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Abstract—We present a novel emulation system for creating
high-fidelity digital twins of IT infrastructures. The digital twins
replicate key functionality of the corresponding infrastructures
and allow to play out security scenarios in a safe environment.
We show that this capability can be used to automate the process
of finding effective security policies for a target infrastructure. In
our approach, a digital twin of the target infrastructure is used
to run security scenarios and collect data. The collected data is
then used to instantiate simulations of Markov decision processes
and learn effective policies through reinforcement learning, whose
performances are validated in the digital twin. This closed-loop
learning process executes iteratively and provides continuously
evolving and improving security policies. We apply our approach
to an intrusion response scenario. Our results show that the
digital twin provides the necessary evaluative feedback to learn
near-optimal intrusion response policies.

Index Terms—Digital twin, cybersecurity, network security,
automation, reinforcement learning, bMDP, POMDP.

I. INTRODUCTION

In the past few years, virtualization technologies have

matured to the point that it is now feasible to deploy large

virtual IT infrastructures on commodity hardware. Virtual

infrastructures differ from physical ones in that they consist of

lightweight virtual containers or virtual machines that enable a

higher level of control by shifting functions from hardware to

software. Building on this capability, digital twin has emerged

as a key technology in system automation [1]. A digital twin

is a virtual replica of a real-world system that provides a

controlled environment for virtual operations, the outcomes

of which can be used to optimize operations in the real-world

system.

Digital twin has been adopted in several industry sectors,

including the manufacturing industry (see example [1]), the

automotive industry (see example [2]), and the healthcare

industry (see example [3]). While digital twins have been

adopted in all of these industries, it is only recently that it

has gained traction in networking and security research, where

example usages include: network planning, anomaly detection,

and predictive analytics (see surveys [4]–[6]).

In this paper, we study a new use case of digital twin,

namely: automating the process of finding effective security

policies for IT infrastructures. Security policies have tradition-

ally been defined by domain experts. Though this approach can

provide basic security for an organization’s communication

and computing infrastructure, a growing concern is that infras-

tructure update cycles become shorter and attacks increase in

sophistication. To address this challenge, significant efforts to

automate the process of obtaining effective security policies is
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Fig. 1: Our approach to find and evaluate security policies for

an IT infrastructure using a digital twin; the digital twin is a

virtual replica of the IT infrastructure and is used to evaluate

security policies and collect data; the collected data is used

to instantiate simulations of Markov decision processes and to

learn effective policies through reinforcement learning.

now under way within major IT vendors as well as throughout

academia [7, §VII].

A promising direction of recent research is to learn secu-

rity policies through reinforcement learning techniques [7]–

[17]. While encouraging results have been obtained following

this approach, key challenges remain. Chief among them is

narrowing the gap between the environment where policies

are evaluated and a scenario playing out in a real system.

Most of the results obtained so far are limited to simulation

environments, and it is not clear how they generalize to

practical IT infrastructures.

In this work, we address the above challenge and present an

approach for learning near-optimal security policies for an IT

infrastructure that is centered around high-fidelity digital twins

(see Fig. 1). Our approach includes the following steps. We

first create a digital twin of the target infrastructure and use it



to run attack scenarios and defender responses. Such runs pro-

duce system measurements and logs, from which we estimate

infrastructure statistics. We then use the estimated statistics to

instantiate simulations of Markov decision processes and learn

near-optimal security policies, whose performance we assess

in the digital twin. This closed-loop learning process executes

iteratively and provides continuously evolving and improving

security policies for the real-world IT infrastructure.

The digital twin provides three key functions for the ap-

proach described above: (i) it provides a safe and realistic test

environment; (ii) it provides evaluative feedback that enables

closed-loop learning of policies; and (iii), it allows collecting

data and evaluating policies without affecting operational

workflows on the real-world infrastructure.

We make two contributions with this paper. First, our em-

ulation system for creating digital twins is novel and extends

related works that have developed systems for creating digital

twins for other networking use cases [6], [18]–[21]. Second,

although a growing body of work investigates reinforcement

learning as a way to learn security policies [7]–[17], our work

is, to the best of our knowledge, the first study of high-fidelity

digital twins in this context.

II. EMULATION SYSTEM FOR CREATING DIGITAL TWINS

This section describes our emulation system for creating

digital twins of IT infrastructures. We first give an overview

of the system’s architecture and implementation (§II-A). Then,

we describe the process of creating a digital twin, which

involves three main tasks of the emulation system. The first

task is to replicate relevant parts of the physical infrastruc-

ture that is emulated, such as physical resources, network

interfaces, and network conditions. This task is described in

§II-B. The second task is to instrument the digital twin with

monitoring and management capabilities. Since the digital twin

will be used to evaluate security policies, it must be possible

to monitor system metrics and perform control actions in real-

time. We describe these capabilities in §II-C. The third task is

to emulate security actors in the digital twin, a process which

we describe in §II-D.

A. System Implementation and Architecture

The system takes infrastructure configurations as input and

generates digital twins as output, which are deployed on a

cluster of machines that runs a virtualization layer provided by

Docker containers and virtual links. The set of configurations

supported by the system can be seen as a configuration space,

which defines the class of digital twins that can be created

(see Fig. 2). An infrastructure configuration includes container

specifications, service specifications, resource specifications,

and network specifications. (A complete infrastructure config-

uration is available in [22].)

The system is implemented in Python, JavaScript, and

Bash, and comprises around 160, 000 lines of code. It can

be accessed in three ways: through Python libraries, through a

web interface, and through a Command-Line Interface (CLI).

Configuration Space
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Fig. 2: The configuration space of the emulation system, which

defines the set of digital twins that can be created.

The web interface is implemented in JavaScript and the CLI

is implemented in Python.

It is a distributed system that consists of N ≥ 1 physical

servers connected through an IP network. It stores metadata

in a distributed database referred to as the metastore, which

is based on POSTGRES and CITUS [23] (see Fig. 3). The

metastore consists of N replicas, one per physical server.

To coordinate database updates and achieve consensus among

replicas, a quorum-based two-phase commit scheme is used.

One of the servers is designated to be the “leader” and the

others are “workers”. Workers can execute local management

actions but not actions that affect the overall system state.

These actions are routed to the leader, which applies them

sequentially to ensure consistent updates.

The leader is elected using the leader election protocol in

[24], which uses the metastore for coordination. A new leader

is elected by a quorum whenever the current leader fails or

becomes unresponsive. This means that the system tolerates

up to N/2− 1 failing servers.

B. Emulating Physical Resources and Conditions

Given an infrastructure configuration, the emulation system

creates a digital twin through the following steps.

Emulating physical hosts. Physical hosts are emulated with

Docker containers [25], i.e. lightweight executable packages

that include runtime systems, code, system tools, system

libraries, and configurations. Resource allocation to containers,

e.g. CPU and memory, is enforced using cgroups.

Emulating physical switches. Physical switches are em-

ulated with Docker containers that run Open vSwitch (OVS)

[26] and may connect to a controller through the OPENFLOW

protocol [27]. (Since the switches are programmed through

flow tables, they can act either as classical layer 2 switches or

as routers, depending on the flow table configurations.)

Emulating physical network links. Network connectivity

is emulated with virtual links implemented by Linux bridges.

Network isolation between virtual containers on the same

physical host is achieved through network namespaces, which

create logical copies of the physical host’s network stack.
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Fig. 3: Architecture of the emulation system for creating

digital twins; it executes on a cluster of machines that runs a

virtualization layer provided by Docker containers and virtual

links; it uses a GRPC API to create and manage digital twins;

it stores metadata in a distributed database (the metastore); it

implements system functionality in Python libraries; and it has

two interfaces: a web interface (a REST API) and a Command-

Line Interface (a CLI).

In the case that an emulated network spans multiple physical

servers, the emulated traffic is tunneled over the physical

network using VXLAN tunnels. In other words, the physical

network provides a substrate network, on top of which virtual

networks are overlaid.

Emulating network conditions. Network conditions of vir-

tual links are configured using the NetEm module in the Linux

kernel [28]. This module allows fine-gained configuration of

bit rates, packet delays, packet loss probabilities, jitter, and

packet reordering probabilities.

C. Management and Monitoring of Digital Twins

To manage and monitor digital twins, the emulation system

equips each digital twin with a management network, a set of

management agents, and a set of monitoring agents. The sys-

tem also includes a web interface for management purposes.

The management network. Emulated devices and manage-

ment systems are connected through a management network.

The reason for using a separate network to carry management

traffic is to avoid interference and simplify control of the

network [29].

Management agents. Each emulated device runs a manage-

ment agent, which exposes a GRPC API. This API is invoked

by security policies to perform control actions, e.g. restarting

services and updating configurations. The API specification is

available in [22].

Monitoring agents. Each emulated device runs a monitor-

ing agent, which reads local metrics of the device and pushes

those metrics to an event bus implemented with KAFKA [30]
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Fig. 4: Monitoring system of a digital twin; emulated devices

run monitoring agents that periodically push metrics to an

event bus; the data in this bus is consumed by data pipelines

that process the data and write to storage systems; the pro-

cessed data is used by an automated security policy to decide

on control actions to execute in the digital twin.

(see Fig. 4). The data in this bus is consumed by data pipelines

implemented with SPARK [31], which process the data, write it

to storage systems, and provide inputs to security policies for

deciding on control actions. The number of metrics collected

per time-step is in the order of thousands and scales linearly

with the number of virtual hosts in the digital twin. The list

of metrics is available in [22].

Web interface. The emulation system has a web interface

for viewing management information and requesting manage-

ment operations (see Fig. 5). A video demonstration of the

web interface is available in [22].

D. Emulating Security Actors in a Digital Twin

In this section, we describe how the emulation system

implements security actors in a digital twin.

Emulating client populations. Client populations are em-

ulated by processes that run in Docker containers and interact

with emulated hosts through various network protocols, e.g.

HTTP, SSH, and DNS. The clients select network functions from

a pre-defined list, which is available in [22]. The functions are

selected according to a Markov process. Client arrivals are

emulated by a Poisson process with exponentially distributed

service times.

Emulating attackers. Attackers are emulated by automated

programs that select actions from a pre-defined set, which is

available in [22]. The actions are selected according to an

attacker policy, which may depend on system metrics collected

by the monitoring agents.

Emulating defenders. Defender actions are emulated by

executing system commands through the GRPC API described

above. The actions are selected according to a defender

policy, which may depend on system metrics collected by the

monitoring agents. The defender actions are listed in [22].

III. RUNNING SECURITY SCENARIOS IN A DIGITAL TWIN

AND LEARNING AN EFFECTIVE SECURITY POLICY

In this section, we describe how a digital twin created

through the steps above can be used to play out security



Fig. 5: The statistics page of the emulation system’s web

interface; this page allows a user to view empirical statistics

of digital twins.

scenarios and automate the process of finding an effective

security policy for an IT infrastructure. We first describe the

security scenario (§III-A) and then we describe the learning

process (§III-B).

A. Example Security Scenario: Intrusion Response

We consider an intrusion response scenario that involves the

IT infrastructure of an organization (see Fig. 6 and Table 1).

The operator of this infrastructure, which we call the defender,

takes measures to protect it against an attacker while providing

services to a client population. The infrastructure includes a

set of servers that run the services and an Intrusion Detection

and Prevention System (IDPS) that logs events in real-time.

Clients access the services through a public gateway, which

also is open to the attacker.

The attacker’s goal is to intrude on the infrastructure and

compromise its servers. To achieve this, the attacker explores

the infrastructure through reconnaissance and exploits vulner-

abilities while avoiding detection by the defender. The attacker

follows a pre-defined attack policy, which is defined in [7].

The defender continuously monitors the infrastructure

through accessing and analyzing IDPS alerts and other statis-

tics. It can take a fixed number of defensive actions, each of

which has a cost and a chance of stopping an ongoing attack.

An example of a defensive action is to drop network traffic that

triggers IDPS alerts of a certain priority. The defender takes

defensive actions in a pre-determined order, starting with the

action that has the lowest cost. The final action blocks all

external access to the gateway, which disrupts any intrusion

as well as the services to the clients.

When deciding the time for taking a defensive action, the

defender balances two objectives: (i) maintain services to

its clients; and (ii), stop a possible intrusion at the lowest
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Fig. 6: The IT infrastructure and the actors in the intrusion

response scenario.

ID (s) OS:Services:Exploitable Vulnerabilities

N1 UBUNTU 20:SNORT (community ruleset v2.9.17.1),SSH:-
N2 UBUNTU 20:SSH,HTTP,DNS:SSH-pw
N4 UBUNTU 20:HTTP,TELNET,SSH:TELNET-pw
N10 UBUNTU 20:FTP,MONGODB,SMTP,TOMCAT,TS 3,SSH:FTP-pw
N12 JESSIE:TS 3,TOMCAT,SSH:CVE-2010-0426,SSH-pw
N17 WHEEZY:APACHE 2,SNMP,SSH:CVE-2014-6271
N18 Deb9.2:IRC,APACHE 2,SSH:SQL injection
N22 JESSIE:FTP,SSH,APACHE 2,SNMP:CVE-2015-3306
N23 JESSIE:APACHE 2,SMTP,SSH:CVE-2016-10033
N24 JESSIE:SSH:CVE-2015-5602,SSH pw
N25 JESSIE: Elasticsearch,APACHE 2,SSH,SNMP:CVE-2015-1427
N27 JESSIE:SAMBA, NTP,SSH:CVE-2017-7494
N3,N11,N5-N9 UBUNTU 20:SSH,SNMP,POSTGRES,NTP:-
N13−16 ,N19−21,N26,N28−31 UBUNTU 20:NTP, IRC, SNMP, SSH, POSTGRES:-

TABLE 1: Configuration of the target infrastructure (Fig. 6).

cost. The optimal policy for the defender is to monitor the

infrastructure and maintain services until the moment when

the attacker enters through the gateway, at which time the

attack must be stopped at minimal cost through defensive

actions. The challenge for the defender is to identify this

precise moment.

B. Learning An Effective Intrusion Response Policy

We formulate the above intrusion response use case from

the defender’s perspective as a Partially Observed Markov

Decision Process (POMDP) M = 〈S, A, Pat

st,st+1
, Rat

st
,γ, ρ1,

T , O, Z〉. Theoretical details of this model are available in

our previous work [7, §IV].

To approximate an optimal defender policy π∗, we use the

following reinforcement learning approach. We first create a

digital twin of the target IT infrastructure using the emulation

system described in §II (the infrastructure’s topology is shown

in Fig. 6 and its configurations is listed in Table 1). We

then use the digital twin to play out security scenarios, which

generate system traces. Next, we use the generated traces to

instantiate the POMDP M and learn π∗ through simulations of

M. Lastly, we evaluate the learned policy in the digital twin.



Fig. 7: Learning curves obtained during training of the defender policy π; red curves show simulation results and blue curves

show results from the digital twin; the purple and black curves relate to baseline policies; the columns from left to right show

performance metrics: episodic reward, episode length, and empirical stopping probability; the curves show the mean and 95%

confidence interval for five training runs with different random seeds.

Listing 1 Command to start a digital twin with the configu-

ration twin-1 using the Command-Line Interface (CLI).

1 csle start twin-1

Listing 2 Code that uses Python libraries of the emulation

system to a) execute attacker and defender sequences in a

digital twin; b) estimate statistics and instantiate a Markov de-

cision process; and c) run a reinforcement learning algorithm

to approximate an optimal defender policy (in this example

the T-SPSA algorithm is used [7, §IV.C]).

1 import Metastore, Emulator,

SystemIdentification,

ExpectationMaximization, Experiment,

TSPSAAgent from csle

→֒

→֒

→֒

2 # Get digital twin details from metastore

3 dt = Metastore.get_dt(..)

4 # Define attacker/defender sequences

5 attacker_sequence = [..]

6 defender_sequence = [..]

7 # Run sequences in the digital twin

8 Emulator.run_action_sequences(dt,

attacker_sequence, defender_sequence)→֒

9 # Extract recorded traces and statistics

10 stats = Metastore.statistics()

11 traces = Metastore.traces()

12 # Setup experiment and hyperparameters

13 sid_config = SystemIdentification(..)

14 # Define identification algorithm

15 id_algorithm = ExpectationMaximization(..)

16 # Run the algorithm

17 pomdp = id_algorithm.fit(stats)

18 # Define reinforcement learning agent

19 agent = TSPSAAgent(dt, pomdp, ..)

20 # Run the algorithm

21 results = agent.train()

22 # Save results and the learned policy

23 Metastore.save(results)

The command for creating the digital twin using the CLI of

the emulation system is given in Listing 1 and the Python code

for running security scenarios, collecting data, and learning the

policy is given in Listing 2. (The hyperparameters and further

details about the execution are available in [7].)

Evaluation results. The results are shown in Fig. 7. We

compare the learned policy with the SNORT IDPS, which is

a de-facto industry standard and can be considered state-of-

the-art for our use case. The red curves in Fig. 7 represent

the results from the POMDP simulations; the blue curves show

the results from the digital twin; the purple curves give the

performance of the SNORT IDPS baseline; and the dashed black

curves give an upper bound to any optimal policy.

We observe that the learning curves converge quickly to

constant mean values across all investigated performance met-

rics. From this observation, we conclude that the learned policy

has converged as well. Second, we observe that the converged

values of the learning curves are close to the dashed black

curves, which suggests that the learned policy is near-optimal.

We also observe that the learned policy does significantly

better than the SNORT IDPS baseline. Third, although the

learned policy, as expected, performs better in the simulator

than in the digital twin, we are encouraged by the fact that the

curves of the digital twin are close to those of the simulator,

which gives us high confidence that the learned policy would

perform as expected also in the real-world infrastructure.

Inspection of the learned policy. We use the web interface

of the emulation system to examine the learned security policy

(see Fig. 5 and [32]). From this examination, we conclude

that the policy takes defensive actions as soon as the attacker

starts its reconnaissance phase or when it launches its first

exploit. Specifically, we find that if the attacker performs

reconnaissance by executing a port scan, there is a spike in

infrastructure metrics, which causes the learned policy to react

by revoking user certificates. If the attacker uses other means

of reconnaissance, e.g. a ping scan, we observe that the policy

does not detect it since no change in infrastructure metrics is

generated.

IV. RELATED WORK

Digital twin has emerged as an enabling technology in many

industry sectors, including the manufacturing industry (see

example [1]), the automotive industry (see example [2]), and

the healthcare industry (see example [3]). While digital twins

have been widely adopted in all of these industries, it is only

recently that it has been adopted in networking and cyber



security research (see surveys [4]–[6]). Use cases of digital

twin in networking and security include network planning,

anomaly detection, and predictive analytics [4]–[6], [33].

Few papers have studied digital twins in the context of

reinforcement learning [20], [34]–[36]. This paper differs from

these works in two main ways. First, we apply reinforcement

learning and digital twins in the context of cyber security,

whereas the referenced works study use cases in manufac-

turing, autonomous driving, and network planning. Second,

our system for creating digital twins is based on advanced

emulation technologies, whereas the referenced works use

simulators.

This paper is also related to ongoing efforts in building

reinforcement learning frameworks for cyber defense [14]–

[17]. Some of these frameworks use simulators and some of

them use emulation systems that resemble ours. In contrast

to these frameworks, our approach includes both an emula-

tion system and a simulator. Further, our approach has been

thoroughly tested on an intrusion response use case [7], [10]–

[13], whereas only limited evaluations of the frameworks in

[14]–[17] have been conducted.

V. CONCLUSION AND FUTURE WORK

We present a novel emulation system for creating high-

fidelity digital twins of IT infrastructures. We show that

the digital twins allow to play out security scenarios in a

safe environment and that they can be used to automate the

process of finding effective security policies. We apply our

approach to an intrusion response scenario that involves an

IT infrastructure. Our evaluation results show that the digital

twin provides the necessary evaluative feedback to learn near-

optimal intrusion response policies.

In future work, we plan to extend our system to create digital

twins of a diverse set of IT infrastructures and use them to find

security policies for different use cases.
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