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Intrusion Prevention through Optimal Stopping
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» Problem: Cyber attacks evolve quickly. As a consequence, a defender
must constantly adapt and improve the target system to remain effective.

» The emulation system replicates key components of the target
infrastructure and is used for data collection and policy evaluation.

» Approach
We formulate intrusion prevention as a multiple stopping problem and use
reinforcement learning to automatically find optimal policies.

» The simulation system is used to execute POMDP episodes and learn
policies through reinforcement learning.
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» Contributions

1. A novel formulation of the use case as a multiple stopping problem.
2. A reinforcement learning approach to obtain policies in an emulated infrastructure.
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Use Case: Intrusion Prevention
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EMULATION SYSTEM

A defender takes measures to protect an IT infrastructure against an attacker

while, at the same time, providing a service to a client population. Policy l Selective
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Learning Intrusion Prevention Policies
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We use PPO to learn a policy my : H +— A, where 7y is a feed-forward neural
= network and 7 is the set of histories.
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POMDP Model of the Intrusion Prevention Use Case
o (stop|h)
We formulate the use case as a multiple stopping problem where each stop 1.007 soft
is associated with a defensive action. We use the following POMDP model: Ny thresholds
» States S and Observations O: YT V. S ~ .
intrusion state i, € {0,1}, iy = 1, i
defender observations o; = (Ax;, Ay, Az;) (IDS alerts and logins). Uoz5= |
|
|
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» Actions A: “stop” (S) and “continue” (C) X 0 %0 20 10
- o ] ] h events/time-step
» Transition Probabilities P2, and Observation Function Z(0, s, a): —— NOVICE *+++ EXPERIENCED —-— EXPERT

Intrusion start (Q;)_; ~ Ber(p).
Observation distribution fxyz(Ax, Ay, Az|s;, I;, t).

Threshold Properties of an Optimal Policy

» Reward Function RI: Reward for service and intrusion prevention, loss

for false alarms and intrusions.
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Theorem 1. Let .#' be the stopping set, and ¢’ the continuation set. The
following holds:

(A) 71 C s for I =2,...L.

(B) If L— /%=1, there exists a* € [0, 1] and an optimal policy 7} that satisfies:
m/(b(1)) =S <= b(l) > a” (1)

(C) If L—1%>1 and fxyzs is totally positive of order 2 (i.e., TP2), there exist
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Stopping times that
affect the intrusion

Early stopping times !

[ — I values Oé;kA—F]. > @7‘A+2 > ... > aj €]0,1] and an optimal policy 7}
that satisfies:
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