
Degree Project in the Field of Technology Computer Science and Engineering
and the Main Field of Study Probability Theory and Statistics

Second cycle, 30 credits

Emulation and Stochastic
Modeling of Client Populations in
IT Infrastructures
ARVID LAGERQVIST

Stockholm, Sweden, 2023

Emulation and Stochastic Modeling
of Client Populations in IT
Infrastructures

ARVID LAGERQVIST

Master’s Programme, Applied and Computational Mathematics, 120 credits
Date: August 9, 2023

Supervisors: Kim Hammar, Mattias Sandberg
Examiner: Elias Jarlebring

School of Engineering Sciences
Swedish title: Emulation av klientpopulationer för IT-infrastrukturer
Swedish subtitle: För användning i ”Digital Twins”-teknologi

© 2023 Arvid Lagerqvist

Abstract | i

Abstract
This Master thesis studies stochastic modeling and emulation of client
populations in IT infrastructures. We extend a novel emulation system for
creating high-fidelity digital twins of IT infrastructures to allow emulation
of large and heterogeneous client populations. In our approach, we model
client arrivals with an exponential-polynomial-trignometric rate function and
model client interactions with Markov chains. We show that these models are
scalable and allow theoretical insight into client behavior and evolution, which
can guide system development. We further analyze how model parameters
can be estimated directly from system measurements, reducing the need for
domain experts. To validate our models we implement them on a testbed. Our
results show that our models can generate a diverse set of client populations
and that this capability can be used to drive computational algorithms based
on decision theory and statistical learning to optimize system performance.

ii | Abstract

Sammanfattning | iii

Sammanfattning

Nyckelord
Digitala tvillingar, Stokastiska processer, Markovkedjor, Tidsvarierande
Poissonprocesser

iv | Sammanfattning

Acknowledgments | v

Acknowledgments
I would like to thank Kim Hammar for having guided me through the
project and provided extremely useful and actionable feedback throughout the
process. I would also like to thank Mattias Sandberg for his guidance and
illuminating discussions about the project and the direction of it, a very useful
second opinion from someone that wasn’t so tightly coupled to the project.

Stockholm, August 2023
Arvid Lagerqvist

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Use Case: Intrusion Response 3
1.3 Research Questions . 4
1.4 Related work . 5
1.5 Outline . 6

2 Mathematical background 7
2.1 Time-varying Poisson processes 7

2.1.1 The rate function and maximum likelihood estimation 8
2.1.1.1 Using maximum likelihood estimation from

sampled data 8
2.1.2 Initial estimates of the parameters 9

2.2 Markov chains . 9
2.2.1 Converting higher order Markov chains to first order . 10
2.2.2 Hitting times for Markov chains 10
2.2.3 Expected number of visits 11

2.3 Directed Acyclic Graphs . 13

3 Modeling client behaviour 15
3.1 Network infrastructure . 15
3.2 System Model . 16

3.2.1 Markov chain representation of workflows 17
3.3 Expected service times . 18

3.3.1 Expected service times using expected hitting time . . 18
3.3.2 Expected service times using expected number of visits 19

3.4 A minimal example . 19
3.5 Calculating expected number of clients in the network 20
3.6 Space complexity . 23

viii | Contents

3.7 Summary . 24

4 Evaluation of the model 25
4.1 The testbed used for evaluation 25
4.2 Method . 26
4.3 Results . 26
4.4 Discussion . 26
4.5 Conclusion . 26

References 29

List of Figures | ix

List of Figures

1.1 This thesis investigates analytical modeling and emulation of
client behavior in IT infrastructures; our formal models and
emulator can be used as part of a digital twin to find and
evaluate security policies for an IT infrastructure; the digital
twin is a virtual replica of the IT infrastructure and is used to
evaluate security policies and collect data; the collected data is
used to instantiate simulations of Markov decision processes
and to learn effective policies through reinforcement learning
[2, 3, 4, 5, 6, 7, 8]. 2

1.2 The IT infrastructure and the actors in the intrusion response
use case that is used for evaluation in this thesis [2, 3, 4, 5, 6, 7, 8]. 4

2.1 An example of a Directed Acyclic Graph 13

3.1 A simplified view of the network that will be modeled 16
3.2 Client arrivals for an arrival process that is increasing

exponentially with time and also has one periodic component . 21
3.3 Client arrivals for an arrival process that has a models a large

spike that decreases after some time 21
3.4 A workflow with five services 22
3.5 The workflow Markov chain w in graph form 22
3.6 Sample trajectories of the workflow Markov chain w. The

opacity of the line indicates the number of samples that
traversed that specific trajectory. 23

4.1 Empirical distributions of system metrics with an EPTMP
arrival process using parameters θ = [3.6269], γ = [2.1, 1.1],
ω = [0.1731, 0.3264], and ϕ = [−0.6193, 0.5]; and a single
workflow w with a single service and expected service time
150s; the EPTMP parameters are based on [24, Case 1]. 27

x | List of Figures

4.2 Empirical distributions of system metrics with an EPTMP
arrival process using parameters θ = [1, 0.003], γ = [0],
ω = [0], and ϕ = [0]; and a single workflow w with a single
service and expected service time 150s. 28

List of Tables | xi

List of Tables

3.1 The functions that are available to the clients through the
network infrastructure . 19

xii | List of Tables

List of Tables | xiii

The list of acronyms and abbreviations should be in alphabetical order
based on the spelling of the acronym or abbreviation.

xiv | List of Tables

Introduction | 1

Chapter 1

Introduction

This thesis investigates mathematical models of user behavior in networked
systems and how such models can guide system development, focusing on
an intrusion response use case. In this introductory chapter, We motivate
the research, introduce the area under study, and provide a roadmap for the
remainder of the thesis.

1.1 Motivation
In the past few years, virtualization technologies have matured to the point
that it is now feasible to deploy large virtual IT infrastructures on commodity
hardware. Virtual infrastructures differ from physical ones in that they consist
of lightweight virtual containers or virtual machines that enable a higher level
of control by shifting functions from hardware to software. Building on this
capability, digital twin has emerged as a key technology in system automation
[1]. A digital twin is a virtual replica of a real-world system that provides a
controlled environment for virtual operations, the outcomes of which can be
used to optimize operations in the real-world system.

A promising application of digital twins is to optimize control policies for
IT infrastructures [2, 3, 4, 5, 6, 7, 8] (see Fig. 1.1). In this line of research, data
collected from digital twins is used to drive computational algorithms based
on decision theory and statistical learning for computing effective control
policies. Compared to purely analytical models and evaluation in production,
digital twins provides three key benefits for this use case: (i) it provides a
safe and realistic test environment; (ii) it provides evaluative feedback that
enables closed-loop learning of policies; and (iii), it allows collecting data and
evaluating policies without affecting operational workflows on the real-world

2 | Introduction

Markov Decision Process

s1,1 s1,2 s1,3 . . . s1,4

s2,1 s2,2 s2,3 . . . s2,4

Digital Twin

. . .

Virtual
network

Virtual
devices

Emulated
services

Emulated
actors

IT Infrastructure

Configuration
& change events

System traces

Verified security policy

Optimized security policy

Figure 1.1: This thesis investigates analytical modeling and emulation of
client behavior in IT infrastructures; our formal models and emulator can be
used as part of a digital twin to find and evaluate security policies for an IT
infrastructure; the digital twin is a virtual replica of the IT infrastructure and
is used to evaluate security policies and collect data; the collected data is used
to instantiate simulations of Markov decision processes and to learn effective
policies through reinforcement learning [2, 3, 4, 5, 6, 7, 8].

infrastructure.
A major challenge in building digital twins is to capture the complex

dynamics of real-world IT infrastructures. In general, creating a digital
twin of an IT infrastructure involves six emulation functions: (1) functions
for emulating physical resources (e.g. CPU, storage, and memory); (2)
functions for emulating network communication (e.g. IP networks); (3)
functions for emulating network conditions (e.g. packet loss probabilities,
jitter, and bit rates); (4) emulating system operations (e.g. security operations);
(5) emulating cyber attacks (e.g. remote-code execution attacks); and (6),
emulating client populations (e.g. user behavior and interaction with the
system).

This thesis studies the latter task: emulation of client populations.
The main challenge in emulating client populations is the hetereogenity of
typical user behavior and the complexity of their interactions with computer
systems. To deal with this complexity, we use analytical modeling and

Introduction | 3

stochastic processes to obtain insight and guide the development of an
emulator for client populations. Specifically, we use time-varying Poisson
processes in conjuction with Markov chains to model client behavior on an IT
infrastructure. To evaluate our approach, we implement a novel emulator that
generates real client requests on real or virtual systems.

The implemented emulator extends the software framework developed in
[2, 3, 4, 5, 6, 7, 8], which allows emulation of large-scale IT infrastructures in
a virtual environment.

1.2 Use Case: Intrusion Response
To evaluate the formal models and implementations developed throughout this
thesis, we focus on the following use case.

We consider an intrusion response scenario that involves the IT
infrastructure of an organization (see Figure 1.2). The operator of this
infrastructure, which we call the defender, takes measures to protect it against
an attacker while providing services to a client population. The infrastructure
includes a set of servers that run the services and an Intrusion Detection and
Prevention System (IDPS) that logs events in real-time. Clients access the
services through a public gateway, which is also open to the attacker.

The attacker’s goal is to intrude on the infrastructure and compromise
its servers. To achieve this, the attacker explores the infrastructure through
reconnaissance and exploits vulnerabilities while avoiding detection by the
defender. The attacker follows a pre-defined attack policy, which is defined in
[6].

The defender continuously monitors the infrastructure through accessing
and analyzing IDPS alerts and other statistics. It can take a fixed number of
defensive actions, each of which has a cost and a chance of stopping an ongoing
attack. An example of a defensive action is to drop network traffic that triggers
IDPS alerts of a certain priority. The defender takes defensive actions in a pre-
determined order, starting with the action that has the lowest cost. The final
action blocks all external access to the gateway, which disrupts any intrusion
as well as the services to the clients.

When deciding the time for taking a defensive action, the defender
balances two objectives: (i) maintain services to its clients; and (ii), stop a
possible intrusion at the lowest cost. The optimal policy for the defender is to
monitor the infrastructure and maintain services until the moment when the
attacker enters through the gateway, at which time the attack must be stopped

4 | Introduction

Attacker Clients
. . .

Defender

1 IDPS1

alerts

Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Figure 1.2: The IT infrastructure and the actors in the intrusion response use
case that is used for evaluation in this thesis [2, 3, 4, 5, 6, 7, 8].

at minimal cost through defensive actions. The challenge for the defender is
to identify this precise moment.

1.3 Research Questions
The main research question of this thesis, as well as a series of supplementary
questions, are presented below.

• How can one model heterogeneous client populations for IT infrastruc-
tures?

– How can the model be made flexible?

∗ It must be able to model many different client types.
∗ It must able to model many different infrastructures.

– How can the model be made easily interpretable?

∗ The parameter count must be held as low as possible.
∗ The different parts of the model must have clear analogs to

real world phenomena.

– How can the usability of the model be best optimized, considering
the specific software implementation as well as the model design?

Introduction | 5

– How can the model be made scalable, i.e. able to model client
populations and infrastructures of arbitrary size?

– How can the model be made realistic, is it able to model the
relevant real world phenomena?

– Is the model possible to implement and be used in a real simulation
system?

1.4 Related work
There is a lot of research regarding how to generate realistic web traffic
load for performance evaluation of computer systems [9, 10, 11, 12]. Both
[9] and [10] are studies of a specific traffic generating system, however
their evaluation is done from different perspectives. [9] evaluates the traffic
generation of the system from a performance perspective while [10] evaluates
from a cybersecurity perspective, specifically based on how well signature-
based intrusion detection systems (SIDS) are tested using the generator. There
is comparatively little research where the evaluation criteria are related to
cybersecurity as opposed to performance evaluations. The question of how
to generate realistic client traffic load has been tackled in a few different ways
that can be characterized in to two different categories, analytical models and
data/trace driven models. All models exhibits both analytical and data driven
characteristics. Most models are analytical in some way since even if they
are mostly data driven they often require some choice of what parameters
are estimated using the data and what type of generating model to use. A
purely data driven model might just replay traces collected from a system
such as ”Monkey see, monkey do” [13], the weakness of such a model is
that it likely generalises very poorly to unseen scenarios. [14] is an almost
entirely analytical article that focuses on one aspect of web traffic that is also
noted in [9], namely that it is often self-similar. One way of modeling self
similarity for traffic load is using fractional Brownian motion, which is done
in [14]. The self-similarity property of network traffic is especially important
for performance evaluation according to [9]. There have also been more data
driven studies of traffic load generation in the context of cybersecurity [15, 10].
One example of this is [15], the focus in this study however was to create
realistic workloads that reflected normal user behaviour and not necessarily to
create challenging scenarios for the cybersecurity testbed.

The main references for this thesis will be the work of Papadopouli et.
al. [16, 17, 18] where client arrivals, association patterns and connection

6 | Introduction

duration on a campus network was modeled using time varying Poisson
processes, Markov chains and Bipareto distributions for the service times.
The purpose of the modeling in those studies was to enable optimization of
the networking infrastructure based on the access patterns of the users, in this
thesis the purpose will be to create a model that generates realistic and, from
a cybersecurity perspective, challenging client load and behaviour. In this
thesis a model will be presented that has the capacity to adapt to provided
client traffic data or pre-programmed behaviour.

In this thesis a Markov model based on Markov chains will be used, similar
models are referred to as Variable order Markov models (VMMs). VMMs are
used in many areas, among them are machine learning, lossless compression,
and dna sequence prediction. [19, 20, 21]

This thesis provides an investigation of how one can model and emulate
client behaviour for creating digital twins of IT infrastructures. Such digital
twins are used for system automation and optimizing operations in IT
infrastructures, for example optimizing security strategies [2, 3, 4, 5, 6, 7, 8].
In [4] reinforcement learning is used to train an agent to defend against
intrusions and since the training environment directly affects the objective
function it could be useful to understand the environment better and have more
control over its parameters.

1.5 Outline
In the next section (Section 1.4) research about similar topics is discussed, such
as performance evaluation, load generation, and Markov models. The next
chapter (Chapter describes the necessary mathematical concepts that are used
in the model. Section 2.1 presents the time-varying Poisson process and how to
simulate it. Section 2.2 describes Markov chains and some useful properties of
them that will be used in later sections. Chapter 3 gives the model of the clients
in its entirety, including both the arrival processes and the service chains. In
sections 3.1 and 3.3 the mathematical model is presented and in Section 3.4 a
small example scenario is described and implemented. The last three sections
of the chapter treats how to calculate expected network load (Section 3.5), the
space complexity of the algorithm (Section 3.6) and a summary of the chapter
(Section 3.7). The fourth and final chapter evaluates the work of the thesis and
puts it into a larger context. Section 4.1 is a description of the testbed used to
run the model for evaluation. The following sections present the results of the
practical evaluation and discuss them as well as draws conclusions from them.

Mathematical background | 7

Chapter 2

Mathematical background

This chapter presents the mathematical concepts that are used to create the
model. It also describes some further calculations that can be done with the
mathematical building blocks of the model, that are applied to the model in
later sections.

2.1 Time-varying Poisson processes
A time-varying Poisson process is a Poisson process where the Poisson
parameter depends on the time parameter t i.e. Po(λ(t)) where λ(t) is any
continuous function of t. A time-varying Poisson process can also be called
a non-homogeneous Poisson process. The non-homogeneous Poisson process
Po(λ(t)) has rate λ(t) at time t. To generate a time-varying Poisson process
with rate function λ(t) one can use a process called thinning which was
presented in [22]. The basic idea is to use a homogeneous (constant rate)
Poisson process Po(λ∗) whose rate function is greater than λ(t) at all times
t and thin the output of this process by removing points generated by Po(λ∗)

with probability 1 − λ(t)
λ∗ . The full algorithm and proof is detailed in [22].

Other simulation methods as well as several advanced models for time-varying
Poisson processes are presented in [23]. The appeal of the thinning process
for simulation of the time-varying Poisson process lies in its simplicity and
ease of implementation, however [23] discusses various efficiency gains that
can be made by making further assumptions about the rate function.

8 | Mathematical background

2.1.1 The rate function and maximum likelihood
estimation

One of the more simple choices for the form of the rate function λ(t) would
be to have it be an exponential function, i.e. of the form λ(t) = eθ0+θ1t.
This leads to a model that has nice statistical properties and leads to simpler
calculations than other methods. However, this model requires a monotone
increasing or decreasing function which is does not entirely fit the use case
of this thesis. To incorporate periodicity as well as giving room for more
global patterns one can use the EPTMP model which was presented in
[24]. EPTMP stands for Exponential-Polynomial-Trigonometric rate function
having Multiple Periodicities and it has the form

λ(t) = exp

(
m∑
i=0

θit
i +

p∑
k=1

γksin(ωkt+ ϕk)

)
= exp(h(t;m, p,θθθ)) (2.1)

where the parameters to estimate are

θθθ = [θ0, θ1, ..., θm, γ1, ..., γp, ϕ1, ..., ϕp, ω1, ..., ωp]

As stated in [23] these parameters can be interpreted as follows: θ0, ..., θm
represent the overall trend in frequency of events over a long time frame.
The periodic part of the function is divided into three parts: γ1, ..., γp are
amplitudes, ϕ1, ..., ϕp are period shifts, and ω1, ..., ωp are frequencies. To
perform maximum likelihood estimation the log-likelihood function must be
used. The log-likelihood function for the rate function (2.1) given that one has
a realisation of the process Po(λ(t)) on the interval (0, T] with arrival times
t1 < t2 < ... < tn is

ℓ(t, n|θθθ) =
m∑
i=0

θi

n∑
j=1

tij+

p∑
k=1

n∑
j=1

γksin(ωktj+ϕk)−
∫ T

0

exp(h(u;m, p,θθθ)du

The estimated parameters are then

θ̂̂θ̂θML = arg max
θθθ

ℓ(t, n|θθθ)

2.1.1.1 Using maximum likelihood estimation from sampled data

This section is based on Section 3.1.1 in [25]. Given sampled data x =

(x1, x2, ..., xm),m ≥ 1

Mathematical background | 9

2.1.2 Initial estimates of the parameters
As suggested in [23] one can use a periodogram of the data to get initial
estimates for frequencies of the periodic part of the rate function.

2.2 Markov chains
Consider a set of states 0, 1, 2, ...,M . A Markov chain is a special case of a
stochastic process with outcomes in this set of states. Consider a stochastic
process {Xt}. {Xt} is considered a first order Markov chain if the following
property holds

P (Xt+1 = j|X0 = l0, X1 = l1, ..., Xt−1 = lt−1, Xt = i) = P (Xt+1 = j|Xt = i)

for t = 0, 1, 2, ... and every sequence i, j, l0, l1, ..., lt−1. Meaning that the next
state only depends on the state before it. The probabilities of transitioning from
one state to another can be described using a transition matrix. The elements
of the transition matrix P are defined as

Pi,j = P (Xt+1 = j|Xt = i)

where the element on the i:th row and j:th column describe the probability
of transitioning from state i to state j. A Markov chain of first order can be
defined using the state space and transition matrix as follows
Definition 1. A Markov chain w = ⟨S,P⟩ consists of the set of states S =

{1, 2, ...,M} and the transition matrix P. Where Pi,j denotes the probability
that the next state of the Markov chain is j ∈ S given that the current state is
i ∈ S.

A second order Markov chain also considers the previous state in addition
to the current state when determining the probabilities for the next state.
Meaning that {Xt} is a second order Markov chain if

P (Xt+1 = k|X0 = l0, x1 = l1, ..., Xt−2 = lt−2, Xt−1 = j,Xt = i) =

P (Xt+1 = k|Xt = i,Xt−1 = j)

for t = 0, 1, 2, ... and every sequence i, j, k, l0, l1, ..., lt−1. The transition
probabilities for a second order Markov chain can be described using the three-
dimensional transition matrix P(2) where

P(2)
i,j,k = P (Xt+1 = k|Xt = i,Xt−1 = j)

10 | Mathematical background

meaning that P(2)
i,j,k is the probability that we end up in state k if the previous

state was j and the current state is i.
This pattern can be extended up to any order n yielding an n:th-order

Markov chain [26, 16]. When the term Markov chains is used in the rest of
this thesis, this will be in referrence to Markov chains of first order.

2.2.1 Converting higher order Markov chains to first
order

A Markov chain of order k can be converted to a first order Markov
by a simple procedure. To illustrate the method we use the example
of a second order Markov chain with the state space {a, b, c}. The
possible previous states for the transition matrix P(2) are (a, a), (a, b),
(a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c). We can encode all of these
combinations in the names of the states of a new Markov chain which has the
state space {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}, this
Markov chain is of first order. [27]

2.2.2 Hitting times for Markov chains
The following definition and explanation of hitting times is adapted from [28].
The hitting time of a subset of states A ⊂ S for a Markov chain is defined as
the minimum number of time steps it takes to reach a state in the subset A.
Formally the hitting time is modeled as a random variable

HA = min{n ∈ {0, 1, 2, ...}|Xn ∈ A}.

In this thesis we will only handle the case when A is a single state i.e.

Hj = min{n ∈ {0, 1, 2, ...}|Xn = j}. (2.2)

The expected hitting time is defined as follows

Definition 2. The expected hitting time for state j when starting in state i is
defined as

ηi,j = E[Hj|X0 = i]

To illustrate the method of calculating the expected hitting time we use an
example from [28]. Consider a Markov chain with the transition matrix

Mathematical background | 11

P =

1
4

3
4

0
1
4

0 3
4

0 1
4

3
4


Let suppose we want to find η1,3 for this Markov chain. We start by setting up
an equation for η1,3

η1,3 = 1 + P1,1 · η1,3 + P1,2 · η2,3. (2.3)

Where η1,2 is composed of one unit of time for the current time step and a
weighted sum of the expected hitting times for the possible subsequent states.
A natural continuation would be to set up an equation for the unknown η2,3
next

η2,3 = 1 + P2,1 · η1,3 + P2,3 · η3,3. (2.4)

Combining equations (2.3) and (2.4) together with the fact that η3,3 = 0 we
get the following system of equations

3

4
η1,3 −

3

4
η2,3 = 1

− 1

4
η1,3 + η2,3 = 1.

When solved this gives us the value η1,3 = 28
9
≈ 3.11.

In general this method can be stated like this. Given a Markov chain w =

⟨S,P⟩ that has exactly one recurrent state ∅, which is also absorbing. Where
P ∈ Rn×n. Let ηi,∅ be the expected hitting time for the absorbing state given
that the process starts in state i. Then ηi,∅ can be calculated as follows

ηi,∅ =
n∑

j=1

Pi,j · ηj,∅. (2.5)

This recursive formula together with the base case that η∅,∅ = 0 gives the
expected time before the Markov chain enters the absorbing state.

2.2.3 Expected number of visits
The following is presented in [29] but is reiterated here for clarity. To calculate
the expected number of visits for a given state in a Markov chain we first need
to define the concepts of transient and recurrent states. Recurrent states are
states that, if the stochastic process described by the Markov chain continued

12 | Mathematical background

for infinite time, would recur an infinite amount of times. The expected number
of visits for recurrent states is therefore always infinity. Transient states on
the other hand are states that only occur a finite amount of times, even if the
process continues for infinite time. Given a first order Markov chain on the
state space S = {S1, S2, ..., Sn} we define T ⊂ S as the set of transient states.
We give the transient states new labels from 1 to b where b is the number of
transient states. Let PT = (Pi,j) i, j ∈ T be the transition matrix for the
transient states. Let Vi,j be the expected number of visits to Sj given X0 =

Si ∈ T then

Vi,j = E

[
∞∑
n=0

I{Xn=j|X0=i}

]
=

∞∑
n=0

P n
i,j.

Where P n is the n-step transition matrix for the Markov chain. Now given this
[29] presents the following proposition and proof, which are given here in the
context and notation of this thesis.

Proposition 1. Let I denote the b × b identity matrix. Then V = I + PTV

which in turn yields
V = (I − PT)

−1 (2.6)

Proof. Assume X0 = i ∈ T . In the case j = i since we, from the beginning,
have an initial visit to j it follows that

Vi,i = 1 +
∑
k∈T

Pi,kVk,i.

In the case where j ̸= i we get the a similar relation but without the initial visit

Vi,j =
∑
k∈T

Pi,kVk,j.

These sums of products can be written in matrix form as V = I +PTV which
gives (I − PT)V = I . And since in general for square matrices A,B it holds
that det(AB) = det(A)det(B) we can conclude by letting A = (I − PT) and
B = V that det((I − PT)V) = det(I) = 1 and therefore that both (I − PT)

and V have non-zero determinants which makes them invertible. Using this
knowledge we can write the expression as V = (I − PT)

−1.

Mathematical background | 13

Figure 2.1: An example of a Directed Acyclic Graph

2.3 Directed Acyclic Graphs
Directed acyclic graphs (DAG) are graphs that have directed edges and contain
no cycles, an example of a DAG can be seen in Figure 2.1. The graph is defined
by two sets, the set of vertices usually denoted by V and the set of edges usually
denoted byE. The set of edges is composed of ordered tuples with two vertices
each, for example {(a, b), (a, c)} indicating that there are edges going from a

to b and from a to c. The edges may also be weighted meaning that each edge
is also associated with a number that represents the cost or probability of that
edge being traversed.

14 | Mathematical background

Modeling client behaviour | 15

Chapter 3

Modeling client behaviour

The clients behavior will be modeled in two stages: arrival process and service
chain generation. At first individual time-varying Poisson processes with a rate
function that depends on historical data for a specific client type will generate
client arrivals. In the second stage a Markov model will be used to generate
service access patterns for the individual client types.

3.1 Network infrastructure
We consider IT infrastructures comprising application servers connected in
a communication network. These application servers run services that are
consumed by clients through a public gateway (see Figure 3.1). An example of
a specific network infrastructure is shown in figures 1.1 and 1.2. In this thesis
we will not concern ourselves with the specific implementation of the network,
except for in the practical evaluation part (see Chapter 4), and will instead
focus on creating a more general model that might be used for many different
scenarios that have this general structure. The idea is that the clients that arrive
according to some process, that possibly can be modeled as in Section 3.2, to
a public gateway and then interact with the system for some time by using
the different services and then leaving the network. The series of interactions
that a client makes with the system during a session is are modeled in Section
3.2.1. A goal with the model in this thesis is for the parameters of the clients
to be easily manipulated and understandable enough so that experiments can
be done with different configurations that simulate scenarios that might occur
in real systems.

16 | Modeling client behaviour

Figure 3.1: A simplified view of the network that will be modeled

3.2 System Model
In the model presented in this thesis there will be clients of different types, the
different client types have individual arrival processes and decision processes,
i.e. they are completely independent. Each type of client has an associated
arrival process Po(λCi

(t)) that describes the connection rate of client type Ci.
λCi

(t) is an EPTMP rate function as described in Section 2.1.1 with parameters
that are unique to the client type Ci.

Once the clients have arrived at the system they will interact with the
system through a series of network functions, an example of network functions
available in a network can be seen in Table 3.1. The available network
functions are represented as a set of states S = {S1, S2, ..., SNs} where Ns

is the number of network functions available in the given network. To model
the behaviour of the clients we make the assumption that the clients have some
predetermined set of workflows that they might execute when connecting to
the system. Each one of these workflows may be modeled as a DAG, for an
example see Figure 3.4.

Definition 3. A workflow w = ⟨V,E⟩ is defined as a directed acyclic graph
of finite size where V ⊆ S and E ⊆ S × S.

Modeling client behaviour | 17

3.2.1 Markov chain representation of workflows
To model the clients traversal in the workflow we use a Markov chain defined
as follows:

A workflow Markov chain w = ⟨S,P⟩ is defined by the state space S
of states in the workflow and the transition matrix P which describes the
probability of a certain state following another. A workflow markov chain
has the following properties:

1. A workflow Markov chain always contains exactly one absorbing state,
∅.

2. All states other than the one absorbing state are transient.

3. Every edge going to the absorbing state is non-zero, i.e. Pi,∅ > 0, ∀i.

The following proposition shows that the expected hitting time for the
absorbing state is finite for all Markov chains fulfilling the above properties.

Proposition 2. For all Markov chains fulfilling the properties 1-3 above the
following holds:

ηi,∅ < ∞, i = 1, 2, ...,M

Proof. Let pmin be the lowest exit probability, i.e.

pmin := min
i∈S

Pi,∅

From property 3 we know that pmin > 0. Every step of the Markov chain can
be seen as a Bernoulli trial where p = Pi,∅ and since we know that ∀i Pi,∅ ≥
pmin we can say the following

E[H∅] ≤ E[Y]

Where Y ∈ Ge(pmin), and since E[Y] = 1
pmin

we see that E[H∅] ≤ E[Y] =
1

pmin
< ∞

The clients interact with the network according to the specific workflow that
they are currently following. However, clients may have several different
workflows that they are able to execute. The choice of workflow for the
different client types is modeled as a discrete random variable W with
outcomes in a set of available workflows W. The probability mass function

18 | Modeling client behaviour

p(w) of the discrete random variable W defines the likelihood that a client of
a given type will execute a given workflow.

Now that we have defined both the arrival process as well as the random
variable that determines what workflow our client will execute we can define
our clients.

Definition 4. A client type is defined by its arrival process together with its
workflow random variable i.e. client C = (Po(λC(t)),W)

Examples of client types are: normal user, admin, web scraper or bot. To
model the different workflows we use first order Markov chains. The state
space for workflow wi is Swi

where Swi
⊆ S. The transition matrix is Pwi

. In
equation (3.1) you can see what the transition matrix Pw would look like for
the workflow w, depicted in graph form in Figure X.

P =


S1 S2 ∅

S1 0 1 0

S2 0 0.5 0.5

∅ 0 0 1

 (3.1)

3.3 Expected service times
Given a client type with an arrival process and a workflow distribution one
might wish to know the expected total service time that this client type will
spend in the system. In the following subsections two ways of calculating this
total service time are presented.

3.3.1 Expected service times using expected hitting
time

One way of finding the total service time is to find the expected hitting time
of the empty state ∅, as this represents the time it takes until termination of
the connection. To illustrate the method we once again use the example of
the Markov chain with the transition matrix seen in (3.1). We use the method
shown in Section 2.2.2 to calculate the expected hitting time for the state ∅
given that the process starts inS1 i.e. η1,∅. We begin by setting up the equations
for S1 and S2 η1,∅ = 1 + η2,∅

η2,∅ = 1 +
1

2
η2,∅ +

1

2
η∅,∅.

Modeling client behaviour | 19

Functions
HTTP
SSH

SNMP
ICMP
IRC

PostgreSQL
FTP
DNS
Telnet

Table 3.1: The functions that are available to the clients through the network
infrastructure

Solving for η1,∅ gives η1,∅ = 3.

3.3.2 Expected service times using expected number
of visits

Another way of finding the total service time is to calculate the expected
number of visits to every transient state and summing them to get the average
number of time steps spent in transient states before reaching the absorbing
state. We once again refer to the Markov chain with transition matrix shown
in (3.1). Now we calculate the expected number of visits for the transient states
using (2.6). In this example PT = {S1, S2} since ∅ is a recurrent, and in this
case absorbing, state.

V = (I−PT)
−1 =

([
1 0

0 1

]
−
[
0 1

0 0.5

])−1

=

[
1 −1

0 0.5

]−1

=

[S1 S2

S1 1 2

S2 0 2

]
Summing all the elements of the first row of the matrix V gives η1,∅ = 3which
is the same results as with the previous method.

3.4 A minimal example
To illustrate how the model works we will try it on a minimal example.
Consider a client type C whose population is increasing exponentially with
time and also varies periodically with one cycle frequency (for example daily).

20 | Modeling client behaviour

The client type C = (Po(λC(t)),W) where W has one outcome w with an
associated probability of one, i.e. p(w) = 1. The parameters of λC(t) are
as follows θ0 = 2, θ1 = 0.003, γ1 = 0.5, ϕ1 = 0, ω1 = 0.02. Running a
simulation and plotting the outcomes of the arrival process Po(λC(t) for 1000
time steps we get what is shown in Figure 3.2. An alternative arrival process
is shown in Figure 3.3. To demonstrate the algorithm for the usage of services
by the clients we use the workflow shown in Figure 3.4. The workflow Markov
chain w that the describes the clients’ traversal through this workflow has this
transition matrix: 

0.1 0.3 0.5 0 0 0 0.1

0 0 0 0.9 0 0 0.1

0 0 0 0.9 0 0 0.1

0 0 0 0 0.4 0.4 0.2

0 0 0 0 0 0.7 0.3

0 0 0 0 0 0 1

0 0 0 0 0 0 1


The Markov chain is shown in graph form in Figure 3.5. To show how the
clients traverse through the network we simulated 100 outcomes of the Markov
chain from t = 0 to t = 7. The results can be seen in Figure 3.6. One can
gather from the graph that some paths are more likely to be traversed than
others.

3.5 Calculating expected number of clients
in the network

First we consider the case where there is only one client type (Po(λ(t),W))

in the population with one workflow w and we are considering the time
interval [t0, t1], in this case there are two variables that when they become large
significantly affect the memory usage of this model: the maximum expected
client population size at any one time (N) and the number of services (M). To
analyze the expected number of clients in the network at any one time we use
the M/M/∞ queue described in Section X. The M/M/∞ queue requires a
constant arrival rate for the arrival Poisson process, since our arrival process
has a varying arrival rate we have to make a decision on what constant arrival
rate to choose based on our rate function. Since we are trying to find an upper
bound of the amount of memory usage of the model it seems appropriate to
use the maximum value of the rate function on the interval i.e.

Modeling client behaviour | 21

Figure 3.2: Client arrivals for an arrival process that is increasing
exponentially with time and also has one periodic component

Figure 3.3: Client arrivals for an arrival process that has a models a large spike
that decreases after some time

22 | Modeling client behaviour

Figure 3.4: A workflow with five services

Figure 3.5: The workflow Markov chain w in graph form

Modeling client behaviour | 23

Figure 3.6: Sample trajectories of the workflow Markov chain w. The
opacity of the line indicates the number of samples that traversed that specific
trajectory.

λ = max
t∈[t0,t1]

λ(t)

Using the formula in Section 3.3.2 to get the expected service time∗ gives

µ =
M∑
i=0

V1,i

Now using the results described in Section X we conclude that the number of
clients in the system is a Poisson random variable with mean and variance λ

µ
.

3.6 Space complexity
To assess whether the model is scalable enough one can look at the space
complexity of the algorithm. Since there are no heavy calculations involved the
time complexity is likely negligible. Since the clients are run as parallelized
threads in the emulation we choose to calculate the space complexity per client.
The only variables that affect the space complexity of a given client is the

∗It is important to note that we assume that the service times are exponentially distributed
here

24 | Modeling client behaviour

number of services in that the workflow of the client type of the client. If there
are N services in a given workflow, then the size of the transition matrix is
N ×N = N2 meaning that the space complexity of the model is O(N2).

3.7 Summary
The model described in this chapter consists of two independent parts. The
first part is the generation of client arrivals that is done with a time-varying
Poisson process. The rate function of the process described in Section 2.1.1
makes it possible to model many different scenarios for the client population,
as can be seen in figures X-Y. And since the client processes can be parallelized
and the infrastructure is scalable with docker containers the limit on the
amount of concurrent clients is very high, meaning that the model is scalable.

The second part of the model is the Markov chain that describes the clients
behaviour in the network. The network is defined as a network of services that
a given client can visit and revisit a number of times before exiting the network,
and the probabilities of transition from state to state is encoded in a Markov
chain. This approach is able to model any network where the clients access
services in a sequential manner and the behaviour is possible to encode in a
Markov chain. The model is agnostic to the underlying IT infrastructure and
even the specific interface that the clients are using to interact with the system.

Evaluation of the model | 25

Chapter 4

Evaluation of the model

To evaluate the model it has been implemented to be used in the testbed
presented in [2, 3, 4, 5, 6, 7, 8]. The client generator is run in a docker container
that interacts with the rest of the network. The client generator is then used to
simulate a set of scenarios that might occur in real systems.

4.1 The testbed used for evaluation
The testbed emulates an IT infrastructure by creating a virtual network. An
overview of how it works can be seen in Figure 1.1The physical hosts that
contain the services of the network are emulated using Docker containers
[30], i.e. lightweight executable packages that include runtime systems, code,
system tools, system libraries, and configurations. Allocation of CPU and
memory resources to the containers is enforced using cgroups. Switches in
the emulated network are emulated using docker containers that run Open
vSwitch [31] and connect to controllers through the OpenFlow protocol
[32]. Since the switches are programmed through flow tables, they can act
either as classical layer 2 switches or as routers, depending on the flow table
configurations. To emulate network connectivity virtual links implemented
by Linux bridges are used. By using network namespaces that create logical
copies of the physical hosts’ network stacks network isolation is achieved.
In the case that an emulated network spans multiple physical servers, the
emulated traffic is tunneled over the physical network using VXLAN tunnels
[33]. In other words, the physical network provides a substrate network, on
top of which virtual networks are overlaid. Network conditions of virtual
links are configured using the NetEm module in the Linux kernel [34]. This
module allows fine-gained configuration of bit rates, packet delays, packet

26 | Evaluation of the model

loss probabilities, jitter, and packet reordering probabilities. The attackers
are simulated using programs that select actions from a predefined set, which
is available in [35]. To select the actions the attacker uses an attacker policy,
which could depend on metrics collected by monitoring agents. The defender
is emulated through the execution of gRPC API calls which are selected from
a set defined in [35] according to a defender policy, which also could depend
on metrics collected by monitoring agents.

4.2 Method
Interesting scenarios

- Large load spike - Two consecutive load spikes - Periodic spikes -
Spike with periodic variation - Exponential growth that plateaus - Exponential
decline from a high level

4.3 Results
A time-step in the emulation is defined as t = 30s.

4.4 Discussion

4.5 Conclusion

Evaluation of the model | 27

0

500

A
rr

iv
al

ra
te

Arrival rate λ(t)

0

1000

2000

#
C

li
en

ts
(N

)

Clients (N)

0

10000

20000

#
ID

S
al

er
ts

IDS alerts

0

250

500

#
L

og
in

ev
en

ts

Login events

0

1000

#
T

C
P

co
n

n
ec

ti
on

s # TCP connections

0 1 2 3 4 5 6 7 8
t (hours)

2000

3000

4000

#
P

ro
ce

ss
es

Processes

Figure 4.1: Empirical distributions of system metrics with an EPTMP arrival
process using parameters θ = [3.6269], γ = [2.1, 1.1], ω = [0.1731, 0.3264],
and ϕ = [−0.6193, 0.5]; and a single workflow w with a single service and
expected service time 150s; the EPTMP parameters are based on [24, Case 1].

28 | Evaluation of the model

25

50

A
rr

iv
al

ra
te

Arrival rate λ(t)

0

200

400

#
C

li
en

ts
(N

)

Clients (N)

0

5000

10000

#
ID

S
al

er
ts

IDS alerts

100

200

#
L

o
gi

n
ev

en
ts

Login events

0

500

1000

#
T

C
P

co
n

n
ec

ti
on

s # TCP connections

0 1 2 3 4 5 6 7 8
t (hours)

1600

1800

#
P

ro
ce

ss
es

Processes

Figure 4.2: Empirical distributions of system metrics with an EPTMP arrival
process using parameters θ = [1, 0.003], γ = [0], ω = [0], and ϕ = [0]; and
a single workflow w with a single service and expected service time 150s.

References | 29

References

[1] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in industry:
State-of-the-art,” IEEE Transactions on Industrial Informatics, 2019.
[Page 1.]

[2] K. Hammar and R. Stadler, “Finding effective security strategies through
reinforcement learning and Self-Play,” in International Conference on
Network and Service Management (CNSM 2020), Izmir, Turkey, 2020.
[Pages ix, 1, 2, 3, 4, 6, and 25.]

[3] ——, “Learning intrusion prevention policies through optimal stop-
ping,” in International Conference on Network and Service Management
(CNSM 2021), Izmir, Turkey, 2021, https://arxiv.org/pdf/2106.07160.p
df. [Pages ix, 1, 2, 3, 4, 6, and 25.]

[4] ——, “Learning security strategies through game play and optimal
stopping,” arXiv preprint arXiv:2205.14694, 2022. [Pages ix, 1, 2, 3,
4, 6, and 25.]

[5] ——, “An online framework for adapting security policies in
dynamic it environments,” in 2022 18th International Conference on
Network and Service Management (CNSM), 2022. doi: 10.23919/C-
NSM55787.2022.9964838 pp. 359–363. [Pages ix, 1, 2, 3, 4, 6, and 25.]

[6] ——, “Intrusion prevention through optimal stopping,” IEEE Transac-
tions on Network and Service Management, vol. 19, no. 3, pp. 2333–
2348, 2022. doi: 10.1109/TNSM.2022.3176781 [Pages ix, 1, 2, 3, 4, 6,
and 25.]

[7] ——, “A system for interactive examination of learned security poli-
cies,” in NOMS 2022-2022 IEEE/IFIP Network Operations and Manage-
ment Symposium, 2022. doi: 10.1109/NOMS54207.2022.9789707 pp.
1–3. [Pages ix, 1, 2, 3, 4, 6, and 25.]

https://arxiv.org/pdf/2106.07160.pdf
https://arxiv.org/pdf/2106.07160.pdf

30 | References

[8] ——, “Learning near-optimal intrusion responses against dynamic
attackers,” 2023, https://arxiv.org/abs/2301.06085. [Online]. Available:
https://arxiv.org/abs/2301.06085 [Pages ix, 1, 2, 3, 4, 6, and 25.]

[9] P. Barford and M. Crovella, “Generating representative web workloads
for network and server performance evaluation,” in Proceedings
of the 1998 ACM SIGMETRICS joint international conference on
Measurement and modeling of computer systems, 1998, pp. 151–160.
[Page 5.]

[10] S. Antonatos, K. G. Anagnostakis, and E. P. Markatos, “Generating
realistic workloads for network intrusion detection systems,” in
Proceedings of the 4th International Workshop on Software and
Performance, 2004, pp. 207–215. [Page 5.]

[11] R. Hashemian, D. Krishnamurthy, and M. Arlitt, “Web workload
generation challenges–an empirical investigation,” Software: Practice
and Experience, vol. 42, no. 5, pp. 629–647, 2012. [Page 5.]

[12] C. Amza, E. Cecchet, A. Chanda, A. L. Cox, S. Elnikety, R. Gil,
J. Marguerite, K. Rajamani, and W. Zwaenepoel, “Specification and
implementation of dynamic web site benchmarks,” in 5th Workshop on
Workload Characterization, no. CONF, 2002. [Page 5.]

[13] Y.-C. Cheng, U. Hölzle, N. Cardwell, S. Savage, and G. M. Voelker,
“Monkey see, monkey do: A tool for tcp tracing and replaying,” 2004.
[Page 5.]

[14] A. O. Pashko and I. V. Rozora, “Accuracy of simulation for the
network traffic in the form of fractional brownian motion,” in 2018
14th International Conference on Advanced Trends in Radioelecrtronics,
Telecommunications and Computer Engineering (TCSET), 2018. doi:
10.1109/TCSET.2018.8336328 pp. 840–845. [Page 5.]

[15] C. V. Wright, C. Connelly, T. Braje, J. C. Rabek, L. M. Rossey, and R. K.
Cunningham, “Generating client workloads and high-fidelity network
traffic for controllable, repeatable experiments in computer security,”
in International workshop on recent advances in intrusion detection.
Springer, 2010, pp. 218–237. [Page 5.]

[16] F. Chinchilla, M. Lindsey, and M. Papadopouli, “Analysis of wireless
information locality and association patterns in a campus,” in IEEE
INFOCOM 2004, vol. 2. IEEE, 2004, pp. 906–917. [Pages 5 and 10.]

https://arxiv.org/abs/2301.06085
https://arxiv.org/abs/2301.06085

References | 31

[17] M. Papadopouli, H. Shen, and M. Spanakis, “Characterizing the duration
and association patterns of wireless access in a campus,” in 11th
European Wireless Conference 2005-Next Generation wireless and
Mobile Communications and Services. VDE, 2005, pp. 1–7. [Page 5.]

[18] ——, “Modeling client arrivals at access points in wireless campus-wide
networks,” in 2005 14th IEEE Workshop on Local & Metropolitan Area
Networks. IEEE, 2005, pp. 6–pp. [Page 5.]

[19] R. Begleiter, R. El-Yaniv, and G. Yona, “On prediction using variable
order markov models,” Journal of Artificial Intelligence Research,
vol. 22, pp. 385–421, 2004. [Page 6.]

[20] J. Yang, J. Xu, M. Xu, N. Zheng, and Y. Chen, “Predicting next location
using a variable order markov model,” in Proceedings of the 5th ACM
SIGSPATIAL International Workshop on GeoStreaming, 2014, pp. 37–
42. [Page 6.]

[21] C. Dimitrakakis, “Bayesian variable order markov models,” in
Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. JMLR Workshop and Conference
Proceedings, 2010, pp. 161–168. [Page 6.]

[22] P. A. Lewis and G. S. Shedler, Simulation of Nonhomogeneous Poisson
Processes by Thinning, 1978. [Page 7.]

[23] A. Vedyushenko, “Non-homogeneous poisson process-estimation and
simulation,” 2018. [Pages 7, 8, and 9.]

[24] M. E. Kuhl, J. R. Wilson, and M. A. Johnson, “Estimating and
simulating poisson processes having trends or multiple periodicities,”
IIE transactions, vol. 29, no. 3, pp. 201–211, 1997. [Pages ix, 8, and 27.]

[25] R. L. Streit, Poisson point processes: imaging, tracking, and sensing.
Springer Science & Business Media, 2010. [Page 8.]

[26] F. Hillier and G. Lieberman, “Introduction to operations research,
mcgraw hill,” Inc. New York, pp. 4–15, 1995. [Page 10.]

[27] G. Kochanski, “Markov models, hidden and otherwise,” Retrieved July,
vol. 11, p. 2011, 2005. [Page 10.]

32 | References

[28] M. Aldridge, “Math2750 introduction to markov processes,” 2022.
[Online]. Available: https://mpaldridge.github.io/math2750/S08-hitting
-times.html [Page 10.]

[29] K. Sigman, “Notes on transient states,” 2016. [Pages 11 and 12.]

[30] D. Merkel, “Docker: lightweight linux containers for consistent
development and deployment,” Linux journal, vol. 2014, p. 2, 2014.
[Page 25.]

[31] B. Pfaff et al., “The design and implementation of open vSwitch,” in 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), 2015. [Online]. Available: https://www.usenix.org/confere
nce/nsdi15/technical-sessions/presentation/pfaff [Page 25.]

[32] N. McKeown et al., “Openflow: Enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., p. 69–74, mar
2008. doi: 10.1145/1355734.1355746. [Online]. Available: https:
//doi.org/10.1145/1355734.1355746 [Page 25.]

[33] M. Mahalingam et al., “Virtual extensible local area network (vxlan):
A framework for overlaying virtualized layer 2 networks over layer
3 networks,” 2014, https://www.rfc-editor.org/rfc/rfc7348. [Online].
Available: https://www.rfc-editor.org/rfc/rfc7348 [Page 25.]

[34] S. Hemminger, “Network emulation with netem,” Linux Conf, 2005.
[Page 25.]

[35] K. Hammar, “Cyber security learning environment,” 2023, https:
//limmen.dev/csle/. [Online]. Available: https://limmen.dev/csle/
[Page 26.]

https://mpaldridge.github.io/math2750/S08-hitting-times.html
https://mpaldridge.github.io/math2750/S08-hitting-times.html
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://www.rfc-editor.org/rfc/rfc7348
https://www.rfc-editor.org/rfc/rfc7348
https://limmen.dev/csle/
https://limmen.dev/csle/
https://limmen.dev/csle/

TRITA-EECS-EX- 2023:0000

www.kth.se

€€€€ For DIVA €€€€
{
”Author1”: { ”Last name”: ”Lagerqvist”,
”First name”: ”Arvid”,
”E-mail”: ”arvidlag@kth.se”,
”organisation”: {”L1”: ”School of Engineering Sciences”,
}
},
”Cycle”: ”2”,
”Course code”: ”SF250X”,
”Credits”: ”30.0”,
”Degree1”: {”Educational program”: ”Master’s Programme, Applied and Computational Mathematics, 120 credits”
,”programcode”: ”TTMAM”
,”Degree”: ”Degree of Master of Science in Engineering, Master’s degree in Applied and Computational Mathematics”
,”subjectArea”: ”Computer Science and Engineering”
},
”Title”: {
”Main title”: ”Emulation and Stochastic Modeling of Client Populations in IT Infrastructures”,
”Language”: ”eng” },
”Alternative title”: {
”Main title”: ”Emulation av klientpopulationer för IT-infrastrukturer”,
”Subtitle”: ”För användning i ”Digital Twins”-teknologi”,
”Language”: ”swe”
},
”Supervisor1”: { ”Last name”: ”Hammar”,
”First name”: ”Kim”,
”E-mail”: ”kimham@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
”L2”: ”Division of Network and Systems Engineering” }
},
”Supervisor2”: { ”Last name”: ”Sandberg”,
”First name”: ”Mattias”,
”E-mail”: ”msandb@kth.se”,
”organisation”: {”L1”: ”School of Engineering Sciences”,
”L2”: ”Numerisk Analys” }
},
”Examiner1”: { ”Last name”: ”Jarlebring”,
”First name”: ”Elias”,
”E-mail”: ”eliasj@kth.se”,
”organisation”: {”L1”: ”School of Engineering Sciences”,
”L2”: ”Numerisk Analys” }
},
"National Subject Categories": "10105, 10106",
”Other information”: {”Year”: ”2023”, ”Number of pages”: ”1,33”},
”Copyrightleft”: ”copyright”,
”Series”: { ”Title of series”: ”TRITA-EECS-EX” , ”No. in series”: ”2023:0000” },
”Opponents”: { ”Name”: ”A. B. Normal & A. X. E. Normalè”},
”Presentation”: { ”Date”: ”2022-03-15 13:00”
,”Language”:”eng”
,”Room”: ”via Zoom https://kth-se.zoom.us/j/ddddddddddd”
,”Address”: ”Isafjordsgatan 22 (Kistagången 16)”
,”City”: ”Stockholm” },
”Number of lang instances”: "2",
”Abstract[eng]”: €€€€

\begin{comment}
\generalExpl{Enter your abstract here!}

Write an abstract that is about 250 and 350 words (1/2 A4-page) with the following components:
% key parts of the abstract
\begin{itemize}

\item What is the topic area? (optional) Introduces the subject area for the project.
\item Short problem statement
\item Why was this problem worth a Bachelor's/’Masters thesis project? (\ie, why is the problem
both significant and of a suitable degree of difficulty for a Bachelor's/’Masters thesis project?
Why has no one else solved it yet?)
\item How did you solve the problem? What was your method/insight?
\item Results/Conclusions/Consequences/Impact: What are your key results/\linebreak[4]conclusions?
What will others do based on your results? What can be done now that you have finished - that could
not be done before your thesis project was completed?

\end{itemize}
\end{comment}

€€€€,
”Keywords[eng]”: €€€€
Digitala tvillingar, Stokastiska processer, Markovkedjor, Tidsvarierande Poissonprocesser €€€€,
”Abstract[swe]”: €€€€

\begin{comment}
\generalExpl{Enter your Swedish abstract or summary here!}
\sweExpl{Alla avhandlingar vid KTH \textbf{måste ha} ett abstrakt på både \textit{engelska} och
\textit{svenska}.\\
Om du skriver din avhandling på svenska ska detta göras först (och placera det som det första
abstraktet) - och du bör revidera det vid behov.}

\engExpl{If you are writing your thesis in English, you can leave this until the draft version that
goes to your opponent for the written opposition. In this way, you can provide the English and
Swedish abstract/summary information that can be used in the announcement for your oral
presentation.\\If you are writing your thesis in English, then this section can be a summary targeted
at a more general reader. However, if you are writing your thesis in Swedish, then the reverse is
true – your abstract should be for your target audience, while an English summary can be written
targeted at a more general audience.\\This means that the English abstract and Swedish sammnfattning
or Swedish abstract and English summary need not be literal translations of each other.}

\warningExpl{Do not use the \textbackslash glspl\{\} command in an abstract that is not in English,
as my programs do not know how to generate plurals in other languages. Instead, you will need to
spell these terms out or give the proper plural form. In fact, it is a good idea not to use the
glossary commands at all in an abstract/summary in a language other than the language used in the
\texttt{acronyms.tex file} - since the glossary package does \textbf{not} support use of more than
one language.}

\engExpl{The abstract in the language used for the thesis should be the first abstract, while the
Summary/Sammanfattning in the other language can follow}
\end{comment}

€€€€,
”Keywords[swe]”: €€€€
€€€€,
}

acronyms.tex

%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
% The following command is used with glossaries-extra
\setabbreviationstyle[acronym]{long-short}
% The form of the entries in this file is \newacronym{label}{acronym}{phrase}
% or \newacronym[options]{label}{acronym}{phrase}
% see ”User Manual for glossaries.sty” for the details about the options, one example is shown below
% note the specification of the long form plural in the line below
\newacronym[longplural={Debugging Information Entities}]{DIE}{DIE}{Debugging Information Entity}
%
% The following example also uses options
\newacronym[shortplural={OSes}, firstplural={operating systems (OSes)}]{OS}{OS}{operating system}

% note the use of a non-breaking dash in long text for the following acronym
\newacronym{IQL}{IQL}{Independent ‑QLearning}

\newacronym{KTH}{KTH}{KTH Royal Institute of Technology}

\newacronym{LAN}{LAN}{Local Area Network}
\newacronym{VM}{VM}{virtual machine}
% note the use of a non-breaking dash in the following acronym
\newacronym{WiFi}{‑WiFi}{Wireless Fidelity}

\newacronym{WLAN}{WLAN}{Wireless Local Area Network}
\newacronym{UN}{UN}{United Nations}
\newacronym{SDG}{SDG}{Sustainable Development Goal}

	Introduction
	Motivation
	Use Case: Intrusion Response
	Research Questions
	Related work
	Outline

	Mathematical background
	Time-varying Poisson processes
	The rate function and maximum likelihood estimation
	Using maximum likelihood estimation from sampled data

	Initial estimates of the parameters

	Markov chains
	Converting higher order Markov chains to first order
	Hitting times for Markov chains
	Expected number of visits

	Directed Acyclic Graphs

	Modeling client behaviour
	Network infrastructure
	System Model
	Markov chain representation of workflows

	Expected service times
	Expected service times using expected hitting time
	Expected service times using expected number of visits

	A minimal example
	Calculating expected number of clients in the network
	Space complexity
	Summary

	Evaluation of the model
	The testbed used for evaluation
	Method
	Results
	Discussion
	Conclusion

	References

