.00 0.16± 0.06 103 ± 0.00 0.00 ± 0.00 0.16± 0.06 103 ± 0.00 0.00 ± 0.00
periodic 0.98± 0.01 5.96± 1.16 0.065± 0.01 0.95± 0.02 8.13± 1.48 0.04± 0.01 0.16± 0.03 103 ± 0.00 0.00 ± 0.00
periodic-adaptive 0.99 ± 0.01 5.02± 0.34 0.06± 0.01 0.97± 0.02 6.16± 0.54 0.03± 0.01 0.17± 0.03 103 ± 0.00 0.00 ± 0.00

N1 = 9
best response 1.00 ± 0.00 1.44± 0.05 0.07± 0.01 1.00 ± 0.00 1.44± 0.05 0.07± 0.01 1.00 ± 0.00 1.44± 0.05 0.07± 0.01
equilibrium 1.00 ± 0.00 1.42 ± 0.04 0.05± 0.01 1.00 ± 0.00 1.42 ± 0.04 0.05± 0.01 1.00 ± 0.00 1.42 ± 0.04 0.05± 0.01
no-recovery 0.17± 0.04 103 ± 0.00 0.00 ± 0.00 0.17± 0.04 103 ± 0.00 0.00 ± 0.00 0.17± 0.04 103 ± 0.00 0.00 ± 0.00
periodic 0.99± 0.00 5.37± 0.34 0.06± 0.01 0.98± 0.01 7.74± 0.51 0.04± 0.01 0.17± 0.04 103 ± 0.00 0.00 ± 0.00
periodic-adaptive 1.00 ± 0.00 4.44± 0.25 0.06± 0.01 0.99± 0.01 6.01± 0.39 0.04± 0.01 0.18± 0.02 103 ± 0.00 0.00 ± 0.00

Table 4.8: Comparison between our game-theoretic control strategies and the baselines; columns indicate values of ∆R; subcolumns
represent performance metrics; row groups relate to the number of initial nodes N1; numbers indicate the mean and the 95%
confidence interval from evaluations with 20 random seeds.
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Discussion of the testbed results and the theoretical analysis

The key findings from the evaluation and the analysis are summarized below.

 The game-theoretic strategies can achieve a lower time-to-recovery and a
higher service availability than the fixed periodic strategies used in state-
of-the-art intrusion-tolerant systems (Fig. 4.15). The btr constraint and the
availability constraint provide theoretical guarantees. No such guarantees
have been given for the baselines.

 The performance of the game-theoretic strategies depends on the accuracy of
the intrusion detection model zi (4.2); see Fig. 4.9.

 The best response strategies in both Game 4.1 and Game 4.2 have thresh-
old properties (Thms. 4.3–4.5, Cor. 4.1), which allow us to compute them
efficiently (Fig. 4.7, Fig. 4.12).

 The benefit of using an adaptive replication strategy as opposed to a fixed
strategy is mainly prominent when node crashes are frequent; see Fig. 4.12.b
and cf. the results of periodic and periodic-adaptive in Fig. 4.15.

 A non-equilibrium strategy is exploitable in the sense that it allows a strategic
attacker to trigger excess recoveries; cf. the results of equilibrium and best-
response in Fig. 4.15. However, the increase in operational cost caused by
the excess recoveries is relatively small in the scenarios we studied.

While the results demonstrate clear benefits of tolerance compared to current
intrusion-tolerant systems, the performance of tolerance depends on the accu-
racy of the intrusion detection model ẑi; see Fig. 4.14 and Fig. 4.9. This dependence
means that practical deployments of tolerance require a statistical intrusion de-
tection model for estimating the probability of intrusion (4.3). This model can be
realized in many ways. It can, for example, be based on anomaly detection meth-
ods or machine learning techniques. Further, the detection model can use different
data sources, e.g., log files, ids alerts, etc. Our proof-of-concept implementation of
tolerance uses the snort ids (Roesch, 1999) as the data source and obtains the
distribution of ids alerts using maximum likelihood estimation.

4.8 Related Work

Intrusion tolerance is studied in several broad areas of research, including: Byzan-
tine fault tolerance [117], dependability [165, 81], reliability [60], survivability [252],
and cyber resilience [153, 168, 250, 249, 132, 215]. This research effort has led to
many mechanisms for implementing intrusion-tolerant systems, such as: intrusion-
tolerant consensus protocols [117, 165, 81, 60, 118, 505, 161, 15, 97, 56], software
diversification schemes [155], geo-replication schemes [238], cryptographic mecha-
nisms [504, 343], and defenses against denial of service [237]. These mechanisms
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provide the foundation for tolerance, which adds automated recovery and repli-
cation control. While tolerance builds on all of the above works, we limit the fol-
lowing discussion to explain how tolerance differs from current intrusion-tolerant
systems and how it relates to prior work that uses feedback control.

Intrusion-tolerant systems

Intrusion-tolerant systems developed in prior work include pbft [89], zyzzyva
[248], hq [101], hotstuff [505], vm-fit [119, 366], worm-it [100], prrw [434],
recover [435], scit [214, 326], coca [524], [384], spire [35], itcis-prr [432], cru-
tial [57], upright [97], bft-smart [56], sbft [161], sitar [77], itua [345, 421],
maftia [445], itsi [337], and skynet [145]. All of them are based on intrusion-
tolerant consensus protocols and support recovery, either directly or indirectly
through external recovery services, like phoenix [470]. tolerance differs from
these systems in two main ways.

First, tolerance uses feedback control to decide when to perform intrusion
recovery. This contrasts with all referenced systems, which use periodic or heuristic
recovery schemes. (prrw, recover, crutial, scit, sitar, itsi, and itua can be
implemented with feedback-based recovery, but they do not specify how to imple-
ment such recovery strategies.) Second, tolerance uses an adaptive replication
strategy. In comparison, all referenced systems use static replication strategies ex-
cept sitar, [384], itua, and itsi. They implement adaptive replication based on
time-outs and static rules instead of feedback control. The benefit of feedback con-
trol is that it allows the system to adapt promptly to intrusions, not having to wait
for a time-out.

Intrusion response through feedback control

Intrusion response through feedback control is an active area of research that uses
concepts and methods from various emergent and traditional fields. Most notably
from reinforcement learning (see surveys [215, 474, 328]), control theory (see ex-
amples [193, 251, 23, 252, 108]), and game theory (see textbooks [11, 149]). While
these works have obtained promising results, none of them considers the integra-
tion with intrusion-tolerant systems as we do in this paper. Further, a drawback
of the existing solutions is that many are inefficient (compared to our threshold-
based solutions) and lack safety guarantees. Finally, and most importantly, nearly
all of the previous works are limited to simulation environments for evaluation,
and it is unclear how their results generalize to operational systems. In contrast,
our game-theoretic strategies are useful in practice: they can be integrated with
existing intrusion-tolerant systems, they satisfy safety constraints, and they are
computationally efficient.
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4.9 Conclusion

This paper presents tolerance: a novel control architecture for intrusion-tolerant
systems. tolerance is based on a formulation of intrusion tolerance for a system
with service replicas as a two-level game: a local game models intrusion recovery
and a global game models replication control. We prove the existence of equilibria
in both games and derive a threshold structure of the best responses, which en-
ables efficient computation of control strategies. We implement and evaluate the
game-theoretic control strategies on a testbed and assess their performance against
10 types of network intrusions. The testbed results demonstrate that our game-
theoretic strategies can significantly improve service availability and reduce the op-
erational cost of state-of-the-art intrusion-tolerant systems. In addition, our game
strategies can meet any chosen service availability and time-to-recovery, bridging
the gap between theoretical and operational performance.

In the broader context of this thesis, this paper demonstrates the generality of
our methodology16 by applying it to a different type of response use case than those
studied in papers 1–3, namely intrusion tolerance. In this paper, we assume that
both the attacker and the controller have correctly specified models. In the next
chapter of the thesis, we relax this assumption and show how our methodology can
handle cases where the attacker and the controller have misspecified models.
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Appendix

A Proof of Theorem 4.3 and Corollary 4.1

Given an attacker strategy π(A)
i,t , a best response strategy π̃(C)

i,t is an optimal strategy
in a pomdp M (Thm. 4.2). Hence, it suffices to show that there exists an optimal
strategy in M that satisfies the threshold structure in (4.6). Towards this end, we
state and prove the following four lemmas.

Remark 4.16 (Notation). For ease of notation, let Ji(bi,1(C)) denote the cost-to-
go function in the best response pomdp M, i.e., Ji(bi,1(C)) = E

π̃
(C)
i,t

[Ji | bi,1(C)]
(4.4).

Lemma 4.3. The expectation in (4.5) is well-defined for each strategy pair πi.
16See the methodology chapter.
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Proof. Since the sample space of the random vectors (I(C)
t , I(A)

t ) is finite (and mea-
surable) for each t, the space of realizable histories h(C)

t × h(A)
t ∈ Ht is countable.

By the Ionescu Tulcea extension theorem, it thus follows that there exists a well-
defined probability measure P over Ht for t = 1, 2, . . . (Ionescu Tulcea, 1949).
Further, Lemma 4.1 implies that the expectation is finite.

Lemma 4.4. The controller’s best response pomdp M defined in (4.5) with the
btr constraint can be converted into a sequence of unconstrained pomdps (Mk)k≥1.

Proof. Using Lemma 4.1 and Lemma 4.3 we obtain

arg min
π

(C)
i,t

E
π

(C)
i,t

[ ∞∑
t=1

γt−1Ci,t | bi,1(C) = 0
]

(a)= arg min
π

(C)
i,t

[
E

π
(C)
i,t

[
(4.12)

τ1∑
t=1

γt−1Ci,t | bi,t(C) = 0
]

+ E
π

(C)
i,t

[ τ2∑
t=τ1+1

γt−1Ci,t | bi,τ1+1(C) = 0
]

+ . . .

]

= arg min
π

(C)
i,t

E
π

(C)
i,t

[
γτ1Ji(0) +

τ1∑
t=1

γt−1Ci,t | bi,1(C) = 0
]
,

where τi ≜ inf{t | t > τi−1, a
(C)
t = R} is the ith recovery time (stopping time); τ0 =

0; Ci,t is a random variable representing the cost of node i at time t; and (a) follows
from linearity of E. Since Ji(0) is completely determined by the recovery strategy,
it can be seen as a fixed recovery cost. As a consequence, the final expression in
(4.12) defines an optimal stopping problem. (Recall that due to Lemma 4.1, the
crash probability pC,i is captured by γ.)

A.1 Proof of Theorem 4.3
Lemma 1.1 of Paper 1 implies that the recovery set has the form Si,t = [α⋆

i,t, κi,t],
where 0 ≤ α⋆

i,t ≤ κi,t ≤ 1. Thus, it suffices to show that κi,t = 1. Let
c(R) ≜ cN(si,t,R) + γJi(0) be the stopping cost in (4.12). It follows from Bell-
man’s optimality equation that

π
(C)
i,t (1) ∈ arg min

a
(C)
i

∈{R,W}


a

(C)
i

=R︷︸︸︷
c(R) ,

a
(C)
i

=W︷ ︸︸ ︷
cN(C,W) + γE

π
(C)
i,t

[J⋆
i,t+1(1)]


(a)= arg min

a
(C)
i

∈{R,W}

[
c(R), γτ−1c(R) +

τ−1∑
t=1

γt−1cN(C,W)
]

= arg min
a

(C)
i

∈{R,W}

[
c(R), γτ−1c(R) +

τ−1∑
t=1

γt−1η

]
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= arg min
a

(C)
i

∈{R,W}

[
c(R), γτ−1c(R) + η(1− γτ−2)

1− γ

]
(b)= {R},

where (a) follows because si = C is an absorbing state until a recovery occurs (using
the discounted formulation in Lemma 4.1); and (b) follows from (4.4) and the fact
that η > 1, which means that the cost per time step is upper bounded by η (4.4).
Consequently, π̃(C)

i,t (1) = R =⇒ 1 ∈ Si,t =⇒ Si,t = [α⋆
i,t, 1].

A.2 Proof of Corollary 4.1
Theorem 2 in the background chapter states that the cost-to-go function J⋆

i (b(C))
becomes stationary when ∆R → ∞. Therefore, it follows from Thm. 4.3 and
Lemma 1.1 of Paper 1 that there exists a stationary best response strategy. Such
a strategy induces a stationary recovery set Si, which means that α⋆

i (4.6) is time-
independent.

B Proof of Theorem 4.5

Computing a best response for the controller in Game 4.2 amounts to computing
an optimal strategy in a cmdp with the average-cost optimality criterion. Hence,
it suffices to show that there exists an optimal strategy in the cmdp that satisfies
the threshold structure in (4.9).

By introducing a Lagrange multiplier λ ≥ 0 and defining the immediate cost
to be cλ(st, a

(C)
t ) ≜ a

(C)
t + λ1st<f+1 we can reformulate the average-cost cmdp

as a discounted Lagrangian mdp through Lagrangian relaxation (Thm. 3.7, Alt-
man, 1999) and the vanishing discount method (Sennott, 1989). The best response
strategy in this mdp satisfies

π̃
(C)
λ (st) ∈ arg min

a
(C)
t ∈{0,1}

[
cλ(st, a

(C)
t ) + γESt+1

[
J̃λ(St+1) | st, a

(C)
t

] ]
, (4.13)

Lagrangian cost function.

Best response cost-to-go function.

where γ ∈ [0, 1) is a discount factor and J̃λ is the best response cost-to-go function
induced by a best response strategy π̃(C)

λ (Thm. 3.6, Altman, 1999).
Our approach to proving Thm. 4.5 follows the approach described in (Ngo

and Krishnamurthy, 2010). The main steps of the proof are as follows. We first
show that there exists an optimal threshold strategy in the discounted Lagrangian
mdp for any non-negative Lagrange multiplier and discount factor γ ∈ [0, 1); see
Lemma 4.8 on page 192. Next, we use the vanishing discount method to estab-
lish that the threshold structure applies under the average cost optimality criterion
(Sennott, 1989); see Lemma 4.11 on page 193. We then prove that the optimal cost
in the cmdp corresponds to infπ(C) supλ Jλ, where Jλ is the cost-to-go function in
the Lagrangian mdp with the average cost optimality criterion; see Lemma 4.12 on
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page 194. As the sup and inf can be interchanged, an optimal strategy for the cmdp
can be obtained by first computing an optimal strategy in the Lagrangian mdp and
then maximizing with respect to the Lagrange multiplier λ. Then we note that
since the cmdp only has a single constraint (4.7), an optimal strategy in the cmdp
requires at most one randomization (Thm. 4.4, Altman, 1999). Consequently, there
exists an optimal strategy in the cmdp that is a randomized mixture of two optimal
deterministic strategies in the Lagrangian mdp for different Lagrange multipliers
(Thm. 1, Ma et al., 1986). Since there exist optimal threshold strategies in the La-
grangian mdp for any non-negative Lagrange multiplier λ, the theorem statement
follows. We provide proof below, starting with some lemmas.

Lemma 4.5. The expectation in (4.8a) is well-defined for each strategy pair π.

Proof. Since the sample space of (St, A
(C)
t ,A(A)

t ) is finite (and measurable) for each
t, the statement follows from Lemma 4.3.

Lemma 4.6. Given (T5.1), γ ∈ [0, 1), λ ≥ 0, and s > f , then J̃λ has non-
decreasing differences, i.e., J̃λ(s + 1) − J̃λ(s) is non-decreasing in s for all s ∈
SS \ {smax}.

Proof. We establish the non-decreasing differences property using the value iter-
ation algorithm (Eq. 6.3.2–6.3.4, Puterman, 1994). Let J̃λ,k denote the optimal
cost-to-go function at iteration k of value iteration. Then, limk→∞ J̃λ,k = J̃λ (Thm.
6.3.1, Puterman, 1994)(Thm. 6, p. 160, Banach, 1922). Let J̃λ,1(s) = 0 ∀s. Pro-
ceed by mathematical induction.
base case: J̃λ,1(s+ 1)− J̃λ,1(s) = 0 ∀s ∈ SS \ {smax}.
inductive case: Assume that J̃λ,l(s + 1) − J̃λ,l(s) is non-decreasing in s for
l = k − 1, k − 2, . . . , 2 and smax > s > f . We show that these assumptions also
imply that the statement holds for l = k. There are four cases:

1. If π̃(C)
λ (s+ 1) = π̃

(C)
λ (s) = 1, then it follows from (T5.1) that

J̃λ,k(s+ 1)− J̃λ,k(s)
= γES′ [J̃λ,k−1(S′ + 1) | S = s+ 1]− γES′ [J̃λ,k−1(S′ + 1) | S = s]
= ES′ [J̃λ,k−1(S′ + 2)− J̃λ,k−1(S′ + 1) | S = s],

which is non-decreasing in s by the induction hypothesis. (S′ is a random
variable that represents the number of healthy nodes at the subsequent time
step, given that the current state is S = s; this variable depends on the
attacker’s actions and the local control strategies.)

2. If π̃(C)
λ (s+ 1) = π̃

(C)
λ (s) = 0, then it follows from (T5.1) that

J̃λ,k(s+ 1)− J̃λ,k(s)
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= γES′ [J̃λ,k−1(S′) | S = s+ 1]− γES′ [J̃λ,k−1(S′) | S = s]
= ES′ [J̃λ,k−1(S′ + 1)− J̃λ,k−1(S′) | S = s],

which is non-decreasing in s by the induction hypothesis.

3. If π̃(C)
λ (s+ 1) = 0 and π̃

(C)
λ (s) = 1, then (T5.1) implies that

J̃λ,k(s+ 1)− J̃λ,k(s) = γES′ [J̃λ,k−1(S′ + 1)− J̃λ,k−1(S′ + 1) | S = s]− 1
= −1.

4. If π̃(C)
λ (s+ 1) = 1 and π̃

(C)
λ (s) = 0, then (T5.1) implies that

J̃λ,k(s+ 1)− J̃λ,k(s) = 1 + ES′ [J̃λ,k−1(S′ + 2)− J̃λ,k−1(S′) | S = s]
= 1 + ES′ [J̃λ,k−1(S′ + 2)− J̃λ,k−1(S′ + 1)

+ J̃λ,k−1(S′ + 1)− J̃λ,k−1(S′) | S = s],

which is non-decreasing in s by the induction hypothesis.

Let Q̃λ(s, a(C)) be the best response Q-function (6) associated with (4.13).

Lemma 4.7. Given (T5.1), γ ∈ [0, 1), λ ≥ 0, and s > f , then Q̃λ(s, a(C)) is
supermodular.

Proof. Q̃λ is supermodular if the following inequality holds:

Q̃λ(s, 1)− Q̃λ(s, 0) ≤ Q̃λ(s+ 1, 1)− Q̃λ(s+ 1, 0)
(T5.1)⇐⇒ ES′ [J̃λ(S′ + 1)− J̃λ(S′) | S = s] ≤ ES′ [J̃λ(S′ + 2)− J̃λ(S′ + 1) | S = s],

which follows from Lemma 4.6.

Lemma 4.8 (Threshold structure in the discounted Lagrangian mdp). Given
(T5.1), γ ∈ [0, 1) and λ ≥ 0, then there exists an optimal strategy in the discounted
Lagrangian mdp that satisfies (4.13) and has the following form.

π̃
(C)
λ (s) = 1 ⇐⇒ s ≤ β ∀s ∈ SS, (4.14)

where β ≥ f is a threshold.

Proof. We can rewrite (4.13) as

π̃
(C)
λ (st) ∈ arg min

a
(C)
t ∈{0,1}

[
cλ(st, a

(C)
t ) + γESt+1

[
J̃λ(St+1) | st, a

(C)
t

] ]
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= arg min
a

(C)
t ∈{0,1}

Q̃λ(st, a
(C)
t ). (4.15)

Since Q̃λ is supermodular (Lemma 4.7), it follows from Topkis’ theorem (Thm.
6.1, Topkis, 1978) that the minimizer of (4.15) is (weakly) decreasing in s. As a
consequence, there exists a best response strategy that satisfies (4.14).

Lemma 4.9. For some λ ≥ 0, let (γn)n≥1 be any sequence of discount factors
γn ∈ [0, 1] converging to 1. Let (π(C)

λ,γn
)n≥1 be an associated sequence of stationary,

deterministic, best response strategies for the discounted Lagrangian mdp, each of
which satisfies (4.14). Then there exists a subsequence (υn)n≥1 of (γn)n≥1 and
a stationary deterministic strategy π̃

(C)
λ satisfying (4.14) that is a limit point of

(π(C)
λ,υn

)n≥1. That is, for each state s ∈ SS, there exists an integer N(s) such that
π̃

(C)
λ (s) = π

(C)
λ,υn

(s) for all n ≥ N(s).

Proof. This statement is proven in (Hordijk, 1971) and also used in (Derman, 1970).
A more accessible version of the proof is given in (Lemma 1, Sennott, 1989). For
completeness, we give the proof here since it is very short. Let the controller’s
action space {0, 1} be endowed with the discrete topology. By Tychonoff’s theorem
(p. 383, Ash, 1972), the product of compact spaces is compact, and hence {0, 1}|SS|

is compact and metrizable for any value of smax. (Recall that |SS| = smax + 1.)
Every stationary deterministic control strategy can be regarded as a point in this
space. Hence, (π(C)

λ,γn
)n≥1 is a bounded sequence in this space. Therefore, by the

Bolzano–Weierstrass theorem, there exists a subsequence (π(C)
λ,υn

)n≥1 converging to
a deterministic stationary strategy π̃(C)

λ that satisfies (4.14).

Lemma 4.10. Any stationary strategy π̃
(C)
λ obtained by Lemma 4.9 is a best re-

sponse in the Lagrangian mdp obtained by replacing the discounted optimality cri-
terion in (4.13) with the average cost optimality criterion.

The proof of this lemma is given in (Thm. 1, Sennott, 1989) and holds if
Assumptions 1-3′ in (Thm. 1, Sennott, 1989) are satisfied. Assumption 1 asserts
that J⋆

λ(s) is finite for every state s, Lagrange multiplier λ ≥ 0, and discount factor
γ ∈ [0, 1). Assumptions 2–3′ require that the average cost is bounded. These
assumptions follow directly from the definition of Game 4.2 and (T4.1)–(T4.2). In
the interest of space, we do not repeat the full proof here. The proof primarily
relies on Tychonoff’s theorem (p. 383, Ash, 1972), which allows to establish that
the average cost is the limit of a sequence in the space. The statement of the
lemma is then demonstrated by applying Fatou’s lemma (p. 257, Ash, 1972) and
the dominated convergence theorem (p. 50, Ash, 1972).
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Lemma 4.11 (Threshold structure in the undiscounted Lagrangian mdp). The
threshold structure of the discounted Lagrangian mdp defined in (4.14) is inher-
ited by any best response strategy in the undiscounted Lagrangian mdp obtained by
Lemma 4.10.

The proof of this lemma follows from Lemmas 4.5–4.10; see (Thm. 2.2, Remark
1, Ross, 1983) for details.

Lemma 4.12. Let J̃ (4.7) denote the optimal cost-to-go in the best response cmdp
for the controller against an attacker strategy π(A) and let Jλ be the cost-to-go
function in the undiscounted Lagrangian mdp. Then

J̃ = inf
π(C)

sup
λ≥0

Eπ(C) [Jλ(S1)] = sup
λ≥0

inf
π(C)

Eπ(C) [Jλ(S1)].

Proof. That the sup and inf can be interchanged follows from standard minimax
theorems, see (Thm. 3.6, Altman, 1999). Hence, it only remains to prove that the
best response cost J̃ is equal the optimal cost infπ(C) Eπ(C) [Jλ(S1)] in the undis-
counted Lagrangian mdp when taking the supremum with respect to the Lagrange
multiplier λ. If the constraint (4.8b) is not feasible, then supλ≥0 Eπ(C) [Jλ(S1)] =∞
for any π(C) and thus J̃ = infπ(C) supλ≥0 Eπ(C) [Jλ(S1)]. If (4.8b) is feasible, then
the supremum is obtained by choosing λ = 0. Consequently, Eπ(C) [Jλ(S1)] = J
(4.7). Hence infπ(C) supλ≥0 Eπ(C) [Jλ(S1)] = infπ(C) Eπ(C) [J ] = J̃ .

B.1 Proof of Theorem 4.5 (Threshold Structure in the cmdp)
A well-known result in Lagrangian dynamic programming theory is that, given a
finite cmdp with a single constraint, there exists an optimal strategy that is a ran-
domized mixture of two optimal, deterministic, stationary strategies of the induced
Lagrangian mdp (4.13) with different Lagrange multipliers λ1 and λ2 (Thm. 1,
Ma et al., 1986)(Thm. 6.6.2, Krishnamurthy, 2016)(Thm. 12.7, Altman, 1999).
Lemma 4.12 implies that the Lagrange multipliers can be obtained by first comput-
ing the optimal strategies in the Lagrangian mdp and then taking the supremum
over the set of non-negative Lagrange multipliers. Lemma 4.11 implies that for each
non-negative Lagrange multiplier, there exists a stationary, deterministic strategy
that has the threshold structure in (4.10). Combined, these three properties imply
the statement of Thm. 4.5.

C Proof of Corollary 4.2

Consider the mdp faced by the attacker when fixing the control strategy π(C) and
assume that π(C) satisfies (4.10). The reward function in this mdp is the cost
function of the controller, i.e., r(a(C)) = a(C) (4.7). Since this mdp is unichain and
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the objective is the average reward criterion, the optimality equation reads

0 = max
a(A)

[
π(C)(s)− g +

∑
s′∈SS

fS(s′ | s, π(C),a(A))J(s′)− J(s)
]
,

where fS is the transition function and g is the best response average reward:

g ≜ lim
T →∞

1
T
E(St)t≥1,π̃(A)

[
T∑

t=1
π(C)(St) | s1

]
. (4.16)

Here J(s) is the (differential) value function, which measures the transient reward
effects of being in state s as opposed to the average reward g (Eq. 8.4.2, Thm. 8.4.3,
Puterman, 1994)(Thm. 6.5.2, Krishnamurthy, 2016). It follows from Thm. 4.4.A
that the above limit exists (Thm. 8.4.5, Puterman, 1994). Therefore, any best
response strategy π̃(A) for the attacker satisfies

π̃(A)(s) ∈ arg max
a(A)

[ ∑
s′∈SS

fS(s′ | s, π(C),a(A))J(s′)
]
.

We will show that this maximization is equivalent to minimizing E[S′]. Towards
this end, we prove the following two lemmas.

Lemma 4.13. (T5.1) implies that fS(s′ | s,π) is stochastically monotone in s.

Proof. (T5.1) states that

Eπ[St+1 | St = s+ 1] = Eπ[St+1 | St = s] + 1

=⇒
∑

s′∈SS

s′fS(s′ | S = s+ 1,π) = 1 +
∑

s′∈SS

s′fS(s′ | S = s,π)

=⇒
∑

s′′∈{x|x∈SS,x≥s′}

fS(s′′ | S = s+ 1,π) ≥
∑

s′′∈{x|x∈SS,x≥s′}

fS(s′′ | S = s,π),

for all s′ ∈ SS.

Lemma 4.14. Given (T5.1) and assuming each π(C) satisfies (4.10), then J(s)
(4.16) is decreasing in s for each strategy profile π.

Proof. Applying the same argument as in Lemma 4.6–Lemma 4.11, we can use
mathematical induction on the iterates of the value iteration algorithm J0, J1, . . .
and use the vanishing discount method (Eq. 6.3.2–6.3.4, Puterman, 1994). Let
J0(s) = 0 ∀s ∈ SS. The inductive base case holds trivially. Assume by induction
that Jk−1(s) is decreasing in s. By definition,

Jk(s) = E[A(C) | π(C), s] + γ
∑

s′∈SS

fS(s′ | s,π)Jk−1(s′).
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(4.10) implies that

E[A(C) | π(C), s] =


1 if s ≤ min[β1, β2]
1− κ if β1 < s ≤ β2

κ if β2 < s ≤ β1

0 if s > max[β1, β2].

(4.17)

Hence, E[A(C) | π(C), s] is decreasing in s. Thus, it only remains to show that∑
s′∈SS

fS(s′ | s,π)Jk−1(s′) is decreasing in s. (T5.1) implies that fS(s′ | s,π) is
stochastically monotone in s for each π (Lemma 4.13) and the induction assumption
implies that Jk−1(s) is decreasing in s. Consequently, given any two states s1 < s2,
we have ∑

s′∈SS

fS(s′ | s2,π)Jk−1(s′) ≤
∑

s′∈SS

fS(s′ | s1,π)Jk−1(s′).

Hence,
∑

s′∈SS
fS(s′ | s,π)Jk−1(s′) is decreasing in s.

Finally, we are ready to the prove Corollary 4.2. Lemma 4.14 implies that

π̃(A)(s) ∈ arg max
a(A)

ES′

[
J(S′) | s,a(A), π(C)

]
= arg min

a(A)
ES′

[
S′ | s,a(A), π(C)

]
.

D Preference Relations

It follows from (4.4) that the outcome of Game 4.1 is determined by the number
of recoveries and the number of time steps in the compromised state C. Let α and
β denote the average number of recoveries and time steps in state C, respectively.
The game’s outcome can then be defined as o ≜ ηα̃+ β̃. Given this definition, the
controller’s preference relation ≻i induced by Ji (4.4) can be expressed as

o ≻i õ ⇐⇒ o < õ o ≈i õ ⇐⇒ o = õ. (4.18)

Theorem 4.6. The preference relation ⪰i (4.18) of Game 1 satisfies the von
Neumann-Morgenstern axioms (p. 26, von Neumann and Morgenstern, 1944).

Proof. By definition (4.18), ⪰i is reflexive, transitive and complete. Hence, it only
remains to prove the continuity, monotonicity, and independence axioms. We start
with the continuity axiom. Consider three outcomes o1 ⪯i o2 ⪯i o3. We need to
show that there exists a probability θi ∈ [0, 1] such that

o2 = θio3 + (1− θi)o1.

Solving for θi, we get:

θi = o2 − o1

o3 − o1
.
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It follows from (4.18) that o2 ≥ o3. Hence, θi ∈ [0, 1].
Next, consider the monotonicity axiom. Suppose o2 ⪰i o1 and let a, b be values

in [0, 1]. We need to show that ao2 + (1 − a)o1 ≤ bo2 + (1 − b)o1 =⇒ a ≥ b. We
have

ao2 + (1− a)o1 ≤ bo2 + (1− b)o1 =⇒ o2(a− b) ≤ o1(a− b).

Since o2 ≤ o1, the above inequality implies that a ≥ b.
Now consider the independence axiom. Given two outcomes o1 ⪯i o2, any

z ∈ R+, and any p ∈ (0, 1), the axiom asserts that we must have po1 + (1− p)z ≤
po2 + (1− p)z. This can be verified as follows.

po1 + (1− p)z ≤ po2 + (1− p)z =⇒ po1 ≤ po2 =⇒ o1 ≤ o2, (4.19)

which holds by definition of ⪰i (4.18).

Corollary 4.3. The preference relation ⪰ of Game 2 satisfies the von Neumann-
Morgenstern axioms (p. 26, von Neumann and Morgenstern, 1944).

Proof. It follows from (4.7) that the outcome of the game (given that the constraint
is feasible) is determined by the number of added nodes. Let α denote the average
number of added nodes. Then, the game’s outcome can be defined as o ≜ α, and
the preference relation is equivalent to (4.18).

E Intrusion-Tolerant Consensus Protocol

The tolerance architecture (Fig. 4.3 on page 159) is based on a reconfigurable
consensus protocol for the partially synchronous system model with hybrid fail-
ures, a reliable network, and authenticated communication links (see Prop. 4.1)17.
Examples of such protocols include minbft [392, §4.2], minzyzzyva [392, §4.3],
reminbft [118, §5], and cheapbft [230, §3]. Our implementation uses minbft.
Correctness of minbft is proven in (Santos Veronese, 2010). minbft is based on
pbft (Castro and Liskov, 2002) with one crucial difference. While pbft assumes
Byzantine failures and tolerates f = N−1

3 failures, minbft assumes hybrid failures
(Correia et al., 2007) and tolerates f = N−1

2 failures. The improved resilience of
minbft is achieved by leveraging a trusted component that provides certain func-
tions for the protocol. In particular, minbft relies on a tamperproof service at each
node to assert whether a given sequence number was assigned to a message. This
service allows minbft to prevent equivocation18 (Chun et al., 2007) and imposes a
first-in-first-out (fifo) order on client requests. In tolerance, the tamperproof
service is provided by the virtualization layer; see Fig. 4.3 on page 159.

17In an authenticated network, nodes can verify each other’s digital signatures.
18A compromised node is said to equivocate if it sends inconsistent information to different

nodes in the system.



198 Paper 4 – Intrusion Tolerance through Two-Level Control

We extend minbft (§4.2, Santos Veronese, 2010) to be reconfigurable (Lam-
port et al., 2010), where the reconfiguration procedure is based on the method
described in (§IV.B,, Hao et al., 2018). (A reconfigurable consensus protocol allows
dynamic addition and removal of nodes from the system.) The different stages of
the protocol are illustrated in Fig. 4.16 on the next page, and the throughput of
our implementation is shown in Fig. 4.13 on page 180. The hyperparameters are
listed in Appendix G.
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Figure 4.16: Time-space diagrams illustrating the message patterns of the minbft
intrusion-tolerant consensus protocol (§4.2, Santos Veronese, 2010).
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F Hyperparameters

Hyperparameters for the experimental results are listed in Table 4.9. Confidence
levels for all figures are computed based on the Student-t distribution.

Figures Values
Figure 4.4.b pC,i = 0
Figure 4.10 pC,i = 10−5

Figure 4.6.a η = 2, pA,i = 0.05, pC,i = 0.01, ∆R = 100, |O| = 100
zi(· | 0) = BetaBin(n = 100, α = 0.7, β = 3)
zi(· | 1) = BetaBin(n = 100, α = 1, β = 0.7
π

(A)
i,t (s, b) = A

Figure 4.6.b pC,i = 0.01, ∆R =∞, |O| = 100
zi(· | 0) = BetaBin(n = 100, α = 0.7, β = 3)
zi(· | 1) = BetaBin(n = 100, α = 1, β = 0.7

Figure 4.15 pC,i = 0.01, pA,i = 0.5, ∆R =∞, |O| = 100
zi(· | 0) = BetaBin(n = 100, α = 0.7, β = 3)
zi(· | 1) = BetaBin(n = 100, α = 1, β = 0.7
∆R for periodic was selected using bo [403, Alg. 1].

Figure 4.9 pC,i = 0.05, pA,i = 0.3, ∆R =∞, |O| = 100
zi(· | 0) = BetaBin(n = 100, α = 0.7, β = 3)
zi(· | 1) = BetaBin(n = 100, α = 1, β = 0.7

Figure 4.12 pA,i = 10−1, pC,i = 10−5, ϵA = 0.9
smax = 13, η = 2, f = min[ N1−1

2 , 2]
fS estimated from simulations of Game 1
zi estimated from testbed measurements, see Fig. 4.14

Figure 4.15 pA,i = 10−1, pC,i = 10−5, ϵA = 0.9,
smax = 13, η = 2, f = min[ N1−1

2 , 2]
fS estimated from simulations of Game 4.2,
zi estimated from testbed measurements, see Fig. 4.14

Incremental pruning [88, Fig. 4]
Variation, ϵ normal, 0
spsa [436, Fig. 1]
c, ϵ, λ,A, a,N, δ 10, 0.101, 0.602, 100, 1, 50, 0.2
M number of samples for each evaluation 50
Cross-entropy method [380][316, Alg. 1]
λ (fraction of samples to keep) 0.15, 100
K population size 100
M number of samples for each evaluation 50
Differential evolution [443, Fig. 3]
Population size K, mutate step 10, 0.2
Recombination rate 0.7
M number of samples for each evaluation 50
Bayesian optimization [403, Alg. 1]
Acquisition function lower confidence bound [438, Alg. 1]
β, Kernel 2.5, Matern(2.5)
M number of samples for each evaluation 50
hsvi [200, Alg. 3]
ϵ, pdelta, plimit 0.001, 0.005, 2000
minbft [392, §4.2]
usig implementation rsa with key lengths 1024 bits [371]
Texec, Tvc, cp, L 30 seconds, 280 seconds, 102, 103

Table 4.9: Hyperparameters.
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AUTOMATED SECURITY RESPONSE
THROUGH ONLINE LEARNING WITH

ADAPTIVE CONJECTURES

Kim Hammar, Tao Li, Rolf Stadler, and Quanyan Zhu
Abstract

We study automated security response for an it infrastructure and formu-
late the interaction between an attacker and a defender as a partially observed,
non-stationary game. We relax the standard assumption that the game model
is correctly specified and consider that each player has a probabilistic con-
jecture about the model, which may be misspecified in the sense that the
true model has probability 0. This formulation allows us to capture uncer-
tainty and misconceptions about the infrastructure and the opponent. To
learn effective game strategies online, we design Conjectural Online Learning
(col), a novel method where a player iteratively adapts its conjecture using
Bayesian learning and updates its strategy through rollout. We prove that
the conjectures converge to best fits, and we provide a bound on the per-
formance improvement that rollout enables with a conjectured model. To
characterize the steady state of the game, we propose a variant of the Berk-
Nash equilibrium. We present col through an advanced persistent threat use
case. Testbed evaluations show that col produces effective security strategies
that adapt to a changing environment. We also find that col enables faster
convergence than current reinforcement learning techniques.

†The paper is published as
K. Hammar, T. Li, R. Stadler, and Q. Zhu (2024), “Automated Security Response through
Online Learning with Adaptive Conjectures [174].”. To appear in IEEE Transactions on
Information Forensics and Security (TIFS).
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on Decision and Control (CDC), Milan, Italy.
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All models are wrong, but some are useful.
— George E. P. Box 1976, Science and statistics.

5.1 Introduction

This paper addresses a limitation of papers 1–4, which assume that a perfect
model of the underlying it infrastructure can be obtained. This assump-
tion is unrealistic because attackers and defenders often have incorrect

prior knowledge about the infrastructure and the opponent, which means that they
generally have misspecified models.

notpetya is a malware that was used by the sandworm Advanced Per-
sistent Threat (apt) in a worldwide attack in 2017 (U.S. Department of
Justice, 2020). Security researchers initially conjectured that notpetya
was a version of the petya ransomware (hence the name) (The MITRE
Corporation, 2024). As a result, many organizations focused on tradi-
tional ransomware response strategies. However, it later became evident
that the malware was not financially motivated but designed for destruc-
tion. This misspecification delayed effective responses.

Motivating example: The NOTPETYA attack.

In this paper, we address the above misspecification and present Conjectural Online
Learning (col), a game-theoretic method for online learning of security strategies
that applies to dynamic it environments where attackers and defenders have mis-
conceptions about the environment and the opponent’s strategy. Using this method,
we formulate the interaction between an attacker and a defender as a non-stationary,
partially observed game. We relax the standard assumption that the game model
is correctly specified and consider the case where each player has a probabilistic
conjecture about the model, i.e., a probability distribution over possible models,
which may be misspecified in the sense that the true model has probability 0. Both
players iteratively adapt their conjecture using Bayesian learning (see Fig. 5.1 on
the next page) and update their strategies using rollout, which is a form of approx-
imate dynamic programming (Bertsekas, 2021). We prove that the conjectures in
col converge to best fits, and we provide a bound on the performance improvement
that rollout enables with a conjectured model. To characterize the steady state of
the game, we define a variant of the Berk-Nash Equilibrium (bne) (Def. 1, Esponda
and Pouzo, 2016), which represents a fixed point where players act optimally given
their conjectures.



Introduction 203
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Figure 5.1: Conjectural Online Learning (col): we formulate the interaction between
an attacker and a defender as a non-stationary game; each player has a probabilistic
conjecture about the game model, which may be misspecified in the sense that the true
model has probability 0; the conjectures are iteratively adapted through Bayesian learning.

While the study of learning with misspecified models has attracted long-
standing interest in economics (Arrow and Green, 1973), engineering (Kagel and
Levin, 1986), and psychology (Rabin, 2002), it remains unexplored in the security
context. Related research in the security literature include (i) game-theoretic ap-
proaches based on bounded rationality [418, 389, 376, 90, 390, 151, 91, 423, 483,
36, 1, 301]; (ii) game-theoretic approaches based on imperfect and incomplete in-
formation [471, 178, 183, 33, 11]; and (iii) model-free learning techniques [147,
507, 206, 281, 156, 279, 178, 179, 183, 185, 3]. (A review of related work can be
found in §5.8.) To our knowledge, we provide the first study of learning with mis-
specified models in a security context. The benefit of this approach is threefold.
First, it provides a new methodology to capture uncertainty and misspecification
in security games. Second, as we show in this paper, it applies to dynamic, non-
stationary, and partially observed games. Third, the model conjectures produced
by our method are guaranteed to converge under reasonable conditions, and the
worst-case performance of the learned strategies is bounded.
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We present col through a use case that involves an Advanced Persistent Threat
(apt) on an it infrastructure; see Fig. 3 in the introduction chapter. We emulate
this infrastructure with a digital twin, which we create using csle, as described
in the methodology chapter (Hammar, 2023). We use the twin to run apt actions
and defender responses. During such runs, we collect measurements and logs, from
which we estimate infrastructure statistics. This data is then used to instantiate
simulations of the use case, based on which we evaluate the performance of col.
We find that col produces effective security strategies that adapt to a changing
environment. The simulations also show that col enables faster convergence than
current reinforcement learning techniques. In addition to the simulation studies,
we evaluate col on the digital twin and compare it against the snort Intrusion
Detection and Prevention System (idps) (Roesch, 1999). The results attest that
col adapts to changes in the distribution of network traffic and outperforms snort
in several key metrics. Specifically, it blocks a higher percentage of attack attempts
and a lower percentage of client traffic.

Contributions

1. We introduce a novel game-theoretic formulation for the problem of auto-
mated security response where each player (i.e., attacker or defender) has a
probabilistic conjecture about the game model. This formulation allows us to
capture model misspecification and uncertainty.

2. We present col, a new method for online learning of game strategies where a
player iteratively adapts its conjecture using Bayesian learning and updates
its strategy through rollout. This method allows us to automatically adapt
security strategies to changes in the environment.

3. We prove that, when using col, the conjectures of both players converge,
and we characterize the steady state as a variant of the Berk-Nash equilib-
rium (Def. 1, Esponda and Pouzo, 2016). We also provide a bound on the
performance improvement that rollout enables with a conjectured model.

4. We evaluate col using simulation and emulation studies based on a digital
twin running 64 virtualized servers and 10 different types of apts (Ham-
mar, 2023). This evaluation provides insights into how col performs under
different conditions and shows that it converges faster than current reinforce-
ment learning techniques. It also shows that col outperforms the snort idps
in several key metrics (Roesch, 1999).

5.2 Use Case: Advanced Persistent Threat (APT)

We consider the problem of defending an organization’s it infrastructure against
an apt caused by an attacker (Moothedath et al., 2020). The operator of the
infrastructure, which we call the defender, takes measures to protect it against the
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attacker while providing services to a client population; see Fig. 3 in the introduction
chapter. The infrastructure includes a set of servers and an Intrusion Detection
System (ids) that logs events in real-time. Clients access the services through a
public gateway, which is also open to the attacker.

The attacker aims to intrude on the infrastructure over an extended period. It
begins with reconnaissance to identify vulnerabilities, after which it attempts to
compromise servers through exploits. Once inside the infrastructure, the attacker
employs lateral movement techniques, escalates privileges, and uses advanced eva-
sion tactics to avoid detection.

The defender monitors the infrastructure by observing ids alerts. It can recover
potentially compromised servers (e.g., by upgrading their software), which tem-
porarily disrupts service for clients. When deciding to take this response action,
the defender balances two conflicting objectives: (i) maintain services to its clients;
and (ii) recover compromised servers.

5.3 Game Model of the APT Use Case

We formulate the above use case as a zero-sum stochastic game with one-sided
partial observability (a posg)2

Γ ≜ ⟨N ,S, (Ak)k∈N , f, c, γ,b1, z,O⟩. (5.1)

The game has two players: the (D)efender and the (A)ttacker. In the following
subsections, we define the components of the game, its evolution, and the players’
objectives. The requisite notation is listed in Table 5.1 on the next page.

Actions

Both players can invoke two actions: (S)top and (C)ontinue. The action spaces
are thus AD ≜ AA ≜ {S,C}. S triggers a change in the game state while C is a
passive action that does not change the state. Specifically, a(A)

t = S is the attacker’s
compromise action, and a

(D)
t = S is the defender’s recovery action (as defined in

the use case §5.2).

Dynamics

The state st ∈ S ≜ {0, 1, . . . , N} represents the number of compromised servers at
time t, where s1 = 0. The transition st → st+1 occurs with probability f

(
st+1 |

st, a
(D)
t , a

(A)
t

)
:

f(St+1 = 0 | st,S, a(A)
t ) ≜ 1 (5.2a)

f(St+1 = st | st,C,C) ≜ f(St+1 = N | N,C,S) ≜ 1 (5.2b)
2The components of a posg are defined the background chapter; see (19).
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f(St+1 = st | st,C,S) ≜ 1− pA st < N (5.2c)
f(St+1 = st + 1 | st,C,S) ≜ pA st < N, (5.2d)

where pA is the probability of a successful attack. All other transitions have prob-
ability 0; see Fig. 5.2 on the next page. (5.2a) defines the transition st → 0, which
occurs when the defender takes action S. (5.2b)–(5.2c) define the recurrent transi-
tion st+1 = st, which occurs when both players take action C or when the attacker
is unsuccessful in compromising a server, which happens with probability 1 − pA.
Lastly, (5.2d) defines the transition st → st + 1, which occurs with probability pA
when the attacker takes action S, st < N , and the defender takes action C.

Notation(s) Description
Γ, c,N The game (5.1), cost function (5.6), and # servers (5.2).
D,A The defender player and the attacker player (5.1).
N ,S,O Sets of players, states, and observations (5.1).
AD,AA Sets of defender and attacker actions (5.1).
t, γ Time step and discount factor (5.7).
πD, πA Defender and attacker strategies.
Π = ΠD ×ΠA Defender and attacker strategy spaces.
π̃D, π̃A Best response strategies (5.8).
π⋆ = (π⋆

D, π
⋆
A) Nash equilibrium strategies (5.10).

BD,BA Best response correspondences (5.8).
JD, JA Defender and attacker objectives (5.7).
f, z Transition function (5.2) and observation function (5.4).
st, ot State (5.2) and observation (5.4) at time t.
at = (a(D)

t , a
(A)
t ) Actions at time t.

St, Ot,At Random variables (vector) with realizations st (5.2), ot (5.4), and at.
bt,Bt Defender belief (bt realizes the random vector Bt) (5.5).
B,B Belief space and belief operator of the defender (22).
h(k)

t ,ht History of player k and joint history.
H(k)

t ,Ht Random vectors with realizations h(k)
t and ht.

Ht = H(D)
t ×H(A)

t History spaces.
S,C Stop and continue actions.
π−k,t Player k’s conjecture of player −k’s strategy (Alg. 5.1).
ℓD, ℓA, ℓ−k,t Lookahead horizons (Alg. 5.1) and player k’s conjecture.
θt,θ

(k)
t Parameter vector of Γ and player k’s conjecture of θt at time t (5.14a).

L,Θk Player k’s sets of possible conjectures of ℓA and θ (5.14).
L⋆,Θ⋆

k Sets of consistent conjectures (5.16).
i(k)
t , I(k)

t Information feedback of player k at time t (5.3).
µt, ρ

(k)
t Posteriors P[ℓA | h(D)

t ] (5.14b) and P[θ(k)
t | h(k)

t ] (5.14a).
ν,K(α, ν) Occupancy measure and discrepancy of conjecture α (5.15).
π1,k, πt,k Base and rollout strategy of player k at time t (5.12).
πht

Strategy profile induced by Alg. 5.1 at time t.
R, PR Rollout operator (5.12), distribution over

t≥1
(H(D)

t ×H(A)
t ) (Thm. 5.4).

K⋆
L,K

⋆
Θk

Minimal discrepancy values for L and Θk (5.16).

Table 5.1: Variables and symbols used in the model.
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0 1 N − 1 N. . .

a
(D)
t = S

pA pA

1− pA 1− pA 1− pA

Figure 5.2: State transition diagram of the game Γ: disks represent states; arrows rep-
resent transitions; labels indicate conditions for transition; the initial state is s1 = 0.

Observability

The attacker has complete observability. It knows the game state, the defender’s
actions, and the defender’s observations3. In contrast, the defender has a finite set
of observations ot ∈ O. Consequently, the information feedbacks for the attacker
and the defender at time t are

i(A)
t ≜ (ot, st, a

(D)
t−1) and i(D)

t ≜ (ot), (5.3)

respectively, where ot is drawn from a random variable Ot whose distribution de-
pends on the state, i.e.,

ot ∼ z(· | st). (5.4)

Remark 5.1 (Modeling clients). The clients are implicitly modeled by z (5.4).

Each player k has perfect recall (Def. 7, Kuhn, 1953), which means that it
remember the history h(k)

t ≜ (b1, (a(k)
l , i(k)

l )l=1,2,...) ∈ H(k)
t . Based on this history,

the defender uses B (22)4 to compute the belief state

bt(st) ≜ P[St = st | h(D)
t ] ∈ B, (5.5)

as defined in the background chapter. (bt can be computed by the attacker also.)

Strategies and objectives

Since bt is a sufficient statistic for st (5.2) (Def. 4.2, Lem. 5.1, Thm. 7.1, Kumar
and Varaiya, 1986), we can define the players’ behavior Markov strategies as πD ∈
ΠD ≜ B → ∆(AD) and πA ∈ ΠA ≜ B × S → ∆(AA) (Def. 5, Kuhn, 1953). Their
performances are quantified using the cost function

c(st, a
(D)
t ) ≜

intrusion cost︷ ︸︸ ︷
sp

t1a
(D)
t ̸=S +

response action cost︷ ︸︸ ︷
1

a
(D)
t =S(q − r1st>0), (5.6)

3See Assumption 6 in the problem chapter.
4The equation to compute the belief state is defined in the background chapter; see (22).
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where p ≥ 1, q > 0, and r > 0 are scalar constants satisfying 1 > q − r; see
Fig. 5.3. The first term in (5.6) encodes the intrusion cost sp

t , which increases with
the number of compromised servers st. The second term in (5.6) encodes the cost
of the defender’s stop action, which is q − r if an intrusion occurs and q otherwise.

2 4 6 8 10 12 14 16 18 20

20

40

a
(D)
t = C a

(D)
t = S

st

c(st, a
(D)
t )

Figure 5.3: Example cost function c(st, a
(D)
t ) (5.6); see Appendix F for hyperparameters.

The goal of the defender is to minimize the expected cumulative (discounted)
cost, and the goal of the attacker is to maximize the same quantity. Therefore, the
objective functions are

J
(πD,πA)
D (b1) ≜ E(πD,πA)

[ ∞∑
t=1

γt−1c(St, A
(D)
t ) | b1

]
(5.7a)

J
(πD,πA)
A (b1) ≜ −J (πD,πA)

D (b1), (5.7b)

where γ ∈ [0, 1) is a discount factor and E(πD,πA) is the expectation over the random
vectors (H(D)

t ,H(A)
t )t∈{1,2,...} when the game is played according to (πD, πA).

A defender strategy π̃D ∈ ΠD is a best response against πA ∈ ΠA if it minimizes
J

(πD,πA)
D (5.7a). Conversely, an attacker strategy π̃A is a best response against πD

if it maximizes J (πD,πA)
D (5.7b). Hence, the best response correspondences are

BD(πA) ≜ arg min
πD∈ΠD

J
(πD,πA)
D (b1) (5.8a)

BA(πD) ≜ arg max
πA∈ΠA

J
(πD,πA)
D (b1). (5.8b)

When the infrastructure contains a single server (N = 1), there exist best responses
with threshold structure, as stated below.

Theorem 5.1 (Threshold structure of best responses when N = 1).
If N = 1, then

(A) For any πA ∈ ΠA, there exists a value α⋆ ∈ [0, 1] and a best response π̃D ∈
BD(πA) (5.8a) that satisfies

π̃D(b) = S ⇐⇒ b(1) ≥ α⋆. (5.9a)
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(B) Assuming πA(e1, 0) = S for all πA ∈ ΠA, where e1 = (1, 0). Then, for any
πD ∈ ΠD that satisfies (5.9a), there exists a value β⋆ ∈ [0, 1] and a best
response π̃A ∈ BA(πD) (5.8b) that satisfies

π̃A(b, s) = S ⇐⇒ s = 0, b(1) ≤ β⋆. (5.9b)

The above theorem implies that when N = 1, the best responses can be pa-
rameterized by thresholds, which allows formulating (5.8a)–(5.8b) as parametric
optimization problems that can be solved using Alg. 4.1 of Paper 4. Figure 5.4
shows the convergence curves when performing these optimizations with the Cross-
Entropy Method (cem) (Rubinstein, 1999). We provide proof in Appendix A.

2 4 6 8 10 12 14 16 18 20

20
30
40
50

Attacker learning Defender learning

J
(π)
D

Iterations

Figure 5.4: Best response learning when N = 1 using cem (Rubinstein, 1999) and the
structural result in Thm. 5.1; the curves show the mean and the 95% confidence interval
from evaluations with 20 random seeds; hyperparameters are listed in Appendix F.

Remark 5.2 (Finite and stationary zero-sum game). Γ is a finite, stationary, and
zero-sum posg which satisfies assumptions 1–3 in the background chapter.

Equilibria

When the attacker and the defender play best responses, their strategy pair is a
Nash equilibrium (ne) and can be written as

π⋆ ≜ (π⋆
D, π

⋆
A) ∈ BD(π⋆

A)×BA(π⋆
D). (Eq. 1, Nash, 1951) (5.10)

This equilibrium solves the following minimax problem (von Neumann, 1928).

minimize
πD∈ΠD

maximize
πA∈ΠA

J
(πD,πA)
D (b1) (5.11a)

subject to st+1 ∼ f
(
· | st,at

)
∀t ≥ 1 (5.11b)

ot ∼ z
(
· | st) ∀t ≥ 2 (5.11c)

a
(A)
t ∼ πA

(
· | bt, st

)
∀t ≥ 1 (5.11d)

a
(D)
t ∼ πD

(
· | bt

)
∀t ≥ 1 (5.11e)

s1 ∼ b1, (5.11f)
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where (5.11b) is the dynamics constraint; (5.11c) describes the observations;
(5.11d)–(5.11e) capture the actions; and (5.11f) defines the initial state distribution.

Remark 5.3. We write min max instead of inf sup since (5.11) has a solution.

While any strategy pair π⋆ that satisfies (5.10) is a ne, (5.11) implies that π⋆

together with B (22) can form a stronger equilibrium, namely a Perfect Bayesian
equilibrium (pbe), see Def. 4 in the background chapter. It follows from Thm. 3 in
the background chapter that such an equilibrium exists, as formally stated below.

Theorem 5.2 (Existence of equilibria and best responses).
Given the instantiation of Γ described in §5.3, the following holds.

(A) |BD(πA)| > 0 and |BA(πD)| > 0 ∀(πA, πD) ∈ ΠA ×ΠD.

(B) Γ has a pbe.

Figure 5.5 shows the value of a pbe when N = 1. Interestingly, the expected
cost is the highest when b(1) (belief of compromise) is 0.35 rather than5 0.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2
4
6
8

alpha vectors J⋆
D(b) (5.11)

b(1)

Figure 5.5: The equilibrium value (5.11) of Γ when N = 1 (computed with the hsvi algo-
rithm (Alg. 1, Horák et al., 2017)), see Fig. 5.6; J⋆

D(b) = mini[1−b(1), b(1)]Tα(i), where
α(i) is an alpha vector (Def. 1, Sondik, 1978); see Appendix F for the hyperparameters.
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Figure 5.6: Time required to compute a Perfect Bayesian equilibrium (pbe) of Γ (5.1)
with hsvi (Alg. 1, Horák et al., 2017) for different values of N (Fig. 5.6.a) and |O|
(Fig. 5.6.b); error bars indicate the 95% confidence interval based on 20 measurements;
hyperparameters are listed in Appendix F.

5This finding is similar to the value function shown in Fig. 2.9 of Paper 2.
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5.4 Problem Statement

While the equilibrium defined above describes how the game ought to be played by
rational players, computing it is generally intractable, as illustrated in Fig. 5.6. Fur-
ther, the equilibrium assumes a stationary game where both players have correctly
specified models, which is unrealistic. To address these limitations, we relax the
standard assumptions and consider a setting where the game is non-stationary and
players have misspecified models. In particular, we consider the following problem.

Problem 5.1 (Non-stationary game with misspecification). We consider a game
Γθt

based on (5.1) that is parameterized by a time-dependent vector θt, which is
hidden from the players. This vector can represent the transition function (5.2),
the observation function (5.4), etc. The game parameters not included in θt are
defined in §5.3 and known to both players. Player k has a conjecture of θt, denoted
by θ(k)

t ∈ Θk, which is misspecified if θt ̸∈ Θk. As θt evolves, player k adapts its
conjecture based on feedback i(k)

t (5.3) and uses the conjecture to update its strategy
πk,t, starting from a base strategy πk,1

6. Strategy updates are parameterized by a
lookahead horizon ℓk, which can be understood as a computational constraint. The
defender conjectures ℓA as ℓA ∈ L, which captures the defender’s uncertainty about
the attacker’s computational capacity. Following Assumption 6 in the problem
chapter, we assume the attacker knows ℓD and the defender’s conjectures.

We illustrate Prob. 5.1 using the following examples.

A defender detects an intrusion on the infrastructure and decides to block
incoming connections at the gateway, which stops the intrusion with cer-
tainty according to its conjectured transition model θ(D)

t ∈ ΘD (5.2).
However, it fails to realize that the attacker has installed a backdoor that
allows access through outgoing connections. Hence, the defender is mis-
specified and θt ̸∈ ΘD.

Example: Backdoor.

An attacker has performed reconnaissance and is certain about the con-
figuration of the infrastructure, i.e., ΘA = {θ1}, where θ1 represents the
complete game model (5.1). However, it fails to realize that the defender
employs moving target defense and regularly changes the configuration,
leading to a misspecified model when θt changes.

Example: Moving target defense.

6Note that we do not make any assumption about the time evolution of θt.
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Solving the game described in Prob. 5.1 leads to the following questions.

? What is an effective method for a player to update its conjecture and its
strategy?

? Do the sequences of conjectures converge?

? Once the parameters θt remain constant, how can the steady state of Γθt be
characterized?

5.5 Online Learning with Adaptive Conjectures

We address the above questions and develop Conjectural Online Learning (col),
a game-theoretic method for online learning in Γθt

(Prob. 5.1). Using col, each
player iteratively adapts its conjecture through Bayesian learning and updates its
strategy through rollout, which is a form of approximate dynamic programming that
resembles model predictive control; see Fig. 5.7 (Bertsekas, 2021). The pseudocode
of col is listed in Alg. 5.1 on page 215. The main steps of col are described below.

ρ
(k)
t

posterior

s1,1 s1,2 . . .

θ
(k)
t

conjecture
πk,t

strategy
θ

(k)
t ∼ ρ(k)

t
rollout action

a
(k)
t

prior ρ(k)
1

Bayesian
learning

information feedback i(k)
t

Figure 5.7: Conjectural Online Learning (col); the figure illustrates a time step during
which player k updates its conjecture θ(k)

t and its strategy πk,t.

At time t, player k computes its action as follows7.

(a(k)
t ∼ πk,t) ∈ R(k,θ(k)

t ,bt, J
(πt)
k , ℓk,h(k)

t ) ≜ arg min
a

(k)
t ,a

(k)
t+1,...,a

(k)
t+ℓk−1

(5.12)

Eπt

t+ℓk−1∑
j=t

γj−tck(Sj , A
(D)
j ) + γℓkJ

(πt)
k (Bt+ℓk) | bt,h(k)

t

 ,
Lookahead. Cost-to-go.

where πk,t is the rollout strategy, ℓk is the lookahead horizon, R is the rollout
operator, cD ≜ c (5.6), cA ≜ −c, πt = (πk,1, π−k,t), J

(πt)
k is the cost function

induced by θ(k)
t , and π−k,t is the conjectured strategy of the opponent. Since the

base strategies (πA,1, πD,1) are known, this conjecture can be obtained from (5.12).
7JA depends on s; however, to streamline the notation for the operations performed by the

attacker and the defender, we do not explicitly denote this dependence in (5.12).
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The Bellman equation in (5.12) corresponds to one step of policy iteration8 with
the base strategy as the starting point (Eqs. 6.4.1-22, Puterman, 1994). In fact,
(5.12) can be interpreted as a Newton step (Bertsekas, 2022). The effect of ℓk > 1
is that the starting point of this Newton step is moved closer to the best response
strategy through ℓk − 1 value iterations (Eq. 6.3.2-4, Puterman, 1994). Hence,
the computational complexity of (5.12) grows exponentially with ℓk, as shown in
Fig. 5.8. To manage this complexity for large instantiations of Γθt

, we estimate E
in (5.12) using Monte-Carlo samples. Note that (5.12) computes the next action
as if the conjectures were true, i.e., the action is computed based on (enforced)
certainty equivalence (p. 185, Bertsekas, 2021)(p. 232, Kumar and Varaiya, 1986).
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(b) Monte-Carlo rollout with |O| = 26178.

Figure 5.8: Compute time of the rollout operator (5.12) for varying lookahead horizons
ℓk and observation space sizes |O|; hyperparameters are listed in Appendix F.

We know from dynamic programming that πk,t (5.12) improves on the base
strategy πk,1 (Prop. 1, Bhattacharya et al., 2020). The extent of this improvement
depends on the lookahead horizon and the accuracy of the conjectures as follows.

Theorem 5.3 (Rollout performance bound).
The conjectured cost of player k’s rollout strategy πk,t satisfies

J
(πk,t,π−k,t)
k (b) ≤ J (πk,1,π−k,t)

k (b) ∀b ∈ B. (5.13a)

Assuming (θ(k)
t , ℓ−k) predicts the game ℓk steps ahead, then

∥J (πk,t,π−k,t)
k − J⋆

k∥ ≤
2γℓk

1− γ ∥J
(πk,1,π−k,t)
k − J⋆

k∥, (5.13b)

Goes quickly to zero as ℓk → ∞.

where J⋆
k is the optimal cost-to-go when facing π−k,t and ∥J∥ ≜ maxx |J(x)|.

8Policy iteration is defined in the background chapter; see (9)–(10).
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Theorem 5.3 states that the performance bound improves superlinearly when
the lookahead horizon ℓk increases or when the conjectured cost function Jk moves
closer to J⋆

k (5.8), as shown in Fig. 5.9. In particular, (5.13b) suggests that ℓk
controls the trade-off between computational cost and rollout performance. We
provide proof in Appendix B.
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ℓk

2γℓk

1−γ

Figure 5.9: Illustration of Thm. 5.3; the x-axis indicates the lookahead horizon ℓk; the y-
axis indicates the factor of the performance bound in (5.13b); the curves relate to different
discount factors γ.

After computing (5.12) and executing the corresponding action, player k receives
the feedback i(k)

t (5.3) and updates its conjectures as θ(k)
t ∼ ρ

(k)
t and ℓA,t ∼ µt,

where ρ(k)
t and µt are adapted through Bayesian learning as

ρ
(k)
t (θ(k)

t ) ≜
P[i(k)

t | θ(k)
t ,bt−1]ρ(k)(θ(k)

t−1)∫
Θk

P[i(k)
t | θ(k)

t ,bt−1]ρ(k)
t−1(dθ(k)

t )
∀θ(k)

t ∈ Θk, k ∈ N (5.14a)

µt(ℓA,t) ≜
P[i(D)

t | ℓA,t,bt−1]µt−1(ℓA,t)∑
ℓ̃A∈L P[i(D)

t | ℓ̃A,bt−1]µt−1(ℓ̃A)
∀ℓA,t ∈ L. (5.14b)

These Bayesian updates are well-defined using the following assumption.

Assumption 5.1. (i) L is finite and Θk is a compact subset of an Euclidean
space; (ii) ρ(k)

1 and µ1 have full support; and (iii) for all feasible (i(k),b), there
exists θ ∈ Θk and ℓA ∈ L for which the feedback i(k) has positive probability in b.

The steps outlined above are executed online. Specifically, at each time step
during online play, both players update their conjectures through Bayesian learning
(5.14) and adjust their strategies using rollout (5.12). The pseudocode of col,
which implements these steps, is provided in Alg. 5.1 on the following page.
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Algorithm 5.1: Conjectural Online Learning (col).

Input: Initial belief b1, game model Γθ1 , base strategies π1 ≜ (πD,1, πA,1),
priors (µ1, ρ

(D)
1 , ρ

(A)
1 ), discount factor γ, lookahead horizons ℓD, ℓA.

Output: A sequence of action profiles a1,a2, . . ..
1: procedure col(b1, Γθ1 , π1 ≜ (πD,1, πA,1), (µ1, ρ

(D)
1 , ρ

(A)
1 ), γ, ℓD, ℓA)

2: h(D)
1 ← (b1),h(A)

1 ← (b1), s1 ∼ b1. ▷ Initialization
3: πA,1 ← πA,1, πD,1 ← πD,1.
4: a

(D)
1 ∼ πD,1(b1), a(A)

1 ∼ πA,1(b1, s1).
5: s2 ∼ f(· | s1, a

(D)
1 , a

(A)
1 ).

6: for t = 2, 3, . . . do
7: ot ∼ z(· | st), i(D)

t ← (ot),h(D)
t ← (h(D)

t−1, i
(D)
t , a

(D)
t−1). ▷ Defender learning

8: Update ρ(D)
t and µt (5.14) and set θ(D)

t ∼ ρ(D)
t and ℓA,t ∼ µt.

9: bt ← B(h(D)
t , πA,t−1) (22).

10: Estimate J (πD,t−1,πA,1)
A using Γ

θ
(D)
t

.

11: Define πA,t(bt) based on R(A,θ(D)
t ,bt, J

(πD,t−1,πA,1)
A , ℓA,t,h(D)

t ).
12: Estimate J (πD,1,πA,t)

D using Γ
θ

(D)
t

.

13: a
(D)
t ∈ R(D,θ(D)

t ,bt, J
(πD,1,πA,t)
D , ℓD,h(D)

t ).
14: i(A)

t ← (ot, st, a
(D)
t−1), h(A)

t ← (h(A)
t−1, i

(A)
t , a

(A)
t−1). ▷ Attacker learning

15: Update ρ(A)
t using (5.14a) and set θ(A)

t ∼ ρ(A)
t .

16: Estimate J (πA,1,πD,t)
A using Γ

θ
(A)
t

.

17: a
(A)
t ∈ R(A,θ(A)

t ,bt, J
(πA,1,πD,t)
A , ℓA,h(A)

t ).
18: st+1 ∼ f(· | st, a

(D)
t , a

(A)
t ).

Convergence and equilibrium analysis

When player k updates its conjectures through (5.14), the goal is to minimize the
discrepancy between the feedback distributions induced by the conjectures and the
observed feedback (5.3). We define this discrepancy as

K(α, ν) ≜ Eb∼νEI(k)

[
ln
(
P[I(k) | α,b]
P[I(k) | α,b]

)
| α,b

]
, (5.15)

where α ∈ {θ, ℓA} and ν ∈ ∆(B) is an occupancy measure.

Minimizing (5.15) offers an alternative to Bayesian consistency by fo-
cusing the posterior on conjectures that produce consistent observations
(5.4), thus shifting focus from the parameter to the observation process.

Key insight.
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We say that conjectures that minimize (5.15) are consistent with ν (Kullback
and Leibler, 1951)9. Hence, the sets of consistent conjectures at time t are

θ
(k)
t ∈ Θ⋆

k(νt) ≜ arg min
θ

(k)
t ∈Θk

K(θ(k)
t , νt) ∀k ∈ N (5.16a)

ℓA,t ∈ L⋆(νt) ≜ arg min
ℓA,t∈L

K(ℓA,t, νt), (5.16b)

where νt(b) ≜ 1
t

∑t
τ=1 1b=bτ

is the empirical occupancy measure and πht
is the

empirical strategy profile induced by col at time t. Intuitively, Θ⋆
k and L⋆ contain

the conjectures that player k considers possible after observing feedback generated
by νt and πht

(Berk, 1966). A desirable property of the conjecture distributions
(5.14) is, therefore, that they concentrate on Θ⋆

k and L⋆ (5.16). This property is
guaranteed asymptotically under the following conditions.

Assumption 5.2 (Regularity conditions). For fixed values of i(k) and θ,

1. The mapping b 7→ lnP[i(k) | θ,b] is Lipschitz w.r.t. the Wasserstein-1 dis-
tance, and the Lipschitz constant is independent of i(k) and θ.

2. The mapping θ 7→ lnP[i(k) | θ,b] is continuous and there exists an integrable
function gb(i(k)) for all b ∈ B such that | ln P[i(k)|θ,b]

P[i(k)|θ,b]
| ≤ gb(i(k)) for all θ ∈

Θk.

Theorem 5.4 (Asymptotic consistency). Given Assumptions 5.1–5.2, the following
holds for any sequence (πht , νt)t≥1 generated by col (Alg. 5.1).

lim
t→∞

∑
ℓA∈L

(
K(ℓA, νt)−K⋆

L(νt)
)
µt+1(ℓA) = 0 a.s.-PR, (A)

and provided that θt = θ1 for all t,

lim
t→∞

∫
Θk

(
K(θ, νt)−K⋆

Θk
(νt)

)
ρ

(k)
t+1(dθ) = 0 a.s.-PR, (B)

where (K⋆
L,K

⋆
Θk

) denote the minimal values of (5.16) and PR is a probability mea-
sure over the set of realizable histories

t≥1
(H(D)

t ×H(A)
t ) that is induced by (πht

)t≥1.

Theorem 5.4 states that the conjectures produced by col are asymptotically
consistent (5.16); see Appendix C and Appendix D for the proof. This consis-
tency means that if the sequence (πht

, νt)t≥1 generated by col converges, then it
converges to a Berk-Nash Equilibrium (bne), defined on the next page.

9We use the standard convention that − ln 0 = ∞ and 0 ln 0 = 0.
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Definition 5.1 (Berk-Nash Equilibrium (bne), adapted from (Esponda and
Pouzo, 2021)). (π, ν) ∈ Π ×∆(B) is a bne of Γθt (Prob. 5.1, col) iff there exist
a ρ(k) ∈ ∆(Θk) for each player k ∈ {D,A} such that

(i) bounded rationality. πk is a best response against π−k for any b given
the occupancy measure ν, the conjectures (ρ(k), ρ(−k)), the lookahead horizons
(ℓk, ℓ−k), and the base strategies π1 = (πD,1, πA,1).

(ii) consistency. ρ(k) ∈ ∆(Θ⋆
k(ν)).

(iii) stationarity. (π, ν) is a limit point of some sequence (πht , νt)t≥1 generated
by col, satisfying

ν(b′) =
∫

B
EA(D),O,Γθ̂

[
δb′
(
B(b, A(D), O, πA)

)]
dν(b),

where B is the belief operator defined in (22), and Γθ̂ is parameterized by
θ̂ ≜

∫
ΘD
θdρ(D)(θ), and δi(·) is the Dirac delta function centered at i.

The term "Berk-Nash Equilibrium" (bne) is a concept in game theory and
economics that combines the ideas of R.H. Berk [48] and J.F. Nash [322].
The term was coined by I. Esponda and D. Pouzo in 2016 [135] and re-
flects that a) the rationality (optimality) condition of a bne resembles the
best response condition defined by Nash [322] in 1951; and b) the consis-
tency condition of a bne resembles Berk’s definition of “asymptotic car-
rier” in 1966 [48].

Origin of the term “Berk-Nash Equilibrium”.

Corollary 5.1 (Connection between the bne and the pbe).

(A) If the sequence (πht
, νt)t≥1 generated by col converges to (π, ν), then (π, ν)

is a bne.

(B) Given a bne (π, ν) and assuming

θ
(k) ∈ Θ⋆

k(ν) =⇒ P[I(k) | θ(k)
,b] = P[I(k) | θ,b] (identifiable) (5.17a)

ℓD = ℓA =∞, (rationalizable) (5.17b)

then (π,B) is a pbe.

Proof. Condition (i) in Def. 5.1 is ensured by rollout (5.12); condition (ii) is ensured
asymptotically by Thm. 5.4; and condition (iii) is a consequence of convergence.
Hence, statement (A) holds. Now consider statement (B). Condition 2) in Def. 4
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is satisfied by definition of B (22). To see why condition 1) also must hold, note
that assumption (5.17a) together with condition (ii) of Def. 5.1 implies that P[I(k) |
θ,b] = P[I(k) | θ(k)

,b] for any θ(k) ∼ ρ(k). Consequently, it follows from assumption
(5.17b) that πA ∈ BA(πD) and πD ∈ BD(πA) for any b1 (5.8).

Corollary 5.1 states that if the sequence (πht , νt)t≥1 generated by col converges,
then it must converge to a bne. Further, under the conditions defined in (5.17), this
equilibrium is also a pbe. The converse is not necessarily true, however, since the
perfect Bayesian equilibrium does not enforce condition (iii) of the bne (Def. 5.1).
This condition requires that νt converges to a stationary distribution, which is not
guaranteed to exist. We provide an example in Appendix E. Whether a stationary
distribution exists or not depends primarily on the parameter vector θt and the
observation function z (5.4).

5.6 System Identification

To implement and evaluate the method described above for the apt use case (§5.2),
we estimate the parameters of Γ (5.1) using a digital twin of the target infrastruc-
ture. We create this digital twin using csle, as described in the methodology
chapter (Hammar, 2023). The configuration of the target infrastructure is listed in
Table 3.4 of Paper 3. The topology is shown in Fig. 3 in the introduction chapter.
It consists of N = 64 servers, some of which are vulnerable to apts. The digital
twin comprises virtual containers and networks that replicate the functionality and
the timing behavior of the target infrastructure. These containers run the same
software and processes as the physical infrastructure.

Similar to papers 1–4, we define the observation ot (5.4) to be the priority-
weighted sum of the number of ids alerts at time t. We measure the value of ot

in the digital twin at 30-second intervals. (30s in the digital twin corresponds to
1 time step in the game Γ.) For the evaluation reported in this paper, we collect
about M = 105 i.i.d. samples10. Using these samples, we estimate the observation
distribution z (5.4) with the empirical distribution ẑ, where ẑ a.s.→ z as M →∞11.

5.7 Experimental Evaluation of col

We implement col (Fig. 5.7, Alg. 5.1) in Python and apply it to the apt use
case using our methodology, which combines simulation-based optimization with
evaluation on the digital twin12. The simulations and the digital twin run on a
server with a 24-core intel xeon gold 2.10 GHz cpu and 768 gb ram; see Fig. 21
in the methodology chapter. Hyperparameters for col are listed in Appendix F.

10The measurements are available at (Hammar, 2023), where |O| = 26178.
11It follows by the Glivenko-Cantelli theorem; see (Glivenko and Cantelli, 1933).
12The digital twin is created using csle, as described in the methodology chapter.
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Evaluation scenarios

We define five scenarios to evaluate the performance properties of col. The first
four scenarios are evaluated in simulation, and the fifth is evaluated on the digi-
tal twin. Our aim in evaluating these scenarios is to assess a) the computational
requirements of rollout (5.12); b) the convergence rate of col for different instanti-
ations of Γθt

(Prob. 5.1); and c) the benefit of col compared to existing intrusion
response systems. Each evaluation scenario is based on an instantiation of Prob. 5.1
for the apt use case (§5.2) with the model described in §5.3.

In such an instantiation, the defender and the attacker take actions at time
steps t = 1, 2, . . .. During each step, they perform one action each: either a (pas-
sive) continue action or a stop action. The defender’s stop action corresponds to
hypervisor-based recovery of servers (Scenarios 5.1–5.4) or blocking of ip addresses
(Scenario 5.5) (Reiser and Kapitza, 2007). The attacker’s stop action is drawn
randomly from Table 5.2. After executing the actions, the observations are either
sampled from the estimated observation distribution (Scenario 5.1–Scenario 5.4) or
measured directly from the digital twin (Scenario 5.5). The main difference be-
tween the evaluation scenarios is how the attacker and the defender models are
misspecified, as explained below.

Type Actions mitre att&ck technique
Reconnaissance tcp syn scan, udp scan t1046 service scanning.

tcp xmas scan t1046 service scanning.
vulscan t1595 active scanning.
ping-scan t1018 system discovery.

Brute-force telnet, ssh T1110 brute force.
ftp, cassandra T1110 brute force.
irc, mongodb, mysql T1110 brute force.
smtp, postgres T1110 brute force.

Exploit cve-2017-7494 t1210 service exploitation.
cve-2015-3306 t1210 service exploitation.
cve-2010-0426 T1068 privilege escalation.
cve-2015-5602 T1068 privilege escalation.
cve-2015-1427 t1210 service exploitation.
cve-2014-6271 t1210 service exploitation.
cve-2016-10033 t1210 service exploitation.
sql injection (cwe-89) t1210 service exploitation.

Table 5.2: Attacker actions on the digital twin; see the methodology chapter for details.
Scenario 5.1 (Defender is uncertain about ℓA). In this scenario, the game is
stationary (i.e., θt = θ1 for all t). θ1 represents the complete game model (5.1) and
is known to both players (i.e., ρ(k)

1 (θ1) = 1), but the defender is uncertain about
the attacker’s computational capacity ℓA, i.e., µ1(ℓA) < 1.

Scenario 5.2 (Non-stationary θt). In this scenario, ℓA is known to the defender,
but the game is non-stationary, and z (5.4) is parameterized by θt, which represents
the number of clients. Hence, θt changes whenever a client arrives or departs.
Clients have exponential service times and arrive following a Poisson process with
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the following rate function

λ(t) = exp
(dim(ψ)∑

i=1
ψit

i

︸ ︷︷ ︸
trend

+
dim(χ)∑

k=1
χk sin(ωkt+ ϕk)︸ ︷︷ ︸

periodic

)
. (5.18)

The function is illustrated in Figs. 5.10–5.11 (Kuhl et al., 1995); see Appendix F
for the parameter values.

50 100 150 200 250 300 350

20

40 X ∼ Po(λ(t)) λ(t) (5.18) λ(t) non-periodic

t

Figure 5.10: The arrival rate function (5.18) used in Scenario 5.2; the blue curve shows
the arrival rate λ(t); the red curve shows the trend of λ(t) without the periodic effects; and
the shaded black curve shows the number of arrivals.
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t

Figure 5.11: Estimated distributions of the number of clients and the priority-weighted
sum of ids alerts ot (5.4) during different arrival rates λ(t) (5.18) based on the apt
actions listed in Table 5.2 and the rate function shown in Fig. 5.10; the curves indicate
mean values and the shaded areas indicate standard deviations from 3 measurements; the
measurements are available at (Hammar, 2023).
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Scenario 5.3 (Misspecified model conjectures ρ(D)
t , ρ

(A)
t ). In this scenario, the

game is stationary (i.e., θt = θ1 for all t) and θ1 represents the compromise proba-
bility pA (5.2). Further, the attacker’s computational capacity ℓA is known to the
defender, but both players are uncertain about θ1 and have misspecified conjec-
tures, i.e., θ1 ̸∈ ΘA ∪ΘD.

Scenario 5.4 (Defender is uncertain about ℓA and θt). This scenario is the same
as Scenario 5.3, except that the defender is uncertain about ℓA, i.e., µ1(ℓA) < 1.

Scenario 5.5 (Comparison with the snort idps (Roesch, 1999)). In this scenario,
we compare col with the snort idps (ruleset v2.9.17.1). We use two baselines:
snort-high and snort-medium, which block ip traffic that generates alerts with
high and medium priority, respectively. The attacker follows the fixed strategy
πA(S | ·) = 1 and spoofs its ip address. The observation ot (5.4) represents a
snort alert, where ot = 0 means no alert. The defender’s stop action corresponds
to blocking the ip address that generated the alert. θt parameterizes z (5.4) and
represents the distributions of alert priorities generated by the clients and the at-
tacker. Specifically, ΘD = {θ′,θ′′} and

θ′ ≜


C A

N 0.85 0.4
M 0.1 0.3
H 0.05 0.3

 θ′′ ≜


C A

N 0.4 0.1
M 0.3 0.1
H 0.3 0.8

, (5.19)

where θt = θ′ for t < 50 and θt = θ′′ for t ≥ 50. Here, N,M, and H refer to no
alert, medium priority alert, and high priority alert, respectively. Similarly, C and
A refer to the clients and the attacker, respectively.

Remark 5.4 (Specification of the priors). In practice, the prior over θ1 for the
instantiations described above can be defined based on domain knowledge or ob-
tained through system measurements. Companies like google, meta, and ibm
have documented procedures for estimating such distributions (Ford et al., 2010).
Similarly, the prior over ℓ−k can be obtained from opponent modeling (Shen and
How, 2021).

Evaluation results (Figs. 5.12–5.17, Table 5.3)

Scenario 5.1 (Fig. 5.12)

Figures 5.12.a–b (on the next page) show the evolution of the defender’s conjecture
distribution µt (5.14b) and the discrepancy (5.15) of the conjecture ℓA,t when L =
{1, 2} and ℓA = 1. We observe that µt converges and concentrates on the consistent
conjecture (5.16) after 5 time steps, as predicted by Thm. 5.4.A. Figure 5.12.d shows
the rate of convergence for different |L|, indicating that a larger |L| leads to a slower
convergence. This result is expected since a larger |L| means the defender has more
uncertainty about ℓA.
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Figure 5.12: Evaluation results for Scenario 5.1; values indicate the mean; the shaded
areas and the error bars indicate the 95% confidence interval based on 20 random seeds;
hyperparameters are listed in Appendix F.

Figure 5.12.c shows the expected cost of the defender as a function of |ℓA −
ℓA,t|, which quantifies the inaccuracy of the defender’s conjecture ℓA,t. We observe
that the defender’s cost is increasing with the inaccuracy of its conjecture. Next,
Fig. 5.12.e shows the evolution of the discrepancy (5.15) of different conjectures.
We observe that the discrepancies of the incorrect conjectures increase over time
and that the discrepancy of the correct conjecture is 0 (by definition).

Lastly, Fig. 5.12.f shows the expected cost of col and the expected cost of best
response reinforcement learning with cem (Rubinstein, 1999) (i.e., best response
dynamics (Nisan et al., 2007)). We note that the expected cost of reinforcement
learning oscillates. Similar behavior of reinforcement learning has been observed
in related work (Hernandez et al., 2019). The oscillation indicates that the players
alternate between different best responses in a cycle. By contrast, the expected
cost of col is significantly more stable, and its behavior is consistent with conver-
gence to a bne. The strategy oscillations induced by reinforcement learning lead to
unpredictability and computational inefficiency, making it an impractical solution
for operational systems. In comparison, the bne provides a robust and reliable
strategy for the defender; see Fig. 5.12.f.
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Scenario 5.2 (Fig. 5.13)

Figures 5.13.a–b show the evolution of the defender’s conjecture distribution ρ
(D)
t

(5.14a) and the discrepancy (5.15) of the conjecture θ(D)
t when ΘD = {12, 9} and

θt = 12 for all t. We observe that ρ(D)
t converges and concentrates on the consistent

conjecture (5.16) after 18 time steps, as predicted by Thm. 5.4.B. Figure 5.13.d
shows the rate of convergence for varying |ΘD|. As expected, when the defender’s
uncertainty about θt increases (i.e., when |ΘD| increases), the time it takes for the
sequence of conjectures to converge increases.
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Figure 5.13: Evaluation results for Scenario 5.2; values indicate the mean; the shaded
areas and the error bars indicate the 95% confidence interval based on 20 random seeds;
hyperparameters are listed in Appendix F.

Figure 5.13.c shows the expected cost of the defender as a function of |θt−θ
(D)
t |,

which quantifies the inaccuracy of the defender’s conjecture θ(D)
t . We observe that

the defender’s cost is increasing with the inaccuracy of its conjecture. Lastly, Figs.
5.13.e–f show the expected discrepancy (5.15) of the posterior (5.14a) when θt is
changing at every time step, whereby ρ(D)

t does not converge. (Note that Thm. 5.4
only applies when θt remains fixed.)
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Scenario 5.3 (Figs. 5.14–5.15)

Figures 5.14.a–b show the time for the defender’s conjecture θ(D)
t to converge for

different sizes of ΘD when θt is fixed. We observe that the time to converge increases
with the size of ΘD, which is expected since the size of ΘD represents the defender’s
degree of uncertainty about θt.
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Figure 5.14: Evaluation results for Scenario 5.3; values indicate the mean; the shaded
areas and the error bars indicate the 95% confidence interval based on 20 random seeds;
hyperparameters are listed in Appendix F.

Figure 5.15 shows the evolution of ρ(D)
t . We observe that ρ(D)

t starts from a
uniform distribution over ΘD and as t→∞, it concentrates on the set of consistent
conjectures Θ⋆

D (5.16a).
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t (Scenario 5.3); hyperparameters are listed in Appendix F.



Experimental Evaluation of col 225

Scenario 5.4 (Fig. 5.16)

Figure 5.16 shows the evolution of the defender’s conjecture distributions µt and
ρ

(D)
t (5.14). We observe that both distributions converge, which is consistent with

Thm. 5.4. The convergence of µt is significantly faster than that of ρ(D)
t . We

believe this difference is because |L| < |ΘD|, which means that the defender is more
uncertain about ℓA than about θt.
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Figure 5.16: Evaluation results for Scenario 5.4; values indicate the mean; the shaded
areas and the error bars indicate the 95% confidence interval based on 20 random seeds;
hyperparameters are listed in Appendix F.

Scenario 5.5 (Fig. 5.17)

Figure 5.17 shows the percentage of blocked attacker and client traffic when running
the snort idps (Roesch, 1999) and col on the digital twin. We observe that both
block some client traffic and fail to block some attacker traffic, which is expected
considering the false ids alarms generated by the clients. When comparing col
with snort we find that a) col and ips-high blocks the least client traffic; and b)
ips-medium and col blocks the most attacker traffic. This result suggests to us
that col balances the trade-off between blocking clients and the attacker based on
the cost function (5.6). Further, col adapts when θt changes.
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Figure 5.17: Evaluation results for Scenario 5.5; the curves show the percentage of
blocked network traffic in the digital twin.
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Comparison with state-of-the-art methods

The convergence times of col (Alg. 5.1) and those used in prior work are listed
in Table 5.3. While we observe that col converges faster than the baselines, a
direct comparison is not feasible for two reasons. First, the baselines do not con-
sider the same solution concept as us, i.e., the bne. Second, the baselines make
different assumptions about the computational capacity and information available
to the players. For example, fictitious play (Brown, 1951), which is a popular
method among prior work, assumes that players a) have correctly specified models
and b) have unlimited computational capacity. Similarly, popular reinforcement
learning methods, such as ppo (Alg. 1, Schulman et al., 2017)13 and nfsp (Alg. 9,
Heinrich, 2017), are designed for offline rather than online learning.

Method Fixed point Time (min)
col, |L| = 2, |Θk| = 1 Berk-Nash equilibrium (Def. 5.1) 6.7± 0.7.
col, |L| = 3, |Θk| = 1 Berk-Nash equilibrium (Def. 5.1) 11.4± 0.9.
col, |L| = 4, |Θk| = 1 Berk-Nash equilibrium (Def. 5.1) 39.1± 1.3.
col, |L| = 8, |Θk| = 1 Berk-Nash equilibrium (Def. 5.1) 137.3± 2.8.
col, |L| = 1, |Θk| = 2 Berk-Nash equilibrium (Def. 5.1) 12.9± 0.9.
col, |L| = 1, |Θk| = 32 Berk-Nash equilibrium (Def. 5.1) 17.9± 1.0.
col, |L| = 1, |Θk| = 192 Berk-Nash equilibrium (Def. 5.1) 29.9± 1.2.
col, |L| = 4, |Θk| = 192 Berk-Nash equilibrium (Def. 5.1) 194.6± 3.7.
Best-response dynamics (Fig. 5.12.f) ϵ-Nash equilibrium [322, Eq. 1] dnc.
hsvi [201, Alg. 1] (Fig. 5.6) ϵ-Nash equilibrium [322, Eq. 1] dnc.
nfsp [191, Alg. 9] ϵ-Nash equilibrium [322, Eq. 1] ≈ 919 min.
Fictitious play [76] ϵ-Nash equilibrium [322, Eq. 1] ≈ 4800 min.
ppo [396, Alg. 1], static πA Best response (5.8a) 9.2± 0.4 min.

Table 5.3: Comparison with baseline methods in terms of speed of convergence; dnc is
short for “does not converge”; “≈” means that the algorithm nearly converges; numbers
indicate the mean and the standard deviation from evaluations with 3 random seeds; hy-
perparameters are listed in Appendix F.

Discussion of the evaluation results

The key findings from the evaluation can be summarized as follows.

 The conjectures produced by col converge to consistent conjectures once the
model parameters θt remain fixed (5.16) (Figs. 5.12–5.16, Thm. 5.4). The
rate of convergence decreases as |L| and |Θk| increase (Figs. 5.12–5.16).

 The defender’s cost increases as the distance between its conjecture and the
true model increases (Figs. 5.12–5.16).

13See Appendix D of Paper 3 for a derivation of the ppo algorithm.
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 col allows to configure the computational capacity and the uncertainty of
each player k by tuning ℓk (Fig. 5.8) and (L,Θk), respectively (Figs. 5.12–
5.16).

 col leads to effective strategies (Thm. 5.3) that are more stable than those
obtained through reinforcement learning (Fig. 5.12.f, Table 5.3).

 col outperforms the snort idps (Roesch, 1999) in several key metrics; see
Fig. 5.17.

 Computation of perfect Bayesian equilibria and computation of exact roll-
out strategies is intractable for any non-trivial instantiation of Γ (Fig. 5.6,
Fig. 5.8.a).

 Approximate best response and rollout strategies of Γ can be efficiently com-
puted using stochastic approximation (Fig. 5.8.b, Fig. 5.4, Thm. 5.1).

The above findings suggest that col can produce effective security strategies with-
out relying on a correctly specified model of the environment. The practical implica-
tion of this result is that col is suitable for dynamic it infrastructures with short
update cycles, which aligns with current trends of virtualization and zero-touch
management.

5.8 Related Work

Since the early 2000s, researchers have studied automated security through mod-
eling attacks and responses on an it infrastructure as a game between an attacker
and a defender; see textbooks (Alpcan and Basar, 2010), (Tambe, 2011), (Kamhoua
et al., 2021) and surveys (Tan et al., 2023), (Nguyen and Reddi, 2023). The main
difference between this paper and the prior work is that we propose a method for
online learning in non-stationary security games in which players have misspecified
game models. By contrast, prior work assumes that players have correctly spec-
ified models. While the study of learning with misspecified models has attracted
long-standing interest in economics (Arrow and Green, 1973), engineering (Kagel
and Levin, 1986), and psychology (Rabin, 2002), it remains unexplored in the secu-
rity context. Related research in the security literature includes a) game-theoretic
approaches based on imperfect and incomplete information; b) game-theoretic ap-
proaches based on bounded rationality; and c) model-free learning approaches. In
the following subsections, we describe how these three approaches relate to this
paper. The main differences are listed in Table 5.4 on page 230.

Security games with imperfect and incomplete information

Security games with imperfect and incomplete information (i.e., partial observabil-
ity and model uncertainty) include posgs [471, 178, 183] and Bayesian games [33,
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11, 312, 285]. These games capture scenarios where players have private knowledge
represented by types or observations. Still, the players’ perceptions about how the
game works are identical (as defined by a common prior); the only thing distin-
guishing players is the information each has received (Harsanyi, 1967)(Horák et
al., 2023). Conversely, our model allows to capture misspecification, where players
have incorrect conjectures about the game’s structure and the opponents’ strate-
gies. Such misspecification encapsulates players’ subjective perception of how the
game works and can include both game elements (Esponda and Pouzo, 2021) and
other players’ strategies (Esponda and Pouzo, 2016). Moreover, players can dis-
agree on the very form of the game. For instance, one player may represent the
game with a scalar, whereas another may represent it with a high-dimensional vec-
tor; see Prob. 5.1. Such disagreements are captured by the Berk-Nash equilibrium
but not the perfect Bayesian equilibrium.

Security games with bounded rationality

The concept of bounded rationality was introduced by Herbert Simon in the 1950s
as a critique of the assumption of perfect rationality in classical game theory [417].
Research on security games with bounded rationality includes [90, 390, 151, 91,
483, 36, 1, 301, 450, 521]. These works differ from this paper in three main ways.
First, they do not consider model misspecification as we do in this paper. Sec-
ond, they study different types of games, i.e., one-stage games [90, 91]; network
interdiction games [390]; differential games [301]; Stackelberg games [151]; behav-
ioral games [301]; evolutionary games [450], and hypergames [483, 36]. Third, they
study different types of equilibria, i.e., Nash equilibria [1]; Gestalt Nash equilibria
[90, 91]; Stackelberg equilibria [390, 151]; evolutionary stable equilibria [450], and
hyper Nash equilibria [483, 36]. By contrast, we study Berk-Nash equilibria [135,
Def. 1] and a posg where players have misspecified models. The benefit of our
model and equilibrium concept is that they better capture the apt use case (§5.2).

Learning in security games

Prior work that studies learning in security games includes [37, 280, 156, 279, 211,
527, 178, 179, 183, 185, 329, 506]. This paper differs from these works in two
main ways. First, we design a novel way to update strategies using rollout with
a conjectured model. This approach contrasts with all of the referenced works,
which consider other types of strategy updates, e.g., offline learning [183, 185, 211],
meta-learning [156], model-free learning [527, 329, 178, 179, 506], and learning
with perfect rationality [37, 280]. The advantage of our approach is that it allows
us to model players with limited computational capacity and varying degrees of
misspecification. Second, we design a convergent Bayesian mechanism for online
learning. In comparison, most of the prior work considers other types of learning
mechanisms, e.g., fictitious play [183, 185], reinforcement learning [527, 329, 178,
179, 506], online gradient descent [3], and no-regret learning [37, 280].
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5.9 Conclusion

This paper presents Conjectural Online Learning (col), a new game-theoretic
method for online learning of security strategies that applies to dynamic it envi-
ronments where the attacker and defender are uncertain about the environment and
the opponent’s strategy. We formulate the interaction between an attacker and a
defender as a non-stationary game where each player has a probabilistic conjecture
about the game model, which may be misspecified in the sense that the true model
has probability 0. Both players iteratively adapt their conjecture using Bayesian
learning and update their strategy using rollout. We prove that the conjectures
converge to best fits (Thm. 5.4), and we provide a bound on the performance
improvement that rollout enables with a conjectured model (Thm. 5.3). To charac-
terize the steady state of the game, we propose a novel equilibrium concept based
on the Berk-Nash equilibrium, which represents a stable point where each player
acts optimally given its conjecture (Def. 5.1). We present col through an apt use
case (§5.2). Evaluations on a testbed show that col produces effective security
strategies that adapt to a changing environment (Figs. 5.12–5.16). It also leads to
faster convergence than current reinforcement learning techniques and outperforms
the snort idps (Roesch, 1999) in several key metrics (Table 5.3 and Fig. 5.17).

In the context of the thesis, this paper addresses a drawback of papers 1–4, which
assume that a perfect model of the underlying it infrastructure can be obtained. In
the next chapter of the thesis, we apply our methodology to a standard benchmark
for automated security response, namely cage-2 (cage-2, 2022), which facilitates
direct comparisons with the existing literature.



Paper Use case Method Equilibrium Evaluation Game type
[531] Zonouz, 2009 Intrusion response Dynamic programming - Testbed Stationary posg.
[527] Zhu, 2009 Intrusion detection Q-learning Nash Simulation Stationary stochastic dynamic game.
[37] Balcan, 2015 Resource allocation No-regret learning - Analytical Stationary repeated Stackelberg game.
[280] Lisý, 2016 Resource allocation No-regret learning Nash Analytical Stationary nfgss.
[90] Chen, 2019 Risk management Proximal optimization Gestalt Nash Simulation Stationary one-stage game.
[390] Sanjab, 2020 Drone operation Prospect theory Stackelberg Simulation Stationary network interdiction game.
[36] Bakker, 2020 Intrusion response Analytical Hyper Nash Simulation Stationary repeated hypergame.
[1] Abdallah, 2020 Power grid Analytical Nash Simulation Stationary behavioral game.
[211] Huang, 2020 apt Optimization Perfect Bayes Nash Simulation Stationary posg.
[522] Zhao, 2020 Intrusion response Analytical Nash Simulation Non-stationary Markov game.
[33] Aydeger, 2021 ddos Optimization Perfect Bayes Nash Testbed Stationary signaling game.
[483] Wan, 2022 apt Analytical Hyper Nash Simulation Stationary hypergame.
[151] Gabrys, 2023 Cyber deception Analytical Stackelberg Simulation Stationary Stackelberg game.
[183] Hammar, 2023 Intrusion response Fictitious play Nash Testbed Stationary posg.
[301] Mavridis, 2023 Cyber-physical security Stochastic approximation Nash Simulation Stationary differential game.
[156] Ge, 2023 Zero-trust Meta-learning - Simulation Stationary pomdp.
This paper, 2024 apt Bayesian learning & rollout Berk-Nash Testbed & simulation Non-stationary and misspecified posg.

Table 5.4: Comparison between this paper and related work.
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Appendix

A Proof of Theorem 5.1

Given (πA, πD), the best response strategies (π̃D, π̃A) are optimal strategies in two
pomdps14: MP

D and MP
A. Hence, it suffices to show that there exist optimal

strategies π⋆
D and π⋆

A in MP
D and MP

A that satisfy (5.9a) and (5.9b), respectively.
Towards this proof, we state the following five lemmas.

Lemma 5.1. MP
D can be formulated as a repeated optimal stopping problem.

Proof. By definition, an optimal strategy π⋆
D in MP

D satisfies

π⋆
D ∈ arg min

πD∈ΠD

E(πD,πA)

[ ∞∑
t=1

γt−1c(St, A
(D)
t ) | S1 = 0

]
(a)= arg min

πD∈ΠD

[
E(πD,πA)

[
τ1∑

t=1
γt−1c(St, A

(D)
t ) | S1 = 0

]
+

E(πD,πA)

[
τ2∑

t=τ1+1
γt−1c(St, A

(D)
t ) | Sτ1 = 0

]
+ . . .

]

= arg min
πD∈ΠD

[
E(πD,πA)

[
γτ1JD(e1) +

τ1∑
t=1

γt−1c(St, A
(D)
t ) | S1 = 0

]]
, (5.20)

where τ1, τ2, . . . are the stopping times; JD : B → R is the cost-to-go function inMP
D

(5.7); e1 = (1, 0); and (a) follows by linearity of expectation. Since E(πD,πA)[JD(e1)]
can be seen as a fixed recovery cost, (5.20) defines an optimal stopping problem.

Lemma 5.2. If st = N , then a
(A)
t = C is a best response for any bt ∈ B and

πD ∈ ΠD.

Proof. Let J⋆
A and Q⋆

A be the optimal cost-to-go function and Q-function in the
attacker’s best response pomdp MP

A. Assume by contradiction that a(A)
t = C is

not a best response. Then the expected cost of a(A)
t = S must be lower than that

of a(A)
t = C, i.e.,

Q⋆
A((bt, N),S) < Q⋆

A((bt, N),C)
14The components of a pomdp are defined the background chapter; see (15).
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(a)=⇒ E
A

(D)
t ,Bt+1

[−c(st, A
(D)
t ) + γJ⋆

A(Bt+1) | st = N, a
(A)
t = S]

< E
A

(D)
t ,Bt+1

[−c(st, A
(D)
t ) + γJ⋆

A(Bt+1) | st = N, a
(A)
t = C]

(b)=⇒ E
A

(D)
t ,St+1

[∑
o∈O

z(o | St+1)J⋆
A(B(bt, A

(D)
t , o, πA)) | st = N, a

(A)
t = S

]

< E
A

(D)
t ,St+1

[∑
o∈O

z(o | St+1)J⋆
A(B(bt, A

(D)
t , o, πA)) | st = N, a

(A)
t = C

]
(c)=⇒ 0 < 0 (contradiction),

where πA is the attacker strategy assumed by πD, and B is defined in (22). Step
(a) follows from Bellman’s optimality equation; (b) follows because c (5.6) is inde-
pendent of a(A)

t ; and (c) follows because both a
(A)
t = C and a

(A)
t = S lead to the

same state when st = N (5.2).

Lemma 5.3. If πD(S | bt) = 1 for some bt ∈ B, then a
(A)
t = C is a best response.

Proof. Let J⋆
A and Q⋆

A be the optimal cost-to-go function and Q-function in the
attacker’s best response pomdp MP

A. Assume by contradiction that a(A)
t = C is

not a best response. Then the expected cost of a(A)
t = S must be lower than that

of a(A)
t = C, i.e.,

Q⋆
A((bt, st),S) < Q⋆

A((bt, st),C) (a)=⇒ J⋆
A(e1) < J⋆

A(e1)
(b)=⇒ 0 < 0 (contradiction),

where (a) follows because c (5.6) is independent of a(A)
t and because πD(S | bt) =

1 =⇒ bt+1 = e1 (5.2).

A.1 Proof of Theorem 5.1.A
Lemma 5.1, Lemma 1.1 of Paper 1, and the assumption that N = 1 means that
S = [α⋆, κ], where 0 ≤ α⋆ ≤ κ ≤ 1. Thus, it suffices to show that κ = 1. Bellman’s
optimality equation implies that

π⋆
D(e2) ∈ arg min

a
(D)
t ∈{S,C}

 a
(D)
t =S︷ ︸︸ ︷

c(1,S) + γJ⋆
D(e1),

a
(D)
t =C︷ ︸︸ ︷

c(1,C) + γJ⋆
D(e2)


(a)= arg min

a
(D)
t ∈{S,C}

[
c(1,S) + γJ⋆

D(e1), γτ−1c(1,S) + γτJ⋆
D(e1) +

τ−1∑
t=1

γt−1c(1,C)
]
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= arg min
a

(D)
t ∈{S,C}

[
c(1,S) + γJ⋆

D(e1), γτ−1c(1,S) + γτJ⋆
D(e1) +

(
1− γτ−1

1− γ

)
c(1,C)

]

= arg min
a

(D)
t ∈{S,C}

[
q − r + γJ⋆

D(e1), γτ−1(q − r) + γτJ⋆
D(e1) +

(
1− γτ−1

1− γ

)
1p

]

= arg min
a

(D)
t ∈{S,C}

[
q − r + γJ⋆

D(e1), γτ−1(q − r) + γτJ⋆
D(e1) +

(
1− γτ−1

1− γ

)]
(b)= {S}

=⇒ S = [α⋆, 1],

where τ ≥ 1 denotes the stopping time; e2 = (0, 1); e1 = (1, 0); and J⋆
D is the

optimal cost-to-go function. Step (a) follows because s = 1 is an absorbing state
until the stop. Step (b) follows from (5.6) and the fact that 1 > q−r, which implies
that the cost per time-step is upper bounded by c(N,C) = Np = 1p = 1 > q−r.

A.2 Proof of Theorem 5.1.B
Since N = 1, we have that B = [0, 1] and b is uniquely determined by b(1). For
ease of notation, we use b as a shorthand for b(1). Given Lemma 5.2, it suffices
to consider the case when st = 0. From Lemma 5.3 and the assumption that
πD satisfies (5.9a), we know that a(A)

t = S is a best response iff bt ∈ [0, α⋆),
where α⋆ ≤ 1. It further follows from Lemma 5.3 that α⋆ = 0 =⇒ β⋆ = 0.
Thus, Thm. 5.1.B holds when α⋆ = 0. Next, consider the case when α⋆ > 0. We
know from Thm. 2 in the background chapter and Lemma 1.1 of Paper 1 that the
stopping set SA ⊂ B for the attacker is a convex subset of [0, α⋆). Since 0 ∈ SA
by assumption, it follows that SA = [0, β⋆] for some threshold β⋆.

B Proof of Theorem 5.3

As (5.12) implements one step of the policy iteration algorithm (Eqs. 6.4.1-22,
Puterman, 1994), (5.13a) follows from standard results in dynamic programming
theory, see e.g., (Prop. 1, Bhattacharya et al., 2020). To prove (5.13b) we adapt the
proof in (Prop 5.1.1, Bertsekas, 2019). Let π̃ ≜ (πk,t, π−k,t) and π ≜ (πk,1, π−k,t).
Then define the Bellman operator15

(Tk,πJk)(bt) ≜ Eπ[c(St, A
(D)
t ) + γJk(Bt+1) | π] ∀b ∈ B.

Since J
(π)
k is a fixed point of Tk,π, i.e., Tk,πJ

(π)
k = J

(π)
k , and since T k

k,π is a
contraction mapping (Prop. 6.2.4, Puterman, 1994), we have that limj→∞ T j

k,πJ =
J

(π)
k for any J (Thm. 6.4.6, Cor. 6.4.7, Puterman, 1994). As a consequence

∥J (π̃)
k − J⋆

k∥ = lim
j→∞
∥T j

k,π̃J
⋆
k − J⋆

k∥. (5.21)

15See the background chapter for details about Bellman operators.
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By repeated application of the triangle inequality:

∥T j
k,π̃J

⋆
k − J⋆

k∥ ≤ ∥T
j

k,π̃J
⋆
k −T j−1

k,π̃ J⋆
k∥+ ∥T j−1

k,π̃ J⋆
k − J⋆

k∥

≤ . . . ≤
j∑

m=1
∥T m

k,π̃J
⋆
k −T m−1

k,π̃ J⋆
k∥.

Since Tk,π̃ is a contraction mapping with modulus γ < 1,

∥Tk,π̃(Tk,π̃J
⋆
k )−Tk,π̃J

⋆
k∥ ≤ γ∥Tk,π̃J

⋆
k − J⋆

k∥
=⇒ ∥T j

k,π̃J
⋆
k −T j−1

k,π̃ J⋆
k∥ ≤ γj−1∥Tk,π̃J

⋆
k − J⋆

k∥.

The above inequality means that

j∑
m=1
∥T m

k,π̃J
⋆
k −T m−1

k,π̃ J⋆
k∥ ≤

j∑
m=1

γm−1∥Tk,π̃J
⋆
k − J⋆

k∥.

Since limits preserve non-strict inequalities,

lim
j→∞
∥T j

k,π̃J
⋆
k − J⋆

k∥ ≤ lim
j→∞

j∑
m=1

γm−1∥Tk,π̃J
⋆
k − J⋆

k∥ = ∥Tk,π̃J
⋆
k − J⋆

k∥
1− γ . (5.22)

Now let Ĵ (π̃)
k ≜ T

π−k,t

k,ℓk
J

(π̃)
k , where T

π−k,t

k,ℓk
is defined in (5.12). Note that, since

Thm. 5.3 assumes that the conjectures are correct, Tk,π̃Ĵ
(π̃)
k = T

π−k,t

k,1 Ĵ
(π̃)
k and

T
π−k,t

k,1 J⋆
k = J⋆

k by definition (Bertsekas, 2021).
Applying the triangle inequality to the numerator in (5.22),

∥Tk,π̃J
⋆
k − J⋆

k∥

≤ ∥Tk,π̃J
⋆
k −Tk,π̃Ĵ

(π̃)
k ∥+ ∥Tk,π̃Ĵ

(π̃)
k −T

π−k,t

k,1 Ĵ
(π̃)
k ∥+ ∥T π−k,t

k,1 Ĵ
(π̃)
k − J⋆

k∥

= ∥Tk,π̃J
⋆
k −Tk,π̃Ĵ

(π̃)
k ∥︸ ︷︷ ︸

≤γ∥Ĵ
(π̃)
k −J⋆

k ∥

+ ∥T π−k,t

k,1 Ĵ
(π̃)
k −T

π−k,t

k,1 J⋆
k∥︸ ︷︷ ︸

≤γ∥Ĵ
(π̃)
k −J⋆

k ∥

≤ 2γ∥Ĵ (π̃)
k − J⋆

k∥ = 2γ∥T π−k,t

k,ℓk
J

(π̃)
k −T

π−k,t

k,ℓk
J⋆

k∥ ≤ 2γℓk∥J (π)
k − J⋆

k∥. (5.23)

Combining (5.21)–(5.23) gives (5.13b).

C Proof of Theorem 5.4.A

The idea behind the proof of Thm. 5.4.A. is to express µt (5.14b) in terms of log-
likelihood ratios, which can be shown to converge using the martingale convergence
theorem (Thm. 6.4.3, Ash, 1972). Towards this proof, we state and prove the
following two lemmas.
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Lemma 5.4. Any sequence (πht
)t≥1 generated by col induces a well-defined prob-

ability measure PR over the set of realizable histories ht ∈
t≥1

(H(D)
t ×H(A)

t ).

Proof. Since the sample space of the random vectors (I(D)
t , I(A)

t ) (5.3) is finite (and
measurable) for each t, the space of realizable histories ht ∈ H(D)

t ×H(A)
t is count-

able. By the extension theorem of Ionescu Tulcea, it thus follows that a measure
PR over H(D)

t ×H(A)
t exists for all t ≥ 1 (Ionescu Tulcea, 1949).

Lemma 5.5. For any ℓA ∈ L and any sequence (νt,πht
)t≥1 generated by col,

lim
t→∞

∣∣∣∣ t−1
t∑

τ=1
ln

P[i(D)
τ+1 | ℓA,bτ ]

P[i(D)
τ+1 | ℓA,bτ ]︸ ︷︷ ︸

≜Zt+1(ℓA)

−K(ℓA, νt)
∣∣∣∣ = 0 a.s.− PR.

Proof. By definition of Zt and νt,

Zt+1(ℓA) = t−1
t∑

τ=1
ln

P[i(D)
τ+1 | ℓA,bτ ]

P[i(D)
τ+1 | ℓA,bτ ]

(a)=
∑
b∈B

t−1
t∑

τ=1
1b=bτ

ln
P[i(D)

τ+1 | ℓA,bτ ]
P[i(D)

τ+1 | ℓA,bτ ]

=
∑
b∈B

t∑
τ=1

t−1
1b=bτ lnP[i(D)

τ+1 | ℓA,bτ ]−
∑
b∈B

t∑
τ=1

t−1
1b=bτ lnP[i(D)

τ+1 | ℓA,bτ ]

= Eb∼νt

[
t∑

τ=1

lnP[i(D)
τ+1 | ℓA,b]
t

−
t∑

τ=1

lnP[i(D)
τ+1 | ℓA,b]
t

]
,

where we use
∑

b∈B 1bτ =b = 1 in (a). This means that if the left sum above
converges to EI(D) [lnP[I(D) | ℓA,b] | ℓA,b] and the right sum converges to
EI(D) [lnP[I(D) | ℓA,b] | ℓA,b], we obtain Zt −−−→

t→∞
K(ℓA, νt) (5.15), which yields

the desired result16. As these two proofs are almost identical, we only provide the
first proof here.

Let Xτ ≜ lnP[i(D)
τ+1 | ℓA,bτ ] − EI(D)

[
lnP[I(D) | ℓA,bτ ]

]
. We will show that

(Xτ )τ≥1 is a martingale difference sequence (mds). To show this, we need to prove
that (i) E[Xτ | hτ−1] = 0; and (ii) E[|Xτ |] <∞. We start with (i),

E[Xτ | hτ−1] = EI(D)

[
lnP[I(D) | ℓA,bτ ]− EI(D)

[
lnP[I(D) | ℓA,bτ ]

]
| hτ−1

]
(a)= EI(D)

[
lnP[I(D) | ℓA,bτ ]

]
− EI(D)

[
lnP[I(D) | ℓA,bτ ]

]
= 0,

16Recall the definition K(ℓA, ν) ≜ Eb∼νEI(k)

[
ln
(

P[I(k)|ℓA,b]

P[I(k)|ℓA,b]

)
| ℓA, b

]
.
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where (a) follows because I(D) is conditionally independent of hτ−1 given bτ (5.5).
To prove (ii) we will write Xτ as an expression of the form (lnP[φ])2P[φ], which

is bounded by 117. Towards this end, we start by applying Jensen’s inequality to
obtain

E[|Xτ |] = (E[|Xτ |]2)1/2 ≤ (E[X2
τ ])1/2, (5.24)

which means that it suffices to bound E[X2
τ ].

Next, we use
∑

i(D)∈RI(D)
1i(D)

τ+1=i(D) = 1 to rewrite18 lnP[i(D)
τ+1 | ℓA,bτ ] as

lnP[i(D)
τ+1 | ℓA,bτ ] =

∑
i(D)∈RI(D)

1i(D)=i(D)
τ+1

lnP[i(D)
τ+1 | ℓA,bτ ]

=
∑

i(D)∈RI(D)

1i(D)=i(D)
τ+1

P[I(D) | ℓA,bτ ]
P[I(D) | ℓA,bτ ] lnP[I(D) | ℓA,bτ ]

=
EI(D)

[
1I(D)=i(D)

τ+1
lnP[I(D) | ℓA,bτ ]

]
P[i(D)

τ+1 | ℓA,bτ ]
,

which means that we can write Xτ as

Xτ = lnP[i(D)
τ+1 | ℓA,bτ ]− EI(D)

[
lnP[I(D) | ℓA,bτ ]

]
=

EI(D)

[
1I(D)=i(D)

τ+1
lnP[I(D) | ℓA,bτ ]

]
P[i(D)

τ+1 | ℓA,bτ ]
− EI(D)

[
lnP[I(D) | ℓA,bτ ]

]

=
EI(D)

[
1I(D)=i(D)

τ+1
lnP[I(D) | ℓA,bτ ]

]
− P[i(D)

τ+1 | ℓA,bτ ]EI(D)
[
lnP[I(D) | ℓA,bτ ]

]
P[i(D)

τ+1 | ℓA,bτ ]

=
EI(D)

[
lnP[I(D) | ℓA,bτ ]

(
1I(D)=i(D)

τ+1
− P[i(D)

τ+1 | ℓA,bτ ]
)
| ℓA,bτ

]
P[i(D)

τ+1 | ℓA,bτ ]
. (5.25)

Since we focus on realizable histories, we have that P[i(D)
τ+1 | ℓA,bτ ] ∈ (0, 1].

Hence, it is safe to suppress the denominator in (5.25). Consequently, the square
of (5.25) can be bounded by the Cauchy-Schwarz inequality as

X2
τ ≈ EI(D)

[
lnP[I(D) | ℓA,bτ ]

(
1I(D)=i(D)

τ+1
− P[i(D)

τ+1 | ℓA,bτ ]
)
| ℓA,bτ

]2

≤ EI(D)


lnP[I(D) | ℓA,bτ ]︸ ︷︷ ︸

≜κ


2
1{I(D)}(i(D)

τ + 1)− P[i(D)
τ+1 | ℓA,bτ ]︸ ︷︷ ︸

≜χ


2

| ℓA,bτ

 .
17We use the standard convention that (ln 0)20 = 0.
18Recall that RX denotes the range of the random variable X.
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Since κ ≥ 0 and χ ∈ [0, 1], we obtain that

X2
τ ≤ EI(D)

[
κ2χ2 | ℓA,bτ

]
≤ EI(D)

[
κ2 | ℓA,bτ

]
,

which means that

E[X2
τ ] ≲ EI(D)

[
P[I(D) | ℓA,bτ ]

(
lnP[I(D) | ℓA,bτ ]

)2
| ℓA,bτ

]
≤ 1

(a)=⇒ E[|Xτ |] ≲ 1 =⇒ E[|Xτ |] ≤ ∞,

where (a) follows from (5.24). Therefore, (Xτ )τ≥1 is an mds. Consequently, the
sequence Yt ≜

∑t
τ=1

Xτ

τ is a martingale. By the martingale convergence theo-
rem, (Yτ )τ≥1 converges to a finite and integrable random variable a.s.-PR (Thm.
6.4.3, Ash, 1972). This convergence means that we can invoke Kronecker’s lemma,
which states that limt→∞ t−1∑t

τ=1 Xτ = 0 a.s.-PR (p. 105, Pollard, 2001). As a
consequence, the following holds a.s.-PR as t→∞

lim
t→∞

t∑
τ=1

lnP[i(D)
τ+1 | ℓA,bτ ]− EI(D)

[
lnP[I(D) | ℓA,bτ ]

]
t

= 0

=⇒ lim
t→∞

Eb∼νt

[
t∑

τ=1

lnP[i(D)
τ+1 | ℓA,b]− EI(D)

[
lnP[I(D) | ℓA,b]

]
t

]
= 0

=⇒ lim
t→∞

Eb∼νt

[
t∑

τ=1

lnP[i(D)
τ+1 | ℓA,b]
t

]
(a)= Eb∼νt

[
EI(D)

[
lnP[I(D) | ℓA,b]

]]
,

where (a) follows because EI(D)
[
lnP[I(D) | ℓA,b]

]
is independent of τ .

C.1 Proof of Theorem 5.4.A
To streamline analysis, we treat µt as a probability measure over L and use integral
language. From Bayes rule and the Markov property of P[I(D) | ℓA,bt], we have

µt+1(ℓA) =
P[ℓA]P[i(D)

2 , . . . , i(D)
t+1 | ℓA,h(D)

t ]
P[i(D)

2 , . . . , i(D)
t+1 | h

(D)
t ]

(a)=
µ1(ℓA)

∏t
τ=1 P[i(D)

τ+1 | ℓA,bτ ]∫
L µ1(dℓA)

∏t
τ=1 P[i(D)

τ+1 | ℓA,bτ ]

=
µ1(ℓA) exp

(
ln
(∏t

τ=1
P[i(D)

τ+1|ℓA,bτ ]
P[i(D)

τ+1|ℓA,bτ ]

))
∫

L µ1(dℓA) exp
(

ln
(∏t

τ=1
P[i(D)

τ+1|ℓA,bτ ]
P[i(D)

τ+1|ℓA,bτ ]

))
=

µ1(ℓA) exp
(
−tZt+1(ℓA)

)∫
L µ1(dℓA) exp

(
−tZt+1(ℓA)

) , (5.26)
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where Zt is defined in Lemma 5.5. Step (a) above is well-defined by Assumption 5.1
and follows because I(D) is conditionally independent of h(D)

t−1 given bt−1.
Using the expression in (5.26), we obtain

EℓA∼µt+1

[ ≜∆K(ℓA,νt)︷ ︸︸ ︷
K(ℓA, νt)−K⋆

L(νt)
]

=
∫

L ∆K(ℓA, νt)µ1(dℓA) exp
(
−tZt+1(ℓA)

)∫
L µ1(dℓA) exp

(
−tZt+1(ℓA)

)
=
∫

L ∆K(ℓA, νt)µ1(dℓA) exp
(
−tZt+1(ℓA)

)∫
L µ1(dℓA) exp

(
−tZt+1(ℓA)

) exp(K⋆
L(νt)t)

exp(K⋆
L(νt)t)

=
∫

L

≜σ︷ ︸︸ ︷
∆K(ℓA, νt)µ1(dℓA) exp

(
−t
(
Zt+1(ℓA)−K⋆

L(νt+1)
))∫

L µ1(dℓA) exp
(
−t(Zt+1(ℓA)−K⋆

L(νt+1))
) . (5.27)

By defining Lϵ ≜ {ℓA | ∆K(ℓA, νt+1) ≥ ϵ} we can write the numerator in (5.27) as∫
L\Lϵ

σ +
∫

Lϵ

σ ≤ ϵ+
∫

L\Lϵ

σ. (5.28)

Given this bound, it suffices to show that, for arbitrarily small ϵ > 0,

lim
t→∞

∫
Lϵ
σ∫

L µ1(dℓA) exp
(
−t(Zt+1(ℓA)−K⋆

L(νt+1))
) = 0.

Towards the proof of the limit above, we note that the exponent in σ (5.27) can be
written as

− t(Zt+1(ℓA)−K⋆
L(νt+1)) = −t(Zt+1(ℓA)−K⋆

L(νt+1)) +K(ℓA, νt+1)−K(ℓA, νt+1)
= −t(∆K(ℓA, νt+1) + Zt+1(ℓA)−K(ℓA, νt+1)). (5.29)

Therefore, we obtain∫
Lϵ
σ∫

L µ1(dℓA) exp
(
−t(Zt+1(ℓA)−K⋆

L(νt+1))
)

=
∫

Lϵ
∆K(ℓA, νt+1)µ1(dℓA) exp

(
−t(∆K(ℓA, νt+1) + Zt+1(ℓA)−K(ℓA, νt+1))

)∫
L µ1(dℓA) exp

(
−t(∆K(ℓA, νt+1) + Zt+1(ℓA)−K(ℓA, νt+1))

) .

Next, we recall from Lemma 5.5 that for any ϵ > 0, there exists η > 0 and tη ≥ 1
such that, for all t ≥ tη and ℓA ∈ L, |Zt(ℓA −K(ℓA, νt+1))| < η. (tη is uniform as
|L| <∞, Assumption 5.1.) This convergence implies that∫

Lϵ
∆K(ℓA, νt+1)µ1(dℓA) exp

(
−t(∆K(ℓA, νt+1) + Zt+1(ℓA)−K(ℓA, νt+1))

)∫
L µ1(dℓA) exp

(
−t(∆K(ℓA, νt+1) + Zt+1(ℓA)−K(ℓA, νt+1))

)
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≤
∫

Lϵ
∆K(ℓA, νt+1)µ1(dℓA) exp

(
−t(∆K(ℓA, νt+1)− η)

)∫
L µ1(dℓA) exp

(
−t(∆K(ℓA, νt+1) + η)

) ∀t ≥ tη

= e2tη

∫
Lϵ

∆K(ℓA, νt+1)µ1(dℓA)e−t∆K(ℓA,νt+1)∫
L µ1(dℓA)e−t∆K(ℓA,νt+1)

. (*)

Now, consider the numerator in (*). Since xe−tx is decreasing for all x > t−1

and since ∆K(ℓA, νt+1) ≥ ϵ for all ℓA ∈ Lϵ, we have that∫
Lϵ

∆K(ℓA, νt+1)µ1(dℓA)e−t∆K(ℓA,νt+1) ≤ ϵe−tϵ ∀t ≥ max
[
tη,

1
ϵ

]
.

Next, consider the denominator in (*). By definition, ∃ℓA ∈ L such thatK(ℓA, νt) =
K⋆

L(νt)∀t. This fact, together with the assumption that µ1 has full support (As-
sumption 5.1), means that the denominator is a positive constant, which we denote
by k. As a result, (∗) ≤ e2tηϵe−tϵk−1. Let η = ϵ

4 . Then e2tηϵe−tϵk−1 = e
−tϵ

2 ϵk−1,
which converges to 0 as t → ∞. Consequently, limt→∞ EℓA∼µt

[∆K(ℓA, νt)] = 0
a.s.-PR.

D Proof of Theorem 5.4.B

The proof of Thm. 5.4.B follows the same procedure as that of Thm. 5.4.A, with
the difference that Θk is allowed to be non-finite, whereas L in Thm. 5.4.A is finite
(Assumption 5.1). Define Θ+

k,ϵ ≜ {θ | ∆K(θ, νt) ≥ ϵ} and Θ−
k, ϵ

2
≜ {θ | ∆K(θ, νt) ≤

ϵ
2}. It then follows from (5.27)–(5.28) that

∫
Θk

( ∆K(θ,νt)︷ ︸︸ ︷
K(θ, νt)−K⋆

Θk
(νt)

)
ρ

(k)
t+1(dθ) ≤ ϵ+ (5.30)∫

Θ+
k,ϵ

∆K(θ, νt) exp
(
−t
(
Zt(θ)−K⋆

Θk
(νt)

))
ρ

(k)
1 (dθ)∫

Θ−
k, ϵ

2

exp
(
−t
(
Zt(θ)−K⋆

Θk
(νt)

))
ρ

(k)
1 (dθ)︸ ︷︷ ︸

≜✩

,

where ✩ is well-defined by Assumptions 5.1–5.2.
(5.30) implies that it suffices to prove that ✩

t→∞−−−→ 0 for arbitrarily small ϵ.
Applying Lemma 5.5 and (*), we obtain

✩
(a)

≤ e2tη

∫
Θ+

k,ϵ
∆K(θ, νt)e−t∆K(θ,νt)ρ

(k)
1 (dθ)∫

Θ−
k, ϵ

2

e−t∆K(θ,νt)ρ
(k)
1 (dθ)

(b)

≤ e2tη ϵe−tϵ∫
Θ−

k, ϵ
2

e−t∆K(θ,νt)ρ
(k)
1 (dθ)
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(c)

≤ e2tη ϵe−tϵ

e−t ϵ
2
∫

Θ−
k, ϵ

2

ρ
(k)
1 (dθ)

= e2tη ϵe−t ϵ
2

ρ
(k)
1 (Θ−

k, ϵ
2
)

∀t ≥ max
[
tη, ϵ

−1] , (5.31)

where (a) follows from (*); (b) follows because xe−tx is decreasing in x for all
x > t−1; and (c) follows because e−t∆K(θ,νt) ≥ e−t ϵ

2 .
Let η = ϵ/8. Then the numerator in the final expression above becomes ϵe−t ϵ

4 ,
which converges to 0 as t → ∞. Thus, what remains to show is that the denomi-
nator is positive in the limit, i.e., limt→∞ ρ

(k)
1 (Θ−

k, ϵ
2
) > 0. We prove this statement

by establishing uniform continuity of ∆K(θ, ν). Towards this end, we prove the
following two lemmas.

Lemma 5.6. B (5.5) is a compact subset of R|S| with the Euclidean metric d and
∆(B) a compact metric space with the Wasserstein-p distance Wp (p ≥ 1).

Proof. Since S is finite, B = ∆(S) is a compact subset of R|S| and (B, d) is a Polish
space. To prove that (∆(B),Wp) is compact we will show that every sequence
(νn)∞

n=1 ⊂ ∆(B) admits a subsequence converging to some limit point in ∆(B).
Since B is compact and νn(B) = 1, this collection of measures is tight as ∃C ⊆ B
such that νn(C) = 1 > 1 − ϵ for any ϵ > 0 and νn. Therefore, (νn)∞

n=1 admits a
limit point ν⋆ ∈ ∆(B) w.r.t the topology of weak convergence (Prokhorov’s theorem
(Ch. 1, §5, Billingsley, 1999)). We will show that ν⋆ is also a limit point under
Wp. By Skorokhod’s representation theorem (p. 70, Billingsley, 1999), there exists
a sequence of B-valued random variables {V1, . . . , Vn, . . . , V

⋆} such that Vn has
the probability law νn and Vn converges to V ⋆ almost surely as n → ∞. By the
dominance convergence theorem and the facts that B is compact and d is continuous,
limn→∞ E[d(Vn, V

⋆)p] = 0. Consequently, for any coupling ξ between νn and ν⋆,

lim
n→∞

(∫
d(x, y)pdξ(x, y)

) 1
p

= 0.

Since Wp(νn, ν
⋆) is the infimum of the left-hand side above (by definition),

limn→∞ Wp(νn, ν
⋆) = 0. Hence, every sequence (νn)∞

n=1 ⊂ ∆(B) admits a sub-
sequence converging to some limit point in ∆(B) under Wp. Thus, (∆(B),Wp) is
compact.

Lemma 5.7. ∆K(θ, ν) ≜ K(θ, ν) −K⋆
Θk

(ν) is a continuous map from (Θk, d) ×
(∆(B),W1) to R, where d and W1 denote the Euclidean and the Wasserstein-1
distance, respectively.

Proof. We start by showing that K(θ, ν) is continuous by proving that for any
convergent sequence (θn, νn) −−−−→

n→∞
(θ, ν), the difference |K(θn, νn) − K(θ, ν)|

converges to 0. This difference can be bounded using the triangle inequality as

|K(θn, νn)−K(θ, ν)| ≤ |K(θn, νn)−K(θn, ν)|︸ ︷︷ ︸
≜①

+ |K(θn, ν)−K(θ, ν)|︸ ︷︷ ︸
≜②

.



Proof of Theorem 5.4.B 241

Consider the left expression above (①). (5.15) implies that

① =
∣∣∣∣∫

B
EI(k)

[
ln
(

P[I(k) | θ,b]
P[I(k) | θn,b]

)]
νn(db)−

∫
B
EI(k)

[
ln
(

P[I(k) | θ,b]
P[I(k) | θn,b]

)]
ν(db)

∣∣∣∣ ,
which is an integral probability metric (ipm) with the testing function f(b) ≜

EI(k)

[
ln
(

P[I(k)|θ,b]
P[I(k)|θn,b]

)]
. This function is assumed to be Lipschitz continuous (As-

sumption 5.2.1). As the function can be rescaled, we can, without loss of generality,
assume the Lipschitz constant to be 1. Since the Wasserstein distance is equivalent
to the ipm w.r.t the class of 1-Lipschitz functions, ① is upper-bounded by Wp(νn, ν).
Hence, as νn converges to ν in Wp, ① converges to 0. Therefore, ν 7→ K(θ, ν) is
continuous. We now show that ② converges. Using Assumption 5.2.2 and the
dominated convergence theorem, we obtain that

lim
n→∞

Eb∼νEI(k)

[
ln
(

P[I(k) | θ,b]
P[I(k) | θn,b]

)]
= Eb∼νEI(k)

[
ln
(
P[I(k) | θ,b]
P[I(k) | θ,b]

)]
,

which implies that ② converges to 0 as n → ∞. Consequently, θ 7→ K(θ, ν) is
continuous. Finally, since Θk is compact (Assumption 5.1) and K(θ, ν) is contin-
uous in both θ and ν, we can apply Berge’s maximum theorem to K(θ, ν) w.r.t.
θ. This theorem states that the mapping ν 7→ K⋆

Θk
(ν) is continuous (5.16a). Since

continuity is preserved under subtraction, it follows that ∆K also is continuous
(Thm. 17.31, Aliprantis and Border, 2006).

D.1 Proof of Theorem 5.4.B
Lemmas 5.6–5.7 and the compactness of Θk (Assumption 5.1) imply uniform conti-
nuity of ∆K(θ, ν) and that |Θ⋆

k(ν)| > 0 (Thm. 17.31, Aliprantis and Border, 2006).
As a consequence, for each θν ∈ Θ⋆

k(ν), θ′ ∈ Θk, and ν′, ν ∈ ∆(B), ∃δm such
that d(θν ,θ

′) < δm, W1(ν, ν′) < δm, and d(∆K(θ′
, ν′),∆K(θν , ν)) ≤ m

(a)=⇒
∆K(θ′

, ν′) < m for each m > 0, where (a) follows because θν ∈ Θ⋆
k(ν) =⇒

∆K(θν , ν) = 0. Define the ball B(ν, δm) ≜ {ν′ | W1(ν, ν′) < δm, ν
′ ∈ ∆(B)}. It

follows that, for any ν ∈ ∆(B) and ν′ ∈ B(ν, δm),

{θ′ | d(θ′
,θν) < δm}︸ ︷︷ ︸

≜Θν (δm)

⊆ {θ′ | ∆K(θ′
, ν′) ≤ m}︸ ︷︷ ︸

≜Θν′ (m)

.

Thus, for any ν and ν′ ∈ B(ν, δm),

ρ
(k)
1 (Θν′(m)) ≥ ρ(k)

1 (Θν(δm))
(a)
> 0,

where (a) follows because ρ(k)
1 has full support (Assumption 5.1).
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Since ∆(B) is compact (Lemma 5.6), the set {B(ν, δm)}ν∈∆(B) forms an open
cover for a compact space, which means that there exists a finite subcover
{B(νi, δm)}M

i=1. As a conseqeuence, each ν′ ∈ ∆(B) belongs to some Wasserstein
ball B(νi, δm). Let r ≜ mini ρ

(k)
1 (Θνi(δm)) > 0. We then have that

ρ
(k)
1 (Θν′(m)) ≥ ρ(k)

1 (Θνi(δm)) ≥ r.

Now recall the denominator ρ(k)
1 (Θ−

k, ϵ
2
) in (5.31). Let m = ϵ

2 . Then ρ
(k)
1 (Θ−

k, ϵ
2
) ≥

r > 0 for any ϵ > 0. Hence, limt→∞
ϵe−t ϵ

4

ρ
(k)
1 (Θ−

k, ϵ
2

)
= 0.

E Example Derivation of a Berk-Nash Equilibrium (bne)

We use the following example to illustrate the steps required to find a bne.

Consider Prob. 5.1 with N ≜ 1, pA ≜ 1, O ≜ {0, 1}, zθ1(· | 0) ≜ Ber(p),
zθ1(1 | 1) ≜ Ber(q), b1(1) = 0, and c (5.6) being defined as in Fig. 5.3.
Let the rollout parameters be (ℓA = 0, ℓD = 1) and let π1 be threshold
strategies with β ≥ 0 and α ∈ (0, 1] (Thm. 5.1). Finally, let L ≜ {ℓA},
ΘA ≜ {θ1}, and ΘD ≜ {θa,θb(1)}, where zθa

(0 | 0) ≜ zθa
(1 | 1) ≜ zθb

(1 |
0) ≜ zθb

(0 | 1) ≜ 1.

Example.

First note that the definition of zθa
, zθb

, and b1 imply that bt(1) ∈ {0, 1} for
all t, which simplifies the following derivation. To derive a bne, we start with
condition (i) in Def. 5.1. Since ℓA = 0, it suffices to consider πD. By the principle
of optimality

πD(b(1)) ∈ arg min
a(D)∈AD

ES,B′(1)

[
c(S, a(D)) + γJ

(π1)
D,θ

(B′(1)) | b(1),π1

]
.

Let Pθ,π1
and cπ1 be the belief transition matrix and the vector of expected stage

costs induced by (θ,π1), respectively. From the definition of ΘD we obtain that

Pθa,π1

(a)=
[
1− q q

1 0

]
, Pθb,π1

(b)=
[
1− p p

1 0

]
, cπ1

(c)=
[

0
−1

]
,

where (a)–(c) follow because α ∈ (0, 1] =⇒ πD(1) = S, πD(0) = C.
By definition, J (π1)

D,θ
= (12−γPθ,π1

)−1cπ1 , where 12 is the 2×2 identity matrix.
Therefore,

J
(π1)
D,θa

= (12 − γPθa,π1
)−1cπ1 =

(
12 − γ

[
1− q q

1 0

])−1 [ 0
−1

]
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=
[
1− γ + γq −γq
−γ 1

]−1 [ 0
−1

]
=
[

−1
(γ−1)(1+γq)

−γq
(γ−1)(1+γq)

−γ
(γ−1)(1+γq)

γ−1−γq
(γ−1)(1+γq)

][
0
−1

]
= 1

(γ − 1)(1 + γq)

[
γq

1 + γ(q − 1)

]
.

Similarly,

J
(π1)
D,θb

= (12 − γPθb,π1
)−1cπ1 =

(
12 − γ

[
1− p p

1 0

])−1 [ 0
−1

]
= 1

(γ − 1)(1 + γp)

[
γp

1 + γ(p− 1)

]
.

Hence, to meet condition (i), the defender’s rollout strategy must satisfy πD(0) = C
and πD(1) = S, which is ensured by (5.12). As a consequence, π = π1 in any bne.

Now consider condition (ii); (5.15) can be written as

K(θ, ν) = Eb∼νEI(D)

[
ln
(
P[I(D) | θ1,b(1)]
P[I(D) | θ,b(1)]

)
| θ1,b(1)

]
=

∑
b(1)∈{0,1}

ν(b(1))
∑

o∈{0,1}

zθ1(o | b(1)) ln
(
zθ1(o | b(1))
zθ(o | b(1))

)
= −

∑
b(1)∈{0,1}

ν(b(1))
∑

o∈{0,1}

zθ1(o | b(1)) ln zθ(o | b(1)) + const.

Minimizing the above expression with respect to θ yields Θ⋆
D = {θa} if (p = 0, q =

1). Conversely, Θ⋆
D = {θb} if (p = 1, q = 0). Otherwise, Θ⋆

D(ν) = {θa,θb}.
Lastly, condition (iii) is satisfied iff PT

θ,π1
ν = ν. Since PT

θ,π1
= ρ(D)(θa)PT

θa,π1
+

(1− ρ(D)(θa))PT
θb,π1

, solving this equation gives

ν(0) = −
(
−1− p+ ρ(D)(θa)p− ρ(D)(θa)q

)−1
, (5.32)

which means the bne is not unique and may not exist; see Fig. 5.18 on the next
page. For example, if p = 1 and q = 0, then (5.32) requires that ρ(D)(θa) = 1, but
this means that ρ(D) ̸∈ ∆(Θ⋆(ν), which violates condition (ii).
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1
ν(0) =

(
− 3

2 + 1
2ρ

(D)(θa)− ρ(D)(θa)q
)−1

ρ(D)(θa) q

Figure 5.18: Berk-Nash equilibria of the example instantiation of Γ when p = 1
2 .

F Hyperparameters

The hyperparameters used for the evaluation in this paper are listed in Table 5.5
on the next page and were obtained through grid search.
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Figures and Tables Values
Figure 5.6 O = {0, . . . , 9}, pA = 0.1, γ = 0.99

z(· | 0) = BetaBin(n = 10, α = 0.7, β = 3)
z(· | 1) = BetaBin(n = 10, α = 1, β = 0.7

Figure 5.5 O = {0, . . . , 9}, pA = 0.1, N = 1, γ = 0.99
z(· | 0) = BetaBin(n = 10, α = 0.7, β = 3)
z(· | 1) = BetaBin(n = 10, α = 1, β = 0.7

Figure 5.8 N = 10, pA = 0.1, γ = 0.99
πD,1(S | bt) = 1 ⇐⇒ P[St ≥ 1 | bt] ≥ 0.75
πA,1(S | bt, st) = 0.5
Cost function of base strategy estimated
using 100 MC samples w. horizon 50

Figs. 5.12.a–e ℓA = ℓD = 1,L = {1, 2}, pA = 1
πD,1(S | bt) = 1 ⇐⇒ P[St ≥ 1 | bt] ≥ 0.75
πA,1(S | bt, st) = 0.05
N = 10, O, z (Fig. 5.11)
using 100 MC samples w. horizon 50

Figure 5.4, Fig. 5.12.f O, z (Fig. 5.11), pA = 0.1, γ = 0.99
L = 0, 1, 2, N = 10
πD,1(S | bt) = 1 ⇐⇒ P[St ≥ 1 | bt] ≥ 0.75
πA,1(S | bt, st) = 0.05
Best response computation: cem [380]
Best response parameterized following Thm. 5.1

Figs. 5.13–5.16, 5.15 ℓA = ℓD = 1, pA = 1, γ = 0.99
πD,1(S | bt) = 1 ⇐⇒ P[St ≥ 1 | bt] ≥ 0.75
πA,1(S | bt, st) = 0.05
N = 10, O, z (Fig. 5.11)
using 100 MC samples w. horizon 50

Figure 5.13.e ΘD = {0, . . . , 200}
Table 5.3 ℓA = ℓD = 1, pA = 1, γ = 0.99

πD,1(S | bt) = 1 ⇐⇒ P[St ≥ 1 | bt] ≥ 0.75
πA,1(S | bt, st) = 0.05
N = 10, O, z (Fig. 5.11, t = 10)
using 100 MC samples w. horizon 50

Figure 5.10 ψ = ( 1
2 , 10−2,−105), χ = (1.0593)

ϕ = (−0.5193), ω = (0.054π)
time step: 30s, service time: Exp(µ = 4)t

Figure 5.17 O (Fig. 5.11), πA,1(S | ·) = 1, ℓD = 1
Confidence intervals computed using the Student-t distribution
Base strategies πD,1πA,1 Approximate threshold best responses

against randomized opponents (Fig. 5.4)
Priors µ1, ρ

(D)
1 , ρ

(A)
1 uniform

Cost function (5.6), Fig. 5.3 p = 5/4, q = 1, r = 2
hsvi Parameter
ϵ 0.1
Cross-entropy method [380]
λ (fraction of samples to keep) 0.15, 100
K population size 100
M number of samples for each evaluation 50
ppo [396, Alg. 1] parameters
lr α, batch, # layers, # neurons, clip ϵ 10−5, 4 · 103t, 4, 64, 0.2,
GAE λ, ent-coef, activation 0.95, 10−4, ReLU
nfsp [191, Alg. 9] parameters
lr RL, lr SL, batch, # layers,# neurons, MRL 10−2, 5 · 10−3, 64, 2,128, 2× 105

MSL,ϵ, ϵ-decay, η 2× 106, 0.06, 0.001, 0.1

Table 5.5: Hyperparameters.
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OPTIMAL DEFENDER STRATEGIES FOR
CAGE-2 USING CAUSAL MODELING AND

TREE SEARCH

Kim Hammar, Neil Dhir, and Rolf Stadler

Abstract

The cage-2 challenge is considered a standard benchmark to compare
methods for automated security response. Current state-of-the-art methods
evaluated against this benchmark are based on model-free (offline) reinforce-
ment learning, which does not provide provably optimal defender strategies.
We address this limitation and present a formal (causal) model of cage-2
together with a method that produces a provably optimal defender strat-
egy, which we call Causal-Partially Observable Monte-Carlo Planning (c-
pomcp). It has two key properties. First, it incorporates the causal structure
of the target system, i.e., the causal relationships among the system vari-
ables. This structure allows for a significant reduction of the search space
of defender strategies. Second, it is an online method that uses tree search
to update the defender strategy at each time step. Evaluations against the
cage-2 benchmark show that c-pomcp achieves state-of-the-art performance
with respect to effectiveness and is two orders of magnitude more efficient in
computing time than the closest competitor method.

†The paper is submitted for publication as
K. Hammar, N. Dhir, and R. Stadler (2024), “Optimal Defender Strategies for cage-2 using
Causal Modeling and Tree Search [173]”. IEEE Transactions on Dependable and Secure
Computing (TDSC).
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All reasonings concerning matter of fact seem to be founded on the re-
lation of cause and effect.

— David Hume 1748, An enquiry concerning human understanding.

6.1 Introduction

Adriving factor behind the research on automated security response is the
development of evaluation benchmarks, which allow researchers to com-
pare the performance of different methods. One such benchmark is csle,

which is described in the methodology chapter and provides the basis for the exper-
imental evaluations presented in Papers 1–5. Another popular benchmark is the
Cyber Autonomy Gym for Experimentation 2 (cage-2) (cage-2, 2022), which
involves defending a networked system against a simulated Advanced Persistent
Threat (apt)2. At the time of writing, more than 30 methods have been evaluated
against cage-2 (cage-2, 2022). Detailed descriptions of some methods can be
found in [481, 492, 42, 140, 141, 190, 452, 241, 368, 357, 122, 22, 490, 495, 498, 93,
289]. While good results have been obtained, key aspects remain unexplored. For
example, current methods are narrowly focused on offline reinforcement learning
and require a lengthy training phase to obtain effective strategies. Further, these
methods are model-free and do not provide provably optimal strategies. In addition,
present methods provide limited ways to include domain expertise in the learning
process, though attempts have been made with reward shaping [42].

In this paper, we address the above limitations and use the cage-2 scenario
to illustrate our solution method. First, we develop a formal (causal) model of
cage-2, which allows us to define and prove the existence of an optimal defender
strategy. This model is based on the source code of cage-2 and is formalized as a
Structural Causal Model (scm) (Def 7.1.1, Pearl, 2009). We prove that this scm
is equivalent to a specific Partially Observed Markov Decision Process (pomdp)3

(P.1, Åström, 1965). Compared to the pomdp, our scm offers a more expressive
representation of the underlying causal structure, allowing us to understand the
causal effects of defender strategies (Def. 3.2.1, Pearl, 2009).

Second, we design an online method that produces a provably optimal defender
strategy, which we call Causal-Partially Observable Monte-Carlo Planning (c-
pomcp). The method has two key properties: (1) it incorporates causal information
of the target system in the form of a causal graph (Def. 2.2.1, Pearl, 2009), which
allows us to prune the search space of defender strategies; and (2) it is an online
method that updates the defender strategy at each time step via tree search.

Distribution Statement A (Approved for Public Release, Distribution Unlimited). This
research is supported by the Defense Advanced Research Project Agency (darpa) through the
castle program under Contract No. W912CG23C0029. The views, opinions, and/or findings ex-
pressed are those of the authors and should not be interpreted as representing the official views
or policies of the Department of Defense or the U.S. Government.

2Unlike csle, which is based on virtual it infrastructures, cage-2 is a simulation benchmark.
3The components of a pomdp are defined the background chapter; see (15).
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Our causal model represents one of many ways of formally modeling cage-2. A
key question is the level of abstraction at which cage-2 is modeled. The more de-
tailed we construct the model, the closer it can capture the cage-2 implementation.
However, this comes at the expense of higher computational complexity and lower
generalization ability. When balancing this trade-off, we follow the principle that a
model should be detailed enough so that a theoretically optimal defender strategy
exhibits state-of-the-art performance in a practical implementation (cage-2, 2022).

We evaluate c-pomcp against the cage-2 benchmark and show that it achieves
state-of-the-art effectiveness while being two orders of magnitude more compu-
tationally efficient than the closest competitor method: cardiff-ppo (Vyas et
al., 2023)4. The evaluation results also show that c-pomcp performs significantly
better than its non-causal version: pomcp (Alg. 1, Silver and Veness, 2010). While
prior work has focused on offline methods that require hours of training, c-pomcp
produces equally effective defender strategies through 15 seconds of online search.

Our contributions can be summarized as follows:

We present a causal model of the cage-2 scenario (M1). This model allows
us to define and prove the existence of optimal defender strategies (Thm. 6.1).

We design c-pomcp, an online method that leverages the causal structure of
the target system to efficiently find an optimal defender strategy (Alg. 6.1).
c-pomcp includes a novel approach to leverage causal information for tree
search, which may be of independent interest.

We prove that c-pomcp converges to an optimal strategy with increasing
search time (Thm. 6.4).

We evaluate c-pomcp against the cage-2 benchmark. The results show
that c-pomcp outperforms the state-of-the-art methods in effectiveness and
performs significantly better in computational efficiency (Vyas et al., 2023).

6.2 Related Work

To our knowledge, no prior work has provided a formal model of cage-2, nor
considered tree search for finding effective defender strategies. Moreover, the only
prior works that use causal inference for automated security response are (Andrew
et al., 2022), (Highnam et al., 2023), (Shi et al., 2018), (Mueller et al., 2019), and
(Maiti et al., 2023). This paper differs from them in two ways. First, the stud-
ies presented in (Highnam et al., 2023), (Shi et al., 2018), (Mueller et al., 2019),
and (Maiti et al., 2023) use causality for analyzing the effects of attacks and coun-
termeasures but do not present methods for finding defender strategies. Second,
the method for finding defender strategies in (Andrew et al., 2022) uses Bayesian
optimization and is myopic, i.e., it does not consider the future when selecting

4See Appendix D of Paper 3 for a derivation of the ppo algorithm.
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strategies. While this approach simplifies computations, the method is sub-optimal
for most practical scenarios. By contrast, our method is non-myopic and produces
optimal strategies (Thm. 6.4).

6.3 Causal Inference Preliminaries

This section covers notation and provides an overview of causal inference, which
lays the foundation for the subsequent section, where we deduce a causal model of
the cage-2 scenario.

Structural causal models

A Structural Causal Model (scm) is defined as

M ≜ ⟨U,V,F,P[U]⟩ , (Def 7.1.1, Pearl, 2009) (6.1)

where U is a set of exogenous random variables and V is a set of endogenous random
variables5. Within V ∪ U we distinguish between five subsets that may overlap:
the set of manipulative variables X; non-manipulative N; observed O; latent L;
and targets Y6. An scm induces a causal graph G (Def. 2.2.1, Pearl, 2009), where
nodes correspond to V ∪U and edges represent (causal) functions F ≜ {fi}Vi∈V.
A function fi is a mapping from the ranges of a subset K ⊆ (U ∪ pa(Vi)G) to the
range of Vi, which is represented graphically by directed edges from the nodes in K
to Vi; see Fig. 6.1. If each function is independent of time, the scm is stationary.

Causal graphs with latent variables can be drawn in two ways; cf. Fig. 6.1.a and
Fig. 6.1.b. One option is to include the latent variables in the graph (Fig. 6.1.a).
Another option is to represent the latent variables with bidirected edges, where a
bidirected edge between two observed variables means that they share an unobserved
confounder (Def. 6.2.1, Pearl, 2009), i.e., a latent variable that influences both of
them (Fig. 6.1.b).

X Z Y

U

X Z Y

(a) (b)
Figure 6.1: Causal graphs (Def. 2.2.1, Pearl, 2009); circles represent variables in an scm
(6.1); solid arrows represent causal relations, and dashed edges represent effects caused
by latent variables; latent variables can either be represented with shaded circles or with
bidirected dashed edges, i.e., the graphs in (a) and (b) represent the same causal structure.

5With some abuse of notation, in this paper we use bold upper case letters to denote both
sets of random variables and random vectors.

6scms with latent variables are called “partially observable” (Def. 1, Zhang et al., 2020).
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We say that P[V] is Markov relative to G if it admits the following factorization

P[V] =
|V|∏
i=1

P[Vi | pa(Vi)G ]. (Def. 1.2.2, Thm. 1.2.7, Pearl, 2009) (6.2)

Similarly, we say that an scm is Markov if it induces a distribution over the ob-
servables O that satisfies (6.2) (Thm. 1.4.1, Pearl, 2009). If the scm is not Markov
and G is acyclic, we say that it is semi-Markov (Ch. 3, Pearl, 2009).

Interventions

The operator do(X = x) represents an atomic intervention that fixes a set of
endogenous variable(s) X to constant value(s) x irrespective of the functions F (Def.
3.2.1, Pearl, 2009). Similarly, do(X = π(O)) represents a conditional intervention,
whereby the function(s) {fi}i∈X are replaced with a deterministic function π of the
observables. We call such a function an intervention strategy.

Interventions can be represented graphically by removing the incoming edges to
the intervention set X (Def. 3.2.1, Pearl, 2009). We denote the resulting mutilated
graph by GX. Examples of mutilated graphs are shown in Fig. 6.2.

X Z Y X Z Y
X Z Y X Z Y

(a) G∅ (b) GZ (c) GX
(d) GZ,X

Figure 6.2: Mutilated causal graphs that represent post-intervention worlds where a spe-
cific intervention has been implemented, from left to right, these are do(∅), do(Z), do(X)
and do(X, Z); interventions are graphically represented with the incoming edges onto the
intervened variables removed.

Causal inference

The standard way to estimate causal effects of interventions (Def. 3.2.1, Pearl, 2009)
is through controlled experiments (Fisher, 1935). In practice, however, experimen-
tation can be costly and is often not feasible in operational systems. This leads
to the fundamental question of whether causal effects can be estimated only from
observations. Such estimation can be performed using Pearl’s do-calculus, which
is an axiomatic system for replacing expressions containing the do-operator with
conditional probabilities (Thm. 3.4.1, Pearl, 2009). It consists of three rules:

P (Y | do(X = x),Z,W) = P (Y | do(X = x),W) if (Y ⊥⊥ Z | X,W)GX
(Rule 1)

P (Y | do(X = x),do(Z = z),W) = P (Y | do(X = x),Z,W) if (Y ⊥⊥ Z | X,W)GX,Z

(Rule 2)
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P (Y | do(X = x),do(Z = z),W) = P (Y | do(X = x),W) if (Y ⊥⊥ Z | X,W)G
X,Z(W)

,

(Rule 3)

where GZ refers to the graph obtained by removing the outgoing edges from Z, and
Z(W) is the set of nodes in Z that are not ancestors of any node in W.

Causal effect identifiability

In case an scm includes latent variables (Def. 2.3.2, Pearl, 2009), the question of
identifiability arises:

Definition 6.1 (Causal effect identifiability (Def. 3.2.4, Pearl, 2009)). The causal
effect (Def. 3.2.1, Pearl, 2009) of do(X = π(O)) on Y is identifiable from G if
P[Y | do(X = π(O)),O] is uniquely computable from P[O] > 0 in every scm
conforming to G.

X YX Z Y

(a) P[Y | do(X = x)] identifiable. (b) P[Y | do(X = x)] unidentifiable.
Figure 6.3: Determining causal effect identifiability (Def. 6.1) from causal graphs.

Do-calculus is complete in that it allows us to derive all identifiable causal effects
(Cor. 3.4.2, Pearl, 2009)(Thm. 23, Shpitser and Pearl, 2008). Consequently, one
can prove identifiability by providing a do-calculus derivation that reduces the
causal effect to an expression involving only P[O]. For example, consider the causal
graph in Fig. 6.3.a and assume that X,Y, Z are discrete random variables. The
identifiability of P[Y | do(X = x)] can be proven as follows.

P[Y | do(X = x)] (a)=
∑

z

P[Y, Z = z | do(X = x)]

(b)=
∑

z

P[Y | Z = z,do(X = x)]P[Z = z | do(X = x)]

(c)=
∑

z

P[Y | Z = z,do(X = x)]P[Z = z | X = x]

(d)=
∑

z

P[Y | Z = z]P[Z = z | X = x]

(e)=
∑

z

P[Z = z | X = x]
∑
x′

P[Y,X = x′ | Z = z]

(f)=
∑

z

P[Z = z | X = x]
∑
x′

P[Y | X = x′, Z = z]P[X = x′],
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where (a) follows from law of total probability; (b) uses C-component decomposi-
tion7 (Tian and Pearl, 2002); (c) uses Rule 2 and the fact that (X ⊥⊥ Z)GX

; (d)
uses Rule 3 and the fact that (X ⊥⊥ Y | Z)G

X,Z
; (e) follows from the law of total

probability; and (f) uses the chain rule of probability.
Automatic intervention control
The problem of finding a sequence of conditional interventions do(X1 =
π(O)), . . . ,do(XT = π(O)) that maximizes a target variable J can be formulated
as a feedback control problem (Bertsekas, 2005), also known as a dynamic treatment
regime problem (Murphy, 2003). We say that such a problem is identifiable if the
effect on J caused by every intervention strategy π is identifiable:

Definition 6.2 (Control problem identifiability (Ch. 4.4, Pearl, 2009)). A control
problem with target J and time horizon T is identifiable from G if

P[J | do(X1 = π(O)), . . . ,do(XT = π(O))]
is identifiable for each intervention strategy π (Def. 6.1).

Given a control problem and a causal graph, we can derive possibly optimal
minimal intervention sets (pomiss):

Definition 6.3 (pomis, adapted from (Def. 3, Lee and Bareinboim, 2019)). Given
a control problem with target J and a causal graph G, X̃ ⊆ X is a pomis if, for
each scm conforming to G, there is no X′ ⊂ X̃ such that Eπ[J | do(X̃ = x̃)] =
Eπ[J | do(X′ = x′)] and there exists an scm such that

Eπ⋆ [J | do(X̃ = x̃)] ≥ Eπ⋆ [J | do(X′ = x′)] for all X′ and x′, (6.3)
where π⋆ is an optimal intervention strategy satisfying Eπ⋆ [J ] ≥ Eπ[J ] ∀π.

Let P⋆
G denote the set of pomiss for a causal graph G. P⋆

G for two example
graphs are shown in Fig. 6.4. As can be seen in Fig. 6.4.a, when G is Markovian,
and all variables except the target are manipulative, the only pomis is the set
of parents of the target (Prop. 2, Lee and Bareinboim, 2019). When there are
unobserved confounders (Def. 6.2.1, Pearl, 2009), however, P⋆

G generally includes
many more sets, as shown in Fig. 6.4.b. An algorithm for computing P⋆

G can be
found in (Alg. 1, Lee and Bareinboim, 2019).

X Z J

S

W

J

X

ZB

(b) P⋆
G = {∅, {X}, {W}, {Z}, {B,W}, {X,W}, {Z,W}}.(a) P⋆

G = {{Z}}.

Figure 6.4: Two causal graphs and the corresponding sets of pomiss; J is the target
variable, and all other variables are manipulative.

7Since there is no bidirected edge between Z and Y in G
X

, they belong to different C-
components, which means that their joint probability factorizes.
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6.4 The cage-2 Scenario

The cage-2 scenario involves defending a networked system against apts (cage-
2, 2022). The operator of the system, which we call the defender, takes measures
to protect it against an attacker while providing services to a client population;
see Fig. 6.5. The system is segmented into zones with nodes (servers and work-
stations) that run network services. Services are realized by workflows that clients
access through a gateway, which is also open to the attacker. The detailed system
configuration can be found in Appendix D.

The attacker aims to intrude on the system and disrupt service for clients.
To achieve this goal, it can take five actions: scan the network to discover nodes;
exploit a vulnerability to compromise a node; perform a brute force attack to obtain
login credentials to a node; escalate privileges on a compromised node to gain root
access; and disrupt the service on a compromised node. When selecting between
these actions, the attacker follows a fixed strategy, i.e., the attacker is static and
does not adapt its strategy to encountered defenses.

The defender monitors the system through log files and network statistics. It
can make four types of interventions on a node to prevent, detect, and respond
to attacks: analyze the node for a possible intrusion; start a decoy service on the
node; remove malware from the node; and restore the node to a secure state, which
temporarily disrupts its service. When deciding between these interventions, the
defender balances two conflicting objectives: maximize service utility towards its
clients and minimize the cost of attacks.

enterprise zone
(z = 2)

operational zone
(z = 3)

user zone (z = 1)

Defender

Attacker Clients

2

1

3

2 3 4

1

1 2 3 4

Figure 6.5: The cage-2 scenario (cage-2, 2022): a defender aims to protect a net-
worked system against an Advanced Persistent Threat (apt) caused by an attacker while
maintaining services for clients; the system configuration is listed in Appendix D.
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6.5 Causal Model of the cage-2 Scenario

We model the cage-2 scenario by constructing an scm and formulate the bench-
mark problem as the problem of finding an optimal intervention strategy for the
defender. (A game-theoretic model is not needed since the attacker in cage-2 is
static; i.e., it does not adapt its strategy to encountered defenses.) The requisite
notation is listed in Table 6.1, and the scm components are defined below.

Notation(s) Description
GS, GW System graph and workflow graph (M1).
V, E , Z Set of nodes and edges in GS, set of zones (M1).
Dt, It,St Decoy states, intrusion states, and service states (M1).
U,K,S The unknown, known, and scanned intrusion states (Fig. 6.6).
C,R The compromised and root intrusion states (M1).
At, αt Attacker action and attacker action type (M1).
Vt, Pt, Tt Vulnerability, privileges, and target of attacker action (M1).
S, E, P Scan, exploit, and privilege escalation attacker actions (M1).
I, D Impact and discover attacker actions (M1).
fI, fS, fC Causal functions for Ii,t (6.5), Si,t (6.6), and Ct (6.8).
Zi,t, Zt Observation of node i and observations for all nodes (M1).
fZ,i, Wi,t, Wt Causal function for Zi,t (6.7), noise variable, noise variables.
Ct, At, Dt Number of clients, arrivals, and departures (6.8).
X̂t, x̂t,T Intervention variables and values (M1), search operator (6.18).
do(X̂t = x̂t) Intervention at time t (M1).
do(X⋆

t = x⋆
t ) Optimal intervention at time t.

Rt, J , J̃ Defender reward at time t, cumulative reward (6.9), objective function (6.13).
fR, fJ, fD Causal functions of Rt, J (6.9), and Di,t.
U,V Exogenous and endogenous variables (M1).
Xt,Nt Manipulative, non-manipulative variables at time (M1).
Ot,Lt, fA Observed and latent variables (M1) at time t, causal function of At (6.4).
Yt, D Target variables (M1) at time t, set of decoys (Appendix D).
M ,F scm and causal functions (M1).
ot, T Observation (6.12) at time t and time horizon (6.9).
Ht,ht, γ History at time t and its realization (6.11), discount factor.
πA, πD ∈ Π Attacker and defender strategies (M1).
π⋆

D,R Optimal defender strategy (Thm. 6.1), cumulative regret (6.20).
c̃, ψzi

, βzi
Parameters in the defender objective (6.9) (6.13).

b̂t,P⋆
G Belief state (6.14), the set of pomiss (Def. 6.3).

Σt, σ,G Markov state and its realization (Thm. 6.1), causal graph (Fig. 6.7).
M, sT, c Number of particles, search time, exploration parameter (6.17).

Table 6.1: Variables and symbols used in the model.

Target system (Fig. 6.5)

We represent the physical topology of the target system as a directed graph GS ≜
⟨V, E⟩, where nodes represent servers and workstations; edges represent network
connectivity. Each node i ∈ V is (permanently) located in a zone zi ∈ Z and has
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three state variables: an intrusion state Ii,t, a service state Si,t, and a decoy state
Di,t. Ii,t takes five values: U if the node is unknown to the attacker, K if it is
known, S if it has been scanned, C if it is compromised, and R if the attacker has
root access; see Fig. 6.6. Similarly, Si,t takes two values: 1 if the service provided by
node i is accessible for clients, 0 otherwise. Lastly, the decoy state Di,t is a vector
(Di,t,1, . . . ,Di,t,|D|), where Di,t,j = 1 if decoy j is active on node i, 0 otherwise.
The set of decoys in cage-2 is available in Appendix D and is denoted by D. The
initial state of node i is (Ii,1 = U, Si,1 = 1,Di,1 = 0).

U K S C R
(D)iscover (S)can

(E)xploit
(P)rivilege
escalation(E)xploit

Figure 6.6: Transition diagram of the intrusion state Ii,t (6.5); self-transitions are not
shown; disks represent states; arrows represent state transitions; labels indicate conditions
for state transition; the initial state is Ii,1 = U.

Nodes of the target system provide services to clients (see Fig. 6.5). A workflow
graph GW captures dependencies among these services. Specifically, a directed edge
i → j in GW means that the service provided by node i is used by node j. The
configuration of GW for the target system is provided in Appendix D.

Attacker

During each time step, the attacker performs an action At, which targets a single
node or all nodes in a zone (in case of a scan action). The action is determined
by an attacker strategy πA. It consists of four components At ≜ (αt, Vt, Pt, Tt):
αt is the action type, Vt is the vulnerability, Pt ∈ {(U)ser, (R)oot} is the privileges
obtained by exploiting the vulnerability, and Tt is the target, which can be either
a single node i ∈ V or a zone z ∈ Z.

There are five attack actions: (S)can, which scans the vulnerabilities of a node;
(E)xploit, which attempts to exploit a vulnerability of a node; (P)rivilege escalation,
which escalates privileges of a compromised node; (I)mpact, which stops the service
on a compromised node; and (D)iscover, which discovers the nodes in a zone. These
actions have the following causal effects on the intrusion state Ii,t and the service
state Si,t (Def. 3.2.1, Pearl, 2009).

At−1 = fA(πA, {Ii,t−1}i∈V) (6.4)
Ii,t = fI(Ii,t−1,At−1,Di,t, Et) ≜ (6.5)
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K if Tt−1 = zi, αt−1 = D

K if Tt−1 ∈ pa(i)GW , αt−1 = P

S if Tt−1 = i, αt−1 = S

C if Tt−1 = i, αt−1 = E, Pt−1 = U,Di,Vt,t = 0, Et = 1
R if Tt−1 = i, αt−1 = E, Pt−1 = R,Di,Vt,t = 0, Et = 1
R if Tt−1 = i, αt−1 = P

Ii,t−1 otherwise

Si,t = fS(At−1, Si,t−1) ≜
{

0 if Tt−1 = i, αt−1 = I

Si,t−1 otherwise,
(6.6)

where Et is a binary random variable and P[Et = 1] is the probability that an
exploit at time t is successful; see Fig. 6.6.

The first two cases in (6.5) capture the transition U→ K, which occurs when the
attacker discovers the zone of node i. The third case defines the transition K→ S,
which happens when the attacker scans the node. The fourth case captures the
transition S→ C, which occurs when the attacker compromises the node. The fifth
and sixth cases define the transitions S → R and C → R, which occur when the
attacker obtains root privileges on the node. The final case captures the recurrent
transition Ii,t = Ii,t−1. Lastly, (6.6) states that the (I)mpact action disrupts the
service.

Remark 6.1. The dependence between (6.5) and GW is unintuitive but is war-
ranted based on the source code of cage-2 (cage-2, 2022).

Observations and clients

The defender knows the decoy state Di,t and the service state Si,t, but cannot
observe the intrusion state Ii,t nor the attacker action At. Instead of Ii,t and At,
the defender observes Zi,t, which represents network activity at node i. Like the
intrusion state Ii,t (6.5), the activity Zi,t takes five values: (U)nknown, (K)nown,
(S)canned, (C)ompromised, and (R)oot. The value of Zi,t is influenced both by
attacker actions and by clients requesting service, which we express as

Zi,t = fZ,i(Ct,At−1,Wi,t), (6.7)

where Wi,t ∈ N is a noise variable and Ct represents the number of clients requesting
service at time t, which is determined as

Ct = fC(Ct−1,At,Dt) ≜ max [0, Ct−1 + At −Dt] , (6.8)

where At and Dt are the number of clients that arrive and depart in the time
interval [t− 1, t], respectively.
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Defender objective

The defender balances two objectives: maintain services to its clients and minimize
the cost of intrusion. In cage-2, this bi-objective corresponds to maximizing

J = fJ({Rt | 1 ≤ t ≤ T }) ≜
T∑

t=1
γt−1Rt, (6.9)

where γ ∈ [0, 1] is a discount factor and Rt is the reward at time t:

Rt = fR({Ii,t, Si,t}i∈V) ≜

downtime cost︷ ︸︸ ︷∑
i∈V

ψzi
(Si,t − 1)

intrusion cost︷ ︸︸ ︷
−βzi,Ii,t

.

Here ψzi
≥ 0 is the cost of service disruption in zone zi; βIi,t,zi

≥ 0 is the cost of
intrusion in zone zi; and T is the time horizon. The configuration of ψzi and βIi,t,zi

for the target system (Fig. 6.5) can be found in Appendix C.

Defender interventions

During each time step, the defender performs an intervention that targets a single
node. The defender can make four types of interventions: analyze the node for a
possible intrusion, start a decoy service, remove malware, and restore the node to
a secure state. We model these interventions as follows.

do(Zi,t = Ii,t) analyze; (6.10a)
do(Di,j,t = 1) decoy; (6.10b)
do(Ii,t = S) if Ii,t−1 = C remove; (6.10c)
do(Di,t = 0, Ii,t = S) if Ii,t−1 ∈ {C,R} restore; (6.10d)
do(∅) none. (6.10e)

Note that Di,t remains constant if no interventions occur, i.e.,

Di,t = fD(Di,t−1) ≜ Di,t−1.

When selecting interventions, the defender considers the history

Ht ≜ (V1,do(X̂1),O2,do(X̂2), . . . ,do(X̂t−1),Ot), (6.11)

where the observables are defined as

Ot ≜ {Di,t, Si,t, Zi,t, Ct | i ∈ V}. (6.12)

Here, do(X̂t) is a shorthand for do(X̂t = x̂t) and V1 is the set of endogenous
variables at time t (defined below). The intervention at time t can thus be expressed
as do(X̂t = πD(ht), where πD is a defender strategy.

Remark 6.2 (Perfect recall). The fact that the defender remembers the history
Ht (6.11) means that it has perfect recall (Def. 7, Kuhn, 1953).
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A structural causal model

The variables and the causal functions (6.4)–(6.9) described above determine the
scm defined in (M1). Notable properties of (M1) are a) the causal graph is acyclic;
b) the model is stationary; c) the model is semi-Markov (Thm. 1.4.1, Pearl, 2009);
d) the exogenous variables are jointly independent; and e) P[Vt] is Markov relative
to G (6.2) (Thm. 1.2.7, Pearl, 2009).

Causal model of the cage-2 scenario (M1)
scm: M ≜ ⟨U,V,F,P[U]⟩. causal graph: G (Fig. 6.7).
target system:

V, T set of nodes and time horizon; see Appendix D
GS = ⟨V, E⟩ physical topology graph (Fig. 6.5)
GW = ⟨VW ⊆ V, EW⟩ workflow graph; see Appendix D.

random variables:
U ≜ {Et, πA,At,Dt,Wi,t | i ∈ V, 2 ≤ t ≤ T }
V ≜ {Ii,t, Zi,t, Si,t,Di,t,At, Ct, Rt, J | i ∈ V, 1 ≤ t ≤ T }
X ≜ {Di,t, Zi,t, Ii,t | i ∈ V, 1 ≤ t ≤ T }
N ≜ (V ∪U) \X
O ≜ {Di,t, Si,t, Zi,t, Ct, | i ∈ V, 1 ≤ t ≤ T }
L ≜ (V ∪U) \O
Y ≜ {Rt, J | 1 ≤ t ≤ T }.

initial condition: Ii,1 = Zi,1 = U, Si,1 = 1,Di,1 = 0, C1 = R1 = 0 for all i ∈ V.
causal functions: F ≜ {fI, fS, (fZ,i)i∈V , fC, fR, fJ, fA, fD}.
observational distributions:

P[U] = P[πA]
T∏

t=2
P[Et]P[At]P[Dt]P[(Wi,t)i∈V ]

P[Vt] =
|Vt|∏
i=1

P[Vi,t | pa(Vi,t)G ].

interventions: do(X̂t = πD(Ht)) (6.10).

The size of the causal graph G associated with (M1) grows linearly with the
time horizon T and with the number of nodes in the target system |V|. A summary
of G is shown in Fig. 6.7 on the next page.
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Dt

AtCtCt−1

Zi,t Wi,t

Di,tDi,t−1

At−1πA Ii,t

Et

Si,t

Si,t−1

Rt Sj,t

Ij,t

Ii,t−1Ij,t−1

Ij,t

Zj,t

Sj,t

j ∈ V \ {i}

j ∈ V

j ∈ V \ {i}

Latent

Observed

Figure 6.7: Causal (summary) graph of (M1) for node i (Ch. 10, Peters et al., 2017);
plate notation is used to represent sets of variables (Buntine, 1994).

The defender problem in CAGE-2

Given (M1) and the defender objective J (6.9), the problem for the defender can
be stated as follows.

Problem 6.1 (Optimal defender strategy in cage-2 (M1)).

maximize
πD

J̃(πD) ≜ EπD

[
J −

T∑
t=1

γt−1c̃(do(X̂t = πD(ht))) | V1 \ {A1}

]
(6.13a)

subject to do(X̂t = πD(ht)) ∀t ≥ 1 (6.13b)
πA ∼ P[πA] (6.13c)
At ∼ P[At],Dt ∼ P[Dt] ∀t ≥ 2 (6.13d)
Et ∼ P[Et],Wi,t ∼ P[Wi,t] ∀t ≥ 2, i ∈ V (6.13e)
At = fA(πA, {Ii,t}i∈V) ∀t ≥ 1 (6.13f)
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Di,t = fD(Di,t−1) ∀t ≥ 2, i ∈ V (6.13g)
Ii,t = fI(Ii,t−1,At−1,Di,t, Et) ∀t ≥ 2, i ∈ V (6.13h)
Zi,t = fZ,i(Ct,At−1,Wi,t) ∀t ≥ 2, i ∈ V (6.13i)
Ct = fC(Ct−1,At,Dt) ∀t ≥ 2 (6.13j)
Si,t = fS(At−1, Si,t−1) ∀t ≥ 2, i ∈ V (6.13k)
Rt = fR({Ii,t, Si,t}i∈V) ∀t ≥ 2 (6.13l)
J = fJ({Rt}t=1,...,T ), (6.13m)

where t = 1, 2, . . . , T ; c̃ defines the cost of interventions (the configuration of
c̃ can be found in Appendix C); (6.13b) defines the interventions; (6.13c)–(6.13e)
capture the distribution of U; and (6.13f)–(6.13m) define F.

We say that a defender strategy π⋆
D is optimal if it solves Prob. 6.1. This problem

is well-defined in the following sense.

Theorem 6.1 (Existence of an optimal defender strategy for cage-2).
Assuming Ct,A,V, βIi,t,z, ψz, are finite, c̃ is bounded, and T is finite or γ < 1, then
there exists an optimal deterministic defender strategy π⋆

D. If T = ∞, then there
exists a π⋆

D that is stationary.

Proof. For notational convenience, let St ≜ {Si,t}i∈V , It ≜ {Ii,t}i∈V , Dt ≜
{Di,t}i∈V , Wt ≜ {Wi,t}i∈V , and Zt ≜ {Zi,t}i∈V . We break down the proof into
the following steps.

1) Σt ≜ (It,Dt, Ct,At−1, πA,St) has the Markov property.
proof:

P[Σt+1 | Σ1, . . . ,Σt] = P[At | πA, It]P[At+1]P[Dt+1]×
P[Ct+1 | At+1,Dt+1, Ct]P[Et+1]P[St+1 | St,At]P[Dt+1 | Dt]×
P[It+1 | It,At,Dt+1, Et+1] = P[Σt+1 | Σt].

2) (Ot, Rt ⊥⊥ {Vt}t=1,...,t | Σt).
proof:

P[Ot, Rt | {Vt}t=1,...,t] = P[Wt]P[Zt | Ct,At−1,Wt]P[Rt | It,St] = P[Ot, Rt | Σt].

3) |ROt
|, |RΣt

|, and Rt are finite. (Recall that RX is the range of X.)
proof: Follows from the theorem assumptions.

4) Each defender strategy πD induces a well-defined probability measure over the
random sequence (Σt,Ot)t≥1.

proof: 3) implies that the sample spaces of (Σt,Ot) and (Σt,Ot)t≥1 are mea-
surable and countable, respectively. Further, the fact that G is acyclic implies
that the interventional distributions induced by (do(X̂t = x̂t))t≥1 are well-defined
(Ch. 3, Pearl, 2009). Consequently, the statement follows from the Ionescu-Tulcea
extension theorem (Ionescu Tulcea, 1949).
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5) P[Σt+1 | Σt],P[Ot | Σt], and P[Rt | Σt] are stationary.
proof: Follows by stationarity of (M1).

Statements 1–5 imply that Prob. 6.1 defines a finite, stationary, and partially ob-
served Markov decision process (pomdp) with bounded rewards, which satisfies as-
sumptions 1–3 in the background chapter. The theorem thus follows from Thm. 2
in the background chapter.

Theorem 6.1 states that an optimal defender strategy π⋆
D exists. Finding such

a strategy requires estimating the causal effect

P
[
J | do(X̂1 = πD(H1)), . . . ,do(X̂T = πD(HT ))

]
(Def. 3.2.1, Pearl, 2009)

for different strategies πD. A key question is thus whether the effect is identifiable,
i.e., whether it can be estimated from the observables. The following theorem states
that the answer is negative.

Theorem 6.2. Problem 6.1 is not identifiable (Def. 6.2).

Proof. To prove non-identifiability, it suffices to present two sets of causal functions
F′,F′′ that induce identical distributions over the observables O but have different
causal effects (Def. 6.2) (Lem. 1, Shpitser and Pearl, 2006). For simplicity, consider
T = 2 and |V| = 1. In this case J = R (6.9). Let

F′ ≜
{
fR(S, I) ≜ 1I=R, fI(A, E,D) = R, fS(S,A) = 1, fZ, fC, fJ, fA, fD

}
,

where {fZ, fC, fJ, fA, fD} are defined arbitrarily. Define F′′ as F′ except for
fR(S, I) ≜ S. Thus, P[O] is the same with both F′ and F′′. However, P[J =
0 | do(I = S)] = 1 with F′ but P[J = S | do(I = S)] = 1 with F′′.

Theorem 6.2 states that causal effects of defender interventions (6.10) cannot
be identified from observations. This statement is obvious in hindsight but has
important ramifications. It implies that to evaluate a defender strategy πD, the
defender must either know (M1) or perform controlled experiments to measure the
effects of the interventions prescribed by πD.

While it is likely that the defender is aware of certain components of (M1), it
is unrealistic that it knows the entire model. A more reasonable assumption is
that the defender knows the causal graph G (Fig. 6.7), which does not capture all
nuances of the causal mechanisms but provides structural information. Leveraging
this structure, we next present a method for finding an optimal strategy π⋆

D which
only requires access to the causal graph and a simulator of (M1).

Remark 6.3 (Simulation-based optimization). Access to a simulator is assumed
by virtually all existing methods for automated security response [481, 492, 42, 140,
141, 190, 452, 241, 368, 357, 122, 22, 490, 495, 498, 93].



Causal-Partially Observable Monte-Carlo Planning (c-pomcp) 263

6.6 Causal-Partially Observable Monte-Carlo Planning (c-pomcp)

In this section, we present c-pomcp, an online method for obtaining an optimal
defender strategy π⋆

D for Prob. 6.1. The method involves three consecutive actions
at each time step t; see Fig. 6.8. The first action uses the observation ot and
a particle filter to compute the defender’s belief b̂t in the form of a probability
distribution over the latent variables L in (M1). The second action constructs a
search tree of possible future histories hk (6.11), which is initialized with a root
node that represents the current history ht. Each edge extends this history by
either an observation or an intervention: if hk+1 is a child node of hk, then either
hk+1 = (hk,ok+1) or hk+1 = (hk,do(X̂k = x̂k)). c-pomcp then prunes the tree
by excluding histories that contain interventions that do not belong to a pomis.
The third action uses the belief b̂t and the pruned tree to perform Monte-Carlo
tree search, which involves estimating J̃(πD) (6.13) through simulations. Once the
search has been completed, the intervention from the root node that leads to the
highest value of J̃ (6.13) is returned. The pseudocode of c-pomcp is listed in
Alg. 6.1 on page 267, and the main components of the method are described below.

particle
probability

particle filter
h1

h′
2 h′′

2 h′′′
2 . . . hn

2

h′
3 h′′

3 h′′
3 h′′′

3 h′′′′
3 . . .

do(X̂1 = x̂1)

o2

causal pruning
h1

h′
2 h′′

2

h′′′
3 h′′′′

3

do(X̂t
= x̂t)

J rollout

tree search do(X⋆
t = x⋆

t )
(6.18)

belief b̂t

(6.15)
pomiss P⋆

G

(Def. 6.3)

observation ot (6.12)

Figure 6.8: Causal-Partially Observed Monte-Carlo Planning (c-pomcp, Alg. 6.1);
the figure illustrates one time step during which (i) a particle filter is used to compute
an approximate belief state b̂t (6.14); (ii) a causal graph (Def. 2.2.1, Pearl, 2009) (see
Fig. 6.7) is used to prune the search tree of possible histories hk (6.11) by only considering
histories with interventions in pomiss; and (iii) tree search is used to find an optimal
intervention do(X⋆

t = x⋆
t ) (6.18).

Particle filtering to estimate latent variables

The particle filter is a method for state estimation in partially observed dynamical
systems (Thrun et al., 2005). Since (M1) can be formulated as such a system
(Thm. 6.1), we use the particle filter to estimate the values of the latent variables
L in (M1), e.g., the intrusion state Ii,t (6.5).

We define the defender’s belief state as

bt(σt) ≜ P[Σt = σt | ht]
(Bayes)= ηP[ot | σt,ht−1]P[σt | do(X̂t = x̂t),ht−1] (6.14)

(Markov)= ηP[ot | σt]P[σt | do(X̂t = x̂t),ht−1]



264 Paper 6 – Optimal Defender Strategies for cage-2

(Markov)= ηP[ot | σt]
∑
σt−1

P[σt | σt−1,do(X̂t = x̂t)]bt−1(σt−1),

where ht is the history (6.11), σt is a realization of Σt (see Thm. 6.1), and η is a
normalizing constant (as defined in (17) in the background chapter). The sum in
(6.14) is over all possible realizations of Σt−1 ∈ RΣt−1 .

The computational complexity of (6.14) is O(|RΣ|2), which grows quadratically
with the size of the state space and exponentially with the number of state variables.
For this reason, the particle filter approximates (6.14) by representing bt by a set
of M sample states (particles) Pt = {σ̂(1)

t , . . . , σ̂
(M)
t } (Crisan and Doucet, 2002).

These particles are sampled recursively as

Pt ≜
M⋃

i=1

{
σ̂

(i)
t ∼ P

[
· | σ̂(i)

t−1,do(X̂t−1 = x̂t−1)
]}

(6.15a)

Pt ≜
M⋃

i=1

{
σ̂

(i)
t

∝P[ot|σ̂(i)
t ]

∼ Pt

}
, (6.15b)

where σ̂(i)
t−1 ∈ Pt−1 and x ∝φ∼ means that x is sampled with probability proportional

to φ. (6.15a)–(6.15b) focus the particle set to regions of the state space with a
high probability of generating the latest observation ot (Thrun et al., 2005). This
sampling ensures that the belief state induced by the particles converges to (6.14)
when M →∞, as stated below.

Theorem 6.3. Let b̂t(σt) = 1
M

∑M
i=1 1σt=σ̂(i)

t
, then limM→∞ b̂t → bt a.s. ∀t.

This is a standard result in particle filtering. Proof is given in Appendix A.

Causal pruning of the search tree

We use the causal graph G (Fig. 6.7) to prune the search tree by excluding histories
hk (6.11) that contain interventions that do not belong to a pomis P⋆

G . For example,
when t = T − 1, then Zi,t (6.7) and J (6.9) are d-separated in G (Def. 1.2.3,
Pearl, 2009). This separation means that the intervention do(Zi,t = Ii,t) (6.10a) has
no causal effect on J and thus Zi,t ̸∈ P⋆

G . By restricting the possible interventions
at time t to the set of pomiss P⋆

G , the number of interventions in the search tree is
reduced by a factor of

T∏
t=1

∑
X̃∈P⋆

G
|RX̃|∑

X̂∈2Xt
|RX̂|

, (6.16)

where Xt is the set of manipulative variables at time t, RXt
is the combined range

of the random variables in Xt, and 2Xt is the power set. Hence, even if only a small
subset of interventions does not belong to an pomis, a significant reduction in the
search tree size can be expected; see Fig. 6.9 on the next page.
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Figure 6.9: Reduction of the size of the search tree by pruning the intervention space
|2Xt | to the set of pomiss P⋆

G; the x-axis indicates the tree depth T ; curves relate to the
factor in (6.16).

Unfortunately, computing P⋆
G is generally intractable, as stated below.

Proposition 6.1. Computing P⋆
G (Def. 6.3) is pspace-hard.

Proof. We prove the pspace-hardness by reduction to the problem of solving a
pomdp, which is pspace-hard (Thm. 6, Papadimitriou and Tsitsiklis, 1987). Let
x be an instance of the problem of computing P⋆

G (Def. 6.3). Finding a solution
to x involves checking (6.3) for each X̃t ∈ P⋆

G . This means a solution to x allows
constructing an optimal solution to Prob. 6.1. By Thm 6.1, such a solution also
provides a solution to a pomdp.

Given the impracticality of computing P⋆
G (Prop. 6.1), we approximate P⋆

G as
follows. First, we reduce the causal graph to a subgraph G[Ut−1 ∪Ut ∪Vt−1 ∪Vt]
(Def. 7.1.2, Pearl, 2009). We then remove all variables in the subgraph whose values
are uniquely determined by b̂ (6.15). Subsequently, we add a node to the subgraph
that represents the target J (6.9), whose causal parents (Def. 1.2.1, Pearl, 2009) are
determined using a base strategy π̂, which can be chosen freely. It can, for example,
be based on heuristics or be designed by a domain expert. Finally, we compute a
pomis for the reduced graph using (Alg. 1, Lee and Bareinboim, 2019).

Remark 6.4. Since (Alg. 1, Lee and Bareinboim, 2019) is sound and complete
(Thm. 9, Lee and Bareinboim, 2019), the approximation described above is exact
when the base strategy π̂ is optimal.

When applying the above procedure to the cage-2 scenario, we identify the
following types of defender interventions that are never included in a pomis: (i)
interventions that start decoys that are already running; (ii) defensive interventions
on nodes that are not compromised according to b̂ (6.15); and (iii) forensic and
deceptive interventions on nodes that are compromised according to b̂ (6.15).

Remark 6.5. The pruning of the search tree based on the pomiss occurs during
the construction of the tree. The complete search tree is generally too large to
construct.
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Monte-carlo tree search

Given the particle filter (6.14) and the pomiss, c-pomcp searches for optimal in-
terventions using the tree search algorithm described in (Alg. 1, Silver and Ve-
ness, 2010). This algorithm constructs a search tree iteratively by repeating five
steps (see Fig. 6.10): (i) it selects a path from the root to a leaf node using the
tree policy described below; (ii) it expands the tree by adding children to the leaf,
each of which corresponds to an intervention (6.10) on a pomis; (iii) it executes
a rollout simulation from the leaf; (iv) it adds a child to the leaf that corresponds
to the first observation (6.12) in the simulation; and (v) it records the value of J̃
(6.13) and backpropagates the value up the tree.

J

selection expansion simulation backpropagation

Choose a path
from the root to

a leaf using (6.17) Add new leafs

do(X̂
=

x̂)

Rollout Backpropagate the
value of J̃ (6.13)

o

Figure 6.10: Tree search in c-pomcp; a search tree is constructed iteratively where each
iteration consists of the four phases above.

Tree policy A node at depth k of the tree is associated with a history hk (6.11)
and stores two variables: the average objective value Ĵ(hk) (6.13) of simulations
on the subtree emanating from the node, and the visit count N(hk) ≥ 1, which is
incremented whenever the node is visited during the search. Using these variables,
we implement the tree policy by selecting nodes that maximize the upper confidence
bound

Ĵ(hk) + c

√
lnN(hk−1)
N(hk) , (6.17)

where c > 0 controls the exploration-exploitation trade-off.

Rollout The initial state of a rollout simulation is sampled from the belief state
b̂k (6.15), and the intervention at each time step is selected using the base strategy
π̂. The simulation executes for a depth of δR, after which the objective value for the
remainder of the simulation is estimated using a base value function J

π̂
. Like the

base strategy, this function can be chosen freely. It can, for example, be obtained
through offline reinforcement learning. After the simulation has completed, the
discounted sum of the rewards R1, Rt, . . . RδR (6.9) and J

π̂
is used to update Ĵ(hk).
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Convergence The process of running simulations and extending the search tree
continues for a search time sT, after which the intervention that leads to the largest
value of Ĵ is returned, i.e.,

do(X̃t = x̃t) ∈ arg max
do(X̂t=x̂t)

Ĵ((ht,do(X̂t = x̂t))).

We can express this search procedure as

do(X̃t = x̃t)← T (ht, b̂t, π̂, sT,S ,G,P⋆
G), (6.18)

where T is a tree search operator.

Theorem 6.4 (Convergence of c-pomcp). Under the assumptions made in
Thm. 6.1 and further assuming that the pomis computation is exact, M → ∞,
sT →∞, T <∞, and c is chosen such that

P

[
Ĵ(hk) ≤ E[Ĵ(hk)]± c

√
lnN(hk−1)
N(hk)

]
≤ k−4 ∀k ≥ 1, (6.19)

Then the intervention prescribed by c-pomcp (6.18) for any ht converges in prob-
ability to an optimal intervention do(X⋆

t = x⋆
t ) as the search time is increased, i.e.,

limsT→∞ P[T (ht, b̂t, π̂, sT,S ,G,P⋆
G) ̸= do(X⋆

t = x⋆
t )] = 0.

The proof of Thm. 6.4 relies on mapping an execution of c-pomcp to an execu-
tion of the uct algorithm (Fig. 1, Kocsis and Szepesvári, 2006), which is known to
converge as sT →∞ (Thm. 7, Kocsis and Szepesvári, 2006). We provide the proof
in Appendix B. Note that (6.19) can always be satisfied by choosing a large c.

Remark 6.6. Theorem 6.4 is not confined to cage-2 (M1). Rather, the theorem
is general and applies to any control problem based on an scm with interventions
that can be formulated as a finite and stationary pomdp (Thm. 6.1).

Algorithm 6.1: c-pomcp: Causal-Partially Observable Monte-Carlo Planning.
Input: Simulator S of (M1), causal graph G (Fig. 6.7), search operator T ,

search time sT, horizon T , number of particles M , base strategy π̂.
Output: Interventions do(X̃1 = x̃1), . . . ,do(X̃T = x̃T ).

1: procedure c-pomcp(S , G, T , sT, T , M , π̂)
2: h1 = (V1).
3: for t = 1, 2, . . . , T do
4: Compute b̂t using (6.15) with M particles.
5: Compute P⋆

G (Def. 6.3).
6: do(X̃t = x̃t)← T (ht, b̂t, π̂, sT,S ,G,P⋆

G) (6.18).
7: Perform intervention do(X̃t = x̃t) (6.10).
8: Observe ot+1.
9: Update history ht+1 = (ht,do(X̃t = x̃t),ot+1) (6.11).
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Comparison with other methods

c-pomcp (Alg. 6.1) distinguishes itself from existing methods evaluated against the
cage-2 benchmark ([481, 492, 42, 140, 141, 190, 452, 241, 368, 22, 490, 495, 93,
498]) in four key aspects. First, it incorporates the causal structure of the target
system. Second, it guarantees an optimal solution (Thm. 6.4). No such guarantees
are available for the existing methods. Third, while the above-referenced methods
ignore the latent variables, c-pomcp explicitly models the uncertainty of the latent
variables and how this uncertainty changes in light of new observations (6.14).
Fourth, in contrast to the existing offline methods, c-pomcp is an online method
that updates the defender strategy at each time step.

6.7 Evaluating c-pomcp Against cage-2

We implement c-pomcp (Alg. 6.1) in Python and run it to learn defender strategies
for the cage-2 scenario (cage-2, 2022). The system configuration is listed in
Appendix D; the hyperparameters are listed in Appendix C; and the computing
environment is an m2-ultra processor.

Baselines

We compare the performance of c-pomcp with that of two baselines: cardiff-
ppo, a current state-of-the-art method for cage-2 (Vyas et al., 2023), and pomcp
(Alg. 1, Silver and Veness, 2010), a non-causal version c-pomcp. Note that, while
we only compare against cardiff-ppo from the cage-2 leaderboard, it represents
all methods on the leaderboard since it achieves better performance than the other
methods (cage-2, 2022).

Evaluation metrics

We use two evaluation metrics: J̃(πD) (6.13) and the cumulative regret

Rn ≜ nJ̃(π⋆
D)−

n∑
l=1

J̃(πl,D), (Lattimore and Szepesvári, 2020) (6.20)

where n is the total computational time in minutes and πl,D is the strategy after
l minutes (e.g., l minutes of tree search). Since computing π⋆

D is pspace-hard
(Thm. 6, Papadimitriou and Tsitsiklis, 1987), we estimate J̃(π⋆

D) using the current
state-of-the-art value when computing (6.20).

CAGE-2 Scenarios

cage-2 can be instantiated with different attacker strategies πA (6.4) as well as
different topologies within each zone; see Fig. 6.5 (cage-2, 2022). Based on these
parameters, we define the following evaluation scenarios.
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Scenario 6.1 (b-line attacker). In this scenario, the attacker strategy πA repre-
sents the b-line attacker from cage-2 (cage-2, 2022), which attempts to move
directly to the operational zone. The topology is shown in Fig. 6.5.

Scenario 6.2 (meander attacker). In this scenario, πA represents the meander
attacker from cage-2 (cage-2, 2022). meander explores the network one zone at
a time, seeking to gain privileged access to all hosts in a zone before moving on to
the next one, eventually arriving at the operational zone. The topology is shown
in Fig. 6.5.

Scenario 6.3 (random attacker). In this scenario, πA is b-line with probability
0.5 and meander with probability 0.5. The topology is shown in Fig. 6.5.

Scenario 6.4 (random topology). This scenario is the same as Scenario 6.1 except
that the topologies of the enterprise and user zones are randomized at the start of
each evaluation episode.

CAGE-2 benchmark results

The evaluation results are summarized in Figs. 6.11–6.12 and Tables 6.2–6.3 on the
subsequent pages. The results show that c-pomcp achieves the highest objective
value (6.13) and the lowest regret (6.20) across all evaluation scenarios and time
horizons T . (The results are not statistically significant in all cases, though.)

The green curves in Fig. 6.11 relate to c-pomcp. The blue and red curves
relate to the baselines. The leftmost column in Fig. 6.11 shows the regret (6.20).
Notably, the regret of c-pomcp is two orders of magnitude lower than the regret
of cardiff-ppo and one order of magnitude lower than the regret of pomcp.

The three rightmost columns in Fig. 6.11 show the objective value (6.13) ob-
tained by c-pomcp and pomcp in function of the search time sT. We observe that
c-pomcp achieves a significantly higher value than pomcp, although the difference
diminishes with increasing sT, which is expected (Thm. 6.4). We explain the im-
provement of c-pomcp compared to pomcp by the pruned search tree, which is
obtained by leveraging the causal structure (Def. 6.3). The reduction in search tree
size achieved by the pruning is shown in Fig. 6.12. We see that the pruning reduces
the size of the search tree by around 90–95%.

Lastly, Table 6.3 contains the results for Scenario 6.4. We find that c-pomcp
and pomcp are agnostic to changes in the topology within each zone. By con-
trast, the performance of cardiff-ppo reduces drastically when the topology
changes, indicating that its strategy is overfitted to the training environment (Vyas
et al., 2023). cardiff-ppo has shown similar behavior in (Wolk et al., 2022).



Method Training / search T = 30 T = 50 T = 100
(minutes) (seconds) scenario 6.1 scenario 6.2 scenario 6.3 scenario 6.1 scenario 6.2 scenario 6.3 scenario 6.1 scenario 6.2 scenario 6.3

cardiff 2000 / 10−4 −3.57± 0.06 −5.69± 1.68 −4.76± 1.90 −6.44± 0.16 −9.23± 2.87 −7.64± 2.78 −13.69± 0.533 −17.16± 4.41 −15.28± 4.18
c-pomcp 0 / 0.05 −4.64± 0.5 −5.73± 0.08 −5.18± 0.13 −9.20± 0.38 −9.35± 0.16 −9.27± 0.67 −25.05± 3.02 −18.29± 0.13 −21.67± 3.19
c-pomcp 0 / 0.1 −3.89± 0.25 −5.62± 0.14 −4.75± 0.34 −8.46± 0.27 −8.92± 0.23 −8.69± 0.47 −21.28± 0.72 −17.38± 0.20 −19.33± 1.03
c-pomcp 0 / 0.5 −4.00± 0.14 −5.61± 0.02 −4.81± 0.24 −7.38± 0.19 −8.62± 0.18 −8.00± 0.44 −18.08± 1.32 −16.81± 0.14 −17.45± 1.14
c-pomcp 0 / 1 −3.64± 0.13 −5.52 ± 0.16 −4.58± 0.27 −6.60± 0.32 −8.55± 0.08 −7.58± 0.29 −17.42± 1.08 −16.34± 0.44 −16.88± 1.29
c-pomcp 0 / 5 −3.50± 0.11 −5.65± 0.11 −4.57± 0.23 −6.52± 0.34 −8.46± 0.11 −7.49± 0.46 −13.23± 0.43 −16.46± 0.30 −14.85± 0.79
c-pomcp 0 / 15 −3.37 ± 0.08 −5.66± 0.11 −4.52 ± 0.19 −6.57± 0.38 −8.57± 0.13 −7.57± 0.52 −12.98 ± 1.55 −15.87 ± 0.67 −14.43 ± 1.99
c-pomcp 0 / 30 −3.42± 0.09 −5.70± 0.09 −4.56± 0.14 −6.34 ± 0.28 −8.52 ± 0.18 −7.43 ± 0.52 −13.32± 0.18 −16.05± 0.96 −14.68± 1.02
pomcp 0 / 0.05 −6.87± 0.21 −9.50± 0.19 −8.19± 0.37 −13.90± 0.24 −22.26± 0.44 −18.08± 0.72 −38.71± 1.99 −50.24± 2.67 −44.48± 3.11
pomcp 0 / 0.1 −6.31± 0.12 −8.70± 0.07 −7.51± 0.19 −13.71± 0.22 −20.20± 0.47 −16.96± 0.76 −38.02± 0.53 −46.40± 0.64 −42.21± 0.79
pomcp 0 / 0.5 −5.32± 0.24 −8.28± 0.13 −6.80± 0.33 −12.89± 0.20 −19.16± 0.09 −16.03± 0.33 −34.92± 0.96 −47.29± 0.39 −41.11± 1.23
pomcp 0 / 1 −5.27± 0.65 −7.68± 0.10 −6.48± 0.75 −12.57± 0.41 −18.38± 0.50 −15.48± 0.94 −34.50± 0.65 −47.02± 1.75 −40.76± 2.34
pomcp 0 / 5 −5.11± 0.32 −7.58± 0.05 −6.35± 0.36 −12.03± 0.93 −18.22± 0.19 −15.13± 1.18 −33.06± 0.21 −45.15± 0.54 −39.13± 0.66
pomcp 0 / 15 −5.18± 0.66 −7.30± 0.38 −6.24± 1.22 −11.32± 0.84 −17.68± 0.58 −14.50± 1.37 −30.88± 1.41 −45.19± 0.35 −38.04± 1.57
pomcp 0 / 30 −4.50± 0.17 −6.92± 0.59 −5.71± 0.77 −9.88± 1.63 −17.55± 0.44 −13.72± 2.09 −29.51± 2.00 −44.27± 1.13 −36.89± 2.49

Table 6.2: Comparing c-pomcp with baselines: cardiff-ppo (Vyas et al., 2023) and pomcp (Silver and Veness, 2010); columns
indicate the time horizon T (6.9); subcolumns indicate the evaluation scenario; numbers indicate the mean and the standard
deviation of the objective J̃(πD) (6.13) from evaluations with 3 random seeds.
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Figure 6.11: Comparing c-pomcp (green curves) with baselines: cardiff-ppo (Vyas et al., 2023) (blue curves) and pomcp (Silver
and Veness, 2010) (red curves); rows indicate the evaluation scenario; the curves show the mean value from evaluations with 3
random seeds; shaded areas indicate the standard deviation; the number of data points on the x-axis is 2000 for the left-most column
and 10 for the other columns.
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Figure 6.12: Effect of the pruning of the search tree in c-pomcp.

Method Training (min) Search (s) Objective J̃(πD) (6.13)
cardiff-ppo[481] 2000 10−4 −429± 167
c-pomcp 0 30 −13.32 ± 0.18
pomcp [416] 0 30 −29.51± 2.00

Table 6.3: Evaluation results for Scenario 6.4 with T = 100.

Discussion of the CAGE-2 benchmark results

The key findings from the cage-2 benchmark results are:

 Leveraging the causal structure of the target system, c-pomcp achieves state-
of-the-art performance (Figs. 6.11–6.12, Table 6.2).

 The interventions prescribed by c-pomcp are guaranteed to converge to op-
timal interventions as sT → ∞ (Thm. 6.4), which is consistent with the
evaluation results.

 c-pomcp is two orders of magnitude more efficient in computing time than
the state-of-the-art method cardiff-ppo (Fig. 6.11).

 c-pomcp is an online method and can adapt to changes in the topology of
the target system (Table 6.3).

Surprisingly, the results demonstrate that c-pomcp requires only 5 − 15 seconds
of search to achieve competitive performance on the cage-2 benchmark. The fact
that c-pomcp performs significantly better than its non-causal version pomcp (Alg.
1, Silver and Veness, 2010) indicates that the main enabler of the efficiency is the
causal structure, which we exploit for pruning the search space. This observation
suggests limitations of existing methods that narrowly focus on model-free reinforce-
ment learning and do not consider the causal structure of the underlying system.
While the results demonstrate clear benefits of c-pomcp compared to the existing
methods, c-pomcp has two drawbacks. First, execution of c-pomcp is slower than
that of pre-trained methods; see Table 6.2, typically 10−4s vs 10s. Second, the per-
formance of c-pomcp depends on the causal structure of the target system (Def.
2.2.1, Pearl, 2009). If no causal structure is known, the performance of c-pomcp
drops; cf. the performance of c-pomcp and pomcp in Table 6.2.
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6.8 Conclusion

This paper presents a formal (causal) model of cage-2 (M1), which is considered a
standard benchmark to evaluate methods for automated security response (cage-
2, 2022). Based on this model, we prove the existence of optimal defender strate-
gies (Thm. 6.1) and design an iterative method that converges to such a strategy
(Thm. 6.4). The method, which we call Causal-Partially Observable Monte-Carlo
Planning (c-pomcp), leverages causal structure to prune, construct and traverse
a search tree (Alg. 6.1). c-pomcp has four advantages over the state-of-the-art
methods that have been proposed in the context of cage-2: (i) it is two orders of
magnitude more computationally efficient (Fig. 6.11); (ii) it achieves better perfor-
mance (Table. 6.2); (iii) it is an online method which adapts to topology changes
in the target system (Table 6.3); and (iv), it produces provably optimal defender
strategies (Thm. 6.4).

In the context of this thesis, this paper demonstrates two new things: (1) how
our methodology for automated security response can be integrated with causal
modeling8; and (2) how the defender strategies produced by our methodology can
be evaluated against the cage-2 benchmark.
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Appendix

A Proof of Theorem 6.3

1. case: t = 1.
proof: b1 is given, hence b̂1 = b1.

2. case: t > 1.
proof: Assume b̂t−1 = bt−1. Let

g(σt) ≜
∑
σt−1

b̂t−1(σt−1)P[σ | σt−1,do(X̂t−1 = x̂t−1)].

8See the methodology chapter for details about our experimental methodology.
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We then have that

bt(σ) = Eσ∼bt
[1σ=σ] =

∑
σ

bt(σ)1σ=σ
(a)=
∑
σ

g(σ)
g(σ)bt(σ)1σ=σ

= Eσ∼g

[
bt(σ)
g(σ) 1σ=σ

]
(b)= Eσ∼g

[
ηP[ot | σ]g(σ)

g(σ) 1σ=σ

]
= Eσ∼g [ηP[ot | σt]1σ=σ] , (6.21)

where (b) follows from the definition of b (6.14).
As b̂t−1 = bt−1, the denominator in (a) is non-zero for all σ where bt(σ) > 0.
Since the particles are distributed according to η′ηP[ot | σt]g(σ̂t) (η′ is a
normalizing factor), it follows from the strong law of large numbers (Thm.
6.2, Çınlar, 2011) that b̂(σt) = 1

M

∑M
i=1 1σt=σ̂(i)

t
converges almost surely to

(6.21) as M →∞. (Remark: the probability measure P in (6.21) exists since
|RΣt ∪ROt | <∞ (Thm. 6.1, (Thm. 2.2.1, Rosenthal, 2006)).)

B Proof of Theorem 6.4

It follows from Thm. 6.3 and (Lem. 1–2, Silver and Veness, 2010) that c-pomcp cor-
responds to the uct algorithm (Fig. 1, Kocsis and Szepesvári, 2006) when M →∞.
Hence, we can base the proof of convergence of c-pomcp on the proof of conver-
gence for uct, which was originally published in (Kocsis and Szepesvári, 2006). The
key insight behind the proof is that the decision problem at each node in the search
tree corresponds to a non-stationary multi-armed bandit (mab), which becomes
stationary if the prescribed actions at the child nodes converge. Further, the tree
policy corresponds to the ucb1 algorithm (Fig. 1, Auer et al., 2002). Therefore, it
suffices to prove that ucb1 converges at each node in the search tree. Towards this
proof, we state and prove the following six lemmas.

Notation

K = O(|2Xt |) is the number of arms in the mab at each node in the search tree; t
indexes the mab rounds; Ri,t is the reward of arm i at round t; Ri,n = 1

n

∑n
k=1 Ri,n

is the mean reward of arm i based on n samples; µi,n is the mean of Ri,n; µi ≜
limn→∞ µi,n; µi ≜ µi,n− δi,n; Ti(t) is the number of times arm i has been pulled at
round t; ∆i ≜ µ⋆ − µi; It is the arm picked at round t; and ct,n is the exploration
term in ucb1 for an arm that has been pulled n times at round t. Quantities related
to the optimal arm are superscripted by ⋆, i.e., µ⋆, T ⋆(t), etc.

Assumption 6.1 (Bounded rewards and asymptotic stationarity).

1. Ri,n ∈ [0, 1] for all i and n.

2. The limit µi = limt→∞ µi,t exists for each arm i.
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3. There exists a constant Cp and an integer Np such that for n ≥ Np and any
δ ≥ 0, the following bounds hold.

P
[
nRi,n ≥ nµi,n + Cp

√
n ln(1/δ)

]
≤ δ

P
[
nRi,n ≥ nµi,n − Cp

√
n ln(1/δ)

]
≤ δ.

Lemma 6.1. Given Assumption 6.1, if ct,n = 2Cp

√
ln t
n , then

P
[
Ri,n ≥ µi,n + ct,n

]
≤ t−4 n ≥ Np

P
[
Ri,n ≥ µi,n − ct,n

]
≤ t−4 n ≥ Np.

Proof.

P
[
nRi,n ≥ nµi,n + Cp

√
n ln(1/δ)

] (Assumption 6.1)

≤ δ

=⇒ P

[
Ri,n ≥ µi,n + Cp

√
ln(1/δ)
n

]
≤ δ (δ=t−4)=⇒ P

[
Ri,n ≥ µi,n + 2Cp

√
ln(t)
n

]
≤ t−4.

Lemma 6.2. If Assumption 6.1 holds, then there exists an integer N0(ϵ) such that
t ≥ N0(ϵ) =⇒ |δi,t| ≤ ϵ∆i

2 and |δj⋆,t| ≤ mini
ϵ∆i

2 for all ϵ > 0.

Proof. Follows by the definition of Assumption 6.1.

Lemma 6.3. Given Assumption 6.1, if the exploration term used by ucb1 (Fig.
1, Auer et al., 2002) is ct,s = 2Cp

√
ln t
s , then

E[Ti(t)] ≤
16C2

p ln t
(1− ϵ)2∆2

i

+N0(ϵ) +Np + 1 + π2

3 (6.22)

for all ϵ > 0 and each sub-optimal arm i.

Proof. Let

A0(t, ϵ) ≜ min{s | ct,s ≤ (1− ϵ)∆i/2}
A(t, ϵ) ≜ max[A0(t, ϵ), N0(ϵ), Np].

Next, note that

ct,s ≤ (1− ϵ)∆i/2 =⇒ 2Cp

√
ln t
s
≤ (1− ϵ)∆i/2
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=⇒ 16Cp
ln t
s
≤ (1− ϵ)2∆2

i =⇒ s ≥ 16Cp ln t
(1− ϵ)2∆2

i

=⇒ A0(t, ϵ) =
⌈

16Cp ln t
(1− ϵ)2∆2

i

⌉
.

Now consider Ti(n). By definition,

Ti(n) = 1 +
n∑

t=K+1
1 {It = i} (6.23)

= 1 +
n∑

t=K+1
1 {It = i, Ti(t− 1) ≥ A(n, ϵ)}+

n∑
t=K+1

1 {It = i, Ti(t− 1) < A(n, ϵ)}

(a)

≤ A(n, ϵ) +
n∑

t=K+1
1 {It = i, Ti(t− 1) ≥ A(n, ϵ)}

(b)

≤ A(n, ϵ) +
n∑

t=K+1
1

{
R

⋆

T ⋆(t−1) + ct−1,T ⋆(t−1) ≤

Ri,Ti(t−1) + ct−1,Ti(t−1), Ti(t− 1) ≥ A(n, ϵ)
}

≤ A(n, ϵ) +
n∑

t=K+1
1

{
min

0<s<t
R

⋆

s + ct−1,s ≤ max
A(n,ϵ)<si<t

Ri,si + ct−1,si

}

≤ A(n, ϵ) +
n∑

t=K+1

t−1∑
s=1

t−1∑
si=A(n,ϵ)

1

{
R

⋆

s + ct−1,s ≤ Ri,si
+ ct−1,si

}
,

where (a) follows because the second sum is upper bounded by n − K and n <
A(n, ϵ) =⇒ Ti(n) < A(n, ϵ). (b) follows from the arm-selection rule in ucb1 (Fig.
1, Auer et al., 2002).

Next note that for t ≥ A(n, ϵ) ≥ N0(ϵ), we have µ⋆
t ≥ µi,t + 2ct,si . This

inequality holds because

µ⋆
t ≥ µi,t + 2ct,si ⇐⇒ µ⋆

t − µi,t − 4Cp

√
ln t
si
≥ 0

(t≥A0(n,ϵ))⇐⇒ µ⋆
t − µi,t − (1− ϵ)∆i ≥ 0

⇐⇒ µ⋆
t + δ⋆ − µi,t − δi,t − (1− ϵ)∆i ≥ 0

(Lemma 6.2)⇐⇒ µ⋆
t − ϵ∆i − µi,t − (1− ϵ)∆i ≥ 0

⇐⇒ µ⋆
t − µi,t −∆i ≥ 0 ⇐⇒ ∆i −∆i ≥ 0. (6.24)

Using the above inequality, we deduce that
P[R⋆

s + ct−1,s ≤ Ri,si
+ ct−1,si

] ≤ P[R⋆

s ≤ µ⋆
t + ct,s] + P[Xi,si

≥ µi,t + ct,si
].

(6.25)
This follows because if the left inequality above holds and the right inequalities do
not hold, we obtain

R
⋆

s + ct−1,s ≤ Ri,si + ct−1,si =⇒ µ⋆
t − ct,s + ct−1,s < µi,t + ct,si + ct−1,si
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=⇒ µ⋆
t < µi,t + 2ct,si

,

which by (6.24) is false for t ≥ A(n, ϵ) ≥ N0(ϵ). Now we take expectations of both
sides of the inequality in (6.23) and plug in (6.25), which gives

E[Ti(n)] ≤ A(n, ϵ) +
n∑

t=K+1

t−1∑
s=1

t−1∑
si=A(n,ϵ)

P[R⋆

s ≤ µ⋆
t + ct,s] + P[Xi,si

≥ µi,t + ct,si
]

(Lemma 6.1)

≤ A(n, ϵ) +
n∑

t=K+1

t−1∑
s=1

t−1∑
si=A(n,ϵ)

2t−4 ≤ A(n, ϵ) +
∞∑

t=1

t∑
s=1

t∑
si=1

2t−4

= A(n, ϵ) +
∞∑

t=1
t−2 + t−3 ≤ A(n, ϵ) +

∞∑
t=1

t−2 +
∞∑

t=1
t−2

(a)= A(n, ϵ) + π2

3 ≤
16Cp ln t

(1− ϵ)2∆2
i

+ 1 +N0(ϵ) +Np + π2

3 ,

where (a) follows from the Riemann zeta function ζ(2) =
∑∞

t=1 t
−2 = π2

6 .

Lemma 6.4 (Lower bound). Given Assumption 6.1, there exists a positive constant
ρ such that for all i and t, Ti(t) ≥ ⌈ρ log t⌉.

Proof. Since Ri,t ∈ [0, 1] and Ti(t− 1) ≥ 1 for all t ≥ K, there exists a constant M
such that

µi,t + 2C
√

ln t
Ti(t− 1) ≤M =⇒ Ti(t− 1) ≥ 4C2 ln t

(M − µi − δi,t)2

for all i and K ≤ t < ∞. Assumption 6.1 implies that limt→∞ δi,t = 0, which
means that there exists a constant ρ ≥ 4C2

(M−µi−δi,t)2 . Hence, Ti(t) ≥ ⌈ρ log t⌉.

Lemma 6.5. Let Rn =
∑K

i=1
Ti(n)

n Xi,Ti(n) and N0 = N0(ϵ = 1
2 ). Then, the

following holds under Assumption 6.1.

|E[Rn]− µ⋆| ≤ |δ⋆
n|+O

(
K(C2

p lnn+N0)
n

)
.

Proof. By the triangle inequality,

|E[Rn]− µ⋆| ≤ |µ⋆ − µ⋆
n|+ |µ⋆

n − E[Rn]| = |δ⋆
n|+ |µ⋆ − E[Xn]|.

Hence, it only remains to bound |µ⋆ − E[Xn]|. By definition:

|µ⋆ − E[Xn]| =
∣∣∣∣∣µ⋆ − E

[
K∑

i=1

Ti(n)Ri,Ti(n)

n

]∣∣∣∣∣ (6.26)



278 Paper 6 – Optimal Defender Strategies for cage-2

=⇒ n|µ⋆ − E[Xn]| =
∣∣∣∣∣

n∑
t−1

E[R⋆
t ]− E

[
K∑

i=1
Ti(n)Ri,Ti(n)

]∣∣∣∣∣
(a)=
∣∣∣∣∣

n∑
t−1

E[R⋆
t ]− E

[
T ⋆(n)R⋆

T ⋆(n)

]∣∣∣∣∣− E

∑
i̸=i⋆

Ti(n)Ri,Ti(n)

 ,
where (a) follows because Ri,t ∈ [0, 1] for all i and t (Assumption 6.1). We start by
bounding the second term in (6.26):

E

∑
i ̸=i⋆

Ti(n)Ri,Ti(n)

 ≤ E

∑
i̸=i⋆

Ti(n)


(Lemma 6.3)

≤ K

(
16C2

p ln t
(1− ϵ)2∆2

i

+N0(ϵ) +Np + 1 + π2

3

)
= O

(
K
(
C2

p lnn+N0(ϵ)
))
.

Now we consider the first term in (6.26). Note that T ⋆(n)R⋆

T (⋆)(n) =
T ⋆(n)
T ⋆(n)

∑T ⋆(n)
t=1 R

⋆

t =
∑T ⋆(n)

t=1 R
⋆

t . Using this expression we obtain:

∣∣∣∣∣
n∑

t−1
E[R⋆

t ]− E
[
T ⋆(n)R⋆

T ⋆(n)

]∣∣∣∣∣ =

∣∣∣∣∣∣E
 n∑

t−1
R⋆

t −
T ⋆(n)∑

t−1
R⋆

t

∣∣∣∣∣∣
(a)=

n∑
t=T ⋆(n)+1

E [R⋆
t ] ≤ E[n− T ⋆(n)] =

∑
i ̸=i⋆

E[Ti(n)]

(Lemma 6.3)

≤ K

(
16C2

p ln t
(1− ϵ)2∆2

i

+N0(ϵ) +Np + 1 + π2

3

)
= O

(
K
(
C2

p lnn+N0(ϵ)
))
,

where (a) follows from the fact that Ri,t ∈ [0, 1] for all i and t (Assumption 6.1).

Lemma 6.6. Let n0 be such that√n0 ≥ O(K(C2
p lnn0 +N0( 1

2 ))). Given Assump-
tion 6.1, the following holds for any n ≥ n0 and δ > 0:

P
[
nXn ≥ nE[Xn] + 9

√
2 ln(2/δ)

]
≤ δ

P
[
nXn ≥ nE[Xn]− 9

√
2 ln(2/δ)

]
≤ δ.

The above lemma was originally proved by Kocsis & Szepesvári (Thm. 5, Kocsis
and Szepesvári, 2006). A more accessible version of the proof can be found in (Thm.
5, Dam et al., 2021). We omit the full proof for brevity. For the sake of complete-
ness, we briefly outline the main ideas behind the proof here. The proof involves
defining a counting process that represents the number of times a sub-optimal arm
is pulled and then bounding the deviation of this process. Key to this argument
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is the Hoeffding-Azuma inequality (Lem. 8–10, Kocsis and Szepesvári, 2006). By
leveraging this inequality and martingale theory, it is possible to conclude that the
desired inequalities must hold.

Lemma 6.7. Given Assumption 6.1, limt→∞ P[It ̸= i⋆] = 0.

Proof. Let pi,t = P[Ri,Ti(t) ≥ R⋆
T ⋆(t)]. Clearly, P[It ̸= i⋆] ≤

∑
i ̸=i⋆ pit. Hence, it

suffices to show that pi,t ≤ ϵ
K for all i and any ϵ > 0. Towards this proof, note that

if Ri,Ti(t) < µi + ∆i

2 and R
⋆

T ⋆(t) > µ⋆ − ∆
2 , then

Ri,Ti(t) < µi + ∆i

2 = µ⋆ − ∆i

2 < R
⋆

T ⋆(t).

As a consequence,

pi,t ≤ P
[
Ri,Ti(t) < µi + ∆i

2

]
+ P

[
R

⋆

T ⋆(t) > µ⋆ − ∆
2

]
.

Since Ti(t) grows slower than T ⋆(t), it suffices to bound the first of the two terms
above. By definition:

P
[
Ri,Ti(t) < µi + ∆i

2

]
= P

[
Ri,Ti(t) < µi,Ti(t) − |δi,Ti(t)|+

∆i

2

]
.

Next note that |δi,Ti(t)| converges to 0 by Assumption 6.1. Hence, we can assume
that |δi,Ti(t)| is decreasing in t without loss of generality. It then follows from
Lemma 6.4 that |δi,Ti(t)| ≤ |δi,⌈ρ log t⌉|. Now consider t ≥ ⌈ρ log t⌉ ≥ N0( ∆

4 ), then
|δi,Ti(t)| ≤ |δi,⌈ρ log t⌉| ≤ ∆i

4 by Lemma 6.2. Therefore,

P
[
Ri,Ti(t) < µi,Ti(t) − |δi,Ti(t)|+

∆i

2

]
≤ P

[
Ri,Ti(t) < µi,Ti(t) + ∆i

4

]
(6.27)

≤ P
[
Ri,Ti(t) < µi,Ti(t) + ∆i

4 , Ti(t) ≥ a
]

+ P [Ti(t) ≤ a] .

Since limt→∞ Ti(t) = ∞ (Lemma 6.4), we have that limt→∞ P[Ti(t) < a] = 0 for
any a. Hence, it suffices to bound the first term in (6.27), which can be done as
follows.

P
[
Ri,Ti(t) < µi,Ti(t) + ∆i

4 , Ti(t) ≥ a
]
≤

P
[
Ri,Ti(t) < µi,Ti(t) + ∆i

4 | Ti(t) ∈ [a, b]
]
P [Ti(t) ∈ [a, b]] + P [Ti(t) ̸∈ [a, b]] .

Next note that

P
[
Ri,Ti(t) < µi,Ti(t) + ∆i

4 | Ti(t) ∈ [a, b]
]
≤

b∑
k=a

P
[
Ri,k < µi,k + ∆i

4

]
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≤ (b− a+ 1) max
a≤k≤b

P
[
Ri,k < µi,k + ∆i

4

]
.

Now we use Assumption 6.1, which implies that the value of a in the expression
above can be chosen such that for all t ≥ a, (t+ 1)P[Xi,t ≥ µi,t + ∆i

4 ] < ϵ
2K , which

means that

(b− a+ 1) max
a≤k≤b

P
[
Ri,k < µi,k + ∆i

4

]
=b=2a (a+ 1) max

a≤k≤b
P
[
Ri,k < µi,k + ∆i

4

]
≤ (a+ 1)P

[
Ri,a < µi,a + ∆i

4

]
≤ ϵ

2K .

Putting the bounds above together, we get:

P[It ̸= i⋆] ≤
∑
i ̸=i⋆

pit ≤ K
ϵ

K
= ϵ.

Now we use Lemmas 6.1–6.7 to prove Thm. 6.4.

B.1 Proof of Theorem 6.4
The proof uses mathematical induction on the time horizon T , which corresponds
to the search tree’s depth. Without loss of generality, we assume that the target
variables are normalized to the interval [0, 1]. For the inductive base case where
T = 2, c-pomcp corresponds to a stationary mab problem, which means that
Assumption 6.1.1–2 hold. Further, Assumption 6.1.3 follows from Hoeffding’s in-
equality:

P

[
Ri,n ≤ µi,n ±

1
n

√
ln t
n

]
≤ e−2

√
2 ln t

n
n = e−4 ln t = t−4.

As a consequence, we can invoke Lemma 6.5 and Lemma 6.7, which asserts that
the theorem statement holds when T = 2. Assume by induction that the theorem
statement holds for time horizons 3, 4, . . . , T − 1 and consider T . By Thm. 6.3, the
problem of finding an optimal intervention from the root node when the horizon
is T corresponds to a non-stationary mab with correlated rewards. This mab
satisfies Assumption 6.1.1 if the rewards are divided by T . Further, it follows from
the induction hypothesis that the reward distributions in each subtree converge,
which means that Assumption 6.1.2 holds. Moreover, the induction hypothesis and
Lemma 6.6 imply that Assumption 6.1.3 is satisfied. Consequently, we can apply
Lemma 6.7, which ensures that the intervention prescribed at the root converges
to an optimal intervention. Similarly, we can apply Lemma 6.5, which states that

∣∣E [Rn − µ⋆
n

]∣∣ ≤ |δ⋆|+O

(
KC2

p lnn+N0

n

)
,
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where Rn is the average reward at the root. By the induction hypothesis,

|δ⋆| = O

(
K(T − 1) logn+KT −1

n

)
.

Hence,

∣∣E[Rn − µ⋆
n]
∣∣ ≤ O(K(T − 1) logn+KT −1

n

)
+O

(
KC2

p lnn+N0

n

)
.

Thus, it only remains to bound N0. It follows from Lemma 6.2 that N0 is upper
bounded by the smallest value of n for which the following inequality holds

K(T − 1) logn+KT −1

n
≥ ∆i

2 =⇒
2
(
KT −1 +K(T − 1) logn

)
∆i

≥ n

=⇒ N0 = O(KT −1).

Consequently,

∣∣E[Rn − µ⋆
n]
∣∣ ≤ O(K(T − 1) logn+KT −1

n

)
+O

(
KC2

p lnn+KT

n

)
= O

(
(KT logn+KT )

n

)
.

Thus, by induction, the theorem holds for all T .

C Hyperparameters

The hyperparameters used for the evaluation are listed in Table 6.4 and were ob-
tained through random search.
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Parameters Values
βR,1, βR,2, βR,3 0.1, 1, 1
βIi,t,z 0 if Ii,t ̸= R
c̃(do(X̂t = πD(ht))) 1 for restore interventions, 0 otherwise
ψzi 10 if zi = 3, 0 otherwise
Cyborg version [440] commit 9421c8e

c-pomcp and pomcp [416, Alg. 1]
search time, default node value 0.05s–30s, 0
M , γ, c 1000, 0.99, 0.5
rollout depth, maximum search depth 4, 50
intervention space intervention space described in [481]
base strategy, base value π̂D(do(∅)) = 1, J

π̂
(·) = 0

cardiff-ppo [396, Alg. 1] [481]
learning rate, # hidden layers, 5148 · 10−5, 1,
# neurons per layer, # steps between updates, 64, 2048,
batch size, discount factor γ 16, 0.99
gae λ, clip range, entropy coefficient 0.95, 0.2, 2 · 10−4

value coefficient, max gradient norm 0.102, 0.5
feature representation the original cyborg features [440] &

one-hot encoded scan-state &
decoy-state for each node

Table 6.4: Hyperparameters.

D Configuration of the Target System (Figure 6.5)

The configuration of the target system in cage-2 (Fig. 6.5) is available in Table 6.5.
The attacker actions are listed in Table 6.6, and the defender interventions are listed
in Table 6.7. The decoy services are listed in Table 6.8, and the workflow graph is
shown in Fig. 6.13.
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Node id, hostname Processes Ports Users Vulnerabilities
1, client-1 sshd.exe 22 sshd_server cwe-251.

femitter.exe 21 system cve-2020-26299.
2, client-2 smss.exe 445,139 system -.

svchost.exe 135 system -.
svchost.exe 3389 network cve-2019-0708.

3, client-3 mysql 3389 root cve-2019-0708.
apache2 80,443 www-data cwe-89, http-(s)rfi.
smtp 25 root cve-2016-1000282.

4, client-4 sshd 22 root cwe-251.
mysql 3390 root cwe-89.
apache2 80, 443 www-data cwe-89, http-(s)rfi.
smtp 25 root cve-2016-1000282.

5, enterprise-1 sshd.exe 22 root cwe-251.
6, enterprise-2 sshd.exe 22 sshd_server cwe-251.

svchost.exe 135 system -.
svchost.exe 3389 system cve-2019-0708.
smss.exe 445,139 system cve-2017-0144.
tomcat8.exe 80,443 network cwe-89,http-(s)rfi.

7, enterprise-3 sshd.exe 22 sshd_server cwe-251.
svchost.exe 135 system -.
svchost.exe 3389 system cve-2019-0708.
smss.exe 445,139 system cve-2017-0144.
tomcat8.exe 80,443 network cwe-89,http-(s)rfi.

8, operational-1 sshd 22 root cwe-251.
9, operational-2 sshd 22 root cwe-251.
10, operational-3 sshd 22 root cwe-251.
11, operational-4 sshd 22 root cwe-251.
12, defender sshd 22 root cwe-251.

systemd 53,78 systemd+
13, attacker sshd.exe 22 sshd_server cwe-251.

femitter.exe 21 system cve-2020-26299.

Table 6.5: Configuration of the target system in cage-2 (Fig. 6.5); vulnerabilities are
identified by their identifiers in the Common Vulnerabilities and Exposures (cve) database
(The MITRE Corporation, 2022) and the Common Weakness Enumeration (cwe) list
(The MITRE Corporation, 2023). (Note that each node in Fig. 6.5 is labeled with an
identifier.)
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Type Actions mitre att&ck technique
Reconnaissance Subnet scan for nodes t1018 system discovery.

Port scan on a specific node t1046 service scanning.

Exploits cve-2017-0144, http-srfi t1210 service exploitation.
sql injection (cwe-89) t1210 service exploitation.
cve-2016-1000282 t1210 service exploitation.
cve-2020-26299 http-rfi t1210 service exploitation.

Brute-force ssh t1110 brute force.

Escalate Escalate privileges of user to root t1068 privilege escalation.

Impact Stop services running on node t1489 service stop.

Table 6.6: Attacker actions in cage-2 (cage-2, 2022); the actions are linked to the
corresponding attack techniques in the mitre att&ck taxonomy (Strom et al., 2018).

Type Interventions mitre d3fend technique
Monitor Network monitoring d3-nta network analysis.

Forensic analysis d3-fa file analysis.

Start decoys apache, femitter d3-de decoy environment.
haraka, smss d3-de decoy environment.
sshd, svchost tomcat d3-de decoy environment.

Restore Restore node to a checkpoint d3-ra restore access.
Attempt to remove attacker d3-fev file eviction.

Table 6.7: Defender interventions in cage-2 (cage-2, 2022); the interventions are linked
to the corresponding defense techniques in the mitre d3fend taxonomy (Kaloroumakis
and Smith, 2021).

id Name Description
1 decoy-apache Starts a vulnerable apache http server decoy.
2 decoy-femitter Starts a vulnerable femitter ftp server decoy.
3 decoy-smtp Starts a vulnerable haraka smtp server decoy.
4 decoy-smss Starts a vulnerable smss server decoy.
5 decoy-sshd Starts an ssh server decoy with a weak password.
6 decoy-svchost Starts a vulnerable svchost.exe process decoy.
7 decoy-tomcat Starts a vulnerable tomcat http server decoy.
8 decoy-vsftpd Starts a vulnerable vsftpd ftp server decoy.

Table 6.8: Decoy services in cage-2 (cage-2, 2022).
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8

Figure 6.13: Workflow graph GW in cage-2 (cage-2, 2022); circles represent nodes of
the target system (Fig. 6.5) and edges represent service dependencies. (Note that each
node in Fig. 6.5 is labeled with an identifier.)





CONCLUSION

We know the past but cannot control it.
We control the future but cannot know it.

— Claude Shannon 1959, Coding theorems for a discrete source.

Our reliance on online services and it systems has never been more apparent;
they provide critical societal functions, enable global communication, and
drive economic growth. The extent of this dependence was clearly demon-

strated during the covid-19 pandemic, when remote work, online education, and
digital healthcare became necessary. While this digitalization provides many ben-
efits, it simultaneously introduces vulnerabilities that adversaries can exploit. As
these vulnerabilities are of growing concern to society, automated security response
has been recognized as an essential countermeasure (Montesino and Fenz, 2011).

By response, we understand the coordinated actions taken to contain, mitigate,
and recover from cyber attacks. Historically, such actions have been automated
(to some extent) using rules designed by human experts (Denning, 1987). Though
this approach has been accepted practice, the rapidly growing number of attacks
renders it impractical today. Framing security response as an optimal control prob-
lem† offers a promising solution to this limitation by enabling the automatic opti-
mization of responses based on system measurements. Such framing facilitates a
rigorous treatment of security response where trade-offs between different security
objectives can be systematically studied through mathematical models. Prior art
demonstrates the advantages of this approach for simulation-based environments
(Nguyen and Reddi, 2023). However, due to the gap between a simulation and
an it infrastructure, the feasibility of such approaches for operational use remains
elusive. Motivated by this limitation, this thesis studies the following question.

What methodology can be used to develop an automated security re-
sponse system that guarantees scalability and optimality, and how can
the system be rigorously validated on a testbed?

We answer this question by presenting a practical methodology for optimal secu-
rity response in it infrastructures, which constitutes our main contribution. It
includes two systems; see Fig. 12 in the introduction chapter. First, it includes
an emulation system that replicates key components of the target infrastructure.
We use this system to gather measurements and logs, based on which we identify
a game-theoretic model. Second, it includes a simulation system where response
strategies are optimized through stochastic approximation to meet a given objec-
tive, e.g., mitigate attacks while maintaining service availability. These strategies

†Here “control problem” encompasses both control- and game-theoretic problem formulations.

287
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are then evaluated and refined in the emulation system to bridge the gap between
theoretical and operational performance. We argue that this methodology provides
a foundation for the next generation of response systems. The response strategies
computed through our methodology can be used in these systems to decide when an
automated response should be triggered or an operator should be alerted. They can
also suggest, in real-time, which responses to execute. Unlike the simulation-based
solutions proposed in prior research, our response strategies are experimentally vali-
dated and useful in practice: they can be integrated with existing response systems,
they satisfy safety constraints, and they are computationally efficient.

We present csle, a novel open-source platform that implements our methodol-
ogy (Hammar, 2023). This platform allows us to prove the methodology’s practical
applicability and superiority to current solutions by validating it experimentally on
several instances of the security response problem, including intrusion prevention
(Paper 1), intrusion response (Paper 2 and Paper 3), intrusion tolerance (Paper 4),
and defense against advanced persistent threats (Paper 5 and Paper 6). Besides the
experimental validation, in these papers we also develop fundamental mathemati-
cal tools for security response and prove structural properties of optimal response
strategies, such as decomposability (Thm. 3.2) and threshold structure (Thms. 1.1,
2.1, 4.3, 4.5, and 5.1). Leveraging these structural results, we develop scalable com-
putational techniques (Alg. 1.1–6.1), which have optimality guarantees (Thms. 5.3,
5.4, and 6.4). Our dual focus on practical applicability and computational efficiency
enables us to narrow the gap between theoretical and operational performance; see
the results in Fig. 1.10, Fig. 2.7, Fig. 3.9, Fig. 4.15, and Fig. 5.17.

The main experimental finding of this thesis is that the most important factor
for scalable and optimal security response is to exploit structure, both structure in
theoretical models (e.g., optimal substructure) and structure of the it environment
(e.g., network topology). The former enables efficient computation of optimal re-
sponse strategies and the latter is key to managing the high-dimensional nature of
it infrastructures. Another notable finding is that stochastic approximation is a
suitable method for such computation, striking a good balance between satisfactory
performance and computational expenditure.

Future research

Optimal security response is a vast field that spans numerous areas of expertise,
including cybersecurity, optimization theory, game theory, control theory, causal-
ity, stochastic approximation, reinforcement learning, and systems engineering. As
such, there is an endless road of possible generalizations to the results of this thesis.
Some extensions were deliberately excluded to maintain coherence (e.g., extensions
to different use cases), while other limitations were imposed for practical reasons
(e.g., evaluation in a production environment). The next page highlights the re-
search directions that we consider the most relevant for further investigation.
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1. Adaptive digital twin
Online execution of our methodology requires updating the digital twin to
reflect changes in the physical infrastructure; see Fig. 19 in the methodol-
ogy chapter. While we have performed a preliminary study of this problem
(Hammar and Stadler, 2022), we have not studied it in depth. Therefore, this
problem requires additional examination.

2. Response strategies for diverse infrastructures
In each case study presented in this thesis, we focus on the problem of finding
an optimal response strategy for a specific target infrastructure. We have not
considered the problem of finding a general strategy for a class of infrastruc-
tures; this problem presents an opportunity for future research.

3. Resilience against adversarial perturbations
Control strategies optimized through stochastic approximation are vulnerable
to adversarial attacks introducing small perturbations to the strategy input
(Russo and Proutiere, 2021). The problem of developing robust response
strategies against such perturbations requires further analysis.

4. Integration with human-in-the-loop architectures
This thesis focuses on fully automated security response systems. However,
not all responses can be fully automated due to the complexity, ambiguity, and
ethical considerations of some security incidents. Future work should explore
how to effectively interface automated systems with human operators.

5. Extensions to additional use cases
In each response scenario studied in this thesis, we make assumptions about
the underlying it infrastructure and the attacker’s capabilities. Applying our
methodology to new scenarios with different assumptions will likely uncover
additional challenges that must be dealt with. For example, many of our
techniques for it security response can be extended to cyber-physical systems.

Conclusion

The rising frequency of cyber attacks and their widespread impact on society ne-
cessitates automated security response. Achieving such automation is one of the
greatest challenges in cybersecurity. In this thesis, we have demonstrated optimal
security response in the most realistic attack scenarios considered to date. We
achieved our results using a novel methodology that combines a digital twin with
system identification and simulation-based optimization. While technical challenges
remain, our general outlook on automated security response is positive. We foresee
future it infrastructures where virtualization technologies combined with increasing
data rates will enable dynamic and automated security response through our data-
driven methodology. Such automation has the potential to significantly reduce the
impact of cyber attacks, decrease operational costs, and shorten recovery times,
thereby contributing to more sustainable and reliable digital infrastructures.
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