
Online Policy Adaptation for Networked Systems
using Rollout

Forough Shahab Samani†, Kim Hammar†, and Rolf Stadler†
† Dept. of Computer Science, KTH Royal Institute of Technology, Sweden

Email: {foro, kimham, stadler}@kth.se

Abstract—Dynamic resource allocation in networked systems
is needed to continuously achieve end-to-end management ob-
jectives. Recent research has shown that reinforcement learning
can achieve near-optimal resource allocation policies for realistic
system configurations. However, most current solutions require
expensive retraining when changes in the system occur. We
address this problem and introduce an efficient method to adapt
a given base policy to system changes, e.g., to a change in the
service offering. In our approach, we adapt a base control policy
using a rollout mechanism, which transforms the base policy into
an improved rollout policy. We perform extensive evaluations on
a testbed where we run applications on a service mesh based on
the Istio and Kubernetes platforms. The experiments provide
insights into the performance of different rollout algorithms.
We find that our approach produces policies that are equally
effective as those obtained by offline retraining. On our testbed,
effective policy adaptation takes seconds when using rollout,
compared to minutes or hours when using retraining. Our work
demonstrates that rollout, which has been applied successfully in
other domains, is an effective approach for policy adaptation in
networked systems.

Index Terms—Performance management, reinforcement learn-
ing, service mesh, policy adaptation, rollout, Istio, Kubernetes

I. INTRODUCTION

To continuously meet performance objectives for a service,
such as a bound on end-to-end delay or maximizing throughput
for service requests, the management system must dynamically
re-allocate the resources of the infrastructure. Such control
actions can be taken on the physical layer, the virtualization
layer, or the service layer. They include horizontal and vertical
scaling of compute resources, function placement, as well as
request routing and request dropping.

A promising approach to automatically find effective control
policies is reinforcement learning [1]. Following this approach,
the problem is modeled as a Markov decision problem, and
policies are learned through simulation. Though encouraging
results have been obtained (e.g., [2]–[6]), key challenges
remain. Chief among them is to efficiently adapt control
policies to changes in the target system. Such adaptation
is needed when changes occur in operational systems: load
patterns shift, the available bandwidth fluctuates, components
fail or are updated, etc. Most existing reinforcement learning
methods do not allow for rapid policy adaptation but require
slow and expensive retraining, which limits their practical use
[2]–[6].

Policy adaptation in networked systems is an active area
of research. Methods for policy adaptation proposed in prior

NETWORKED SYSTEM

system
metrics

rollout
policy

action at

system
model

state
st

base policy π̂

POLICY ITERATION RF REGRESSOR
π̃

(1) policy evaluation
through rollouts st

V π̂

(2) policy improvement
through one Newton step Tπ̃V

π̂ = TV π̂

Fig. 1. Our approach for policy adaptation in networked systems; during
each control cycle, the system model is estimated from system metrics using
supervised learning; a given base policy π̂ is adapted for the current state and
the current system model through one step of policy iteration, which we call
rollout; the output of this step is an improved rollout policy π̃ which is used
to select the next control action.

work include meta-learning [7], transfer learning [8], offline
dynamic programming [9], offline reinforcement learning [2],
[10], and online model-free reinforcement learning [11]. Each
of these methods has practical disadvantages: offline methods
require expensive re-optimization whenever the target system
changes, which does not scale to practical scenarios; meta-
learning and transfer-learning methods are scalable but gener-
ally have worse performance than methods that re-optimize;
and the model-free reinforcement learning methods are slow to
adapt to system changes as they do not make use of a system
model.

In this paper, we advocate a new approach for policy adap-
tation in networked systems, without the above drawbacks.
It is based on rollout as formulated by D. Bertsekas [12].
We combine a given base policy with one step of policy
iteration. The iteration step makes use of the system model,
which we estimate from system measurements (see Fig. 1).
The base policy can be chosen freely but must satisfy certain
consistency properties [12]. It can be obtained through offline
reinforcement learning or dynamic programming. It can also
be based on heuristics or be designed by a domain expert. At
each time-step during online execution, the system model is
used to estimate the value of the base policy and then one step
of policy iteration is executed with the base policy as the start
point [13, Eqs. 6.4.1-22]. This procedure transforms the base
policy into a rollout policy, which is effective for the current

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)
N

O
M

S
20

24
-2

02
4

IE
EE

 N
et

w
or

k
O

pe
ra

tio
ns

 a
nd

 M
an

ag
em

en
t S

ym
po

si
um

 |
97

9-
8-

35
03

-2
79

3-
9/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

N
O

M
S5

98
30

.2
02

4.
10

57
57

07

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 03,2024 at 04:27:00 UTC from IEEE Xplore. Restrictions apply.

system state (see Fig. 1).
While rollout has been applied in other contexts including

board games [14], [15] and video games [16], we find that
this work is the first systematic study of rollout for policy
adaptation in networked systems.

To study and evaluate our approach, we apply it to adapting
a control policy on a service mesh based on the Kubernetes
[17] and Istio [18] platforms. From the evaluation we learn
that (i) compared with offline re-optimization, rollout provides
a cost-effective way to rapidly adapt a given base policy
to changes in the target system; (ii) having a reasonably
accurate system model through estimation from system mea-
surements, rollout can yield near-optimal performance; (iii) for
the system changes we investigate, rollout with a lookahead
horizon of length 1 is sufficient (increasing the horizon does
not practically improve performance); (iv) multi-agent rollout
algorithms are significantly faster than single-agent rollout
algorithms for the multi-dimensional control problems we
study in the evaluation scenarios; and (v) selecting actions
uniformly at random leads to a policy that is not sequentially
consistent, which causes the rollout algorithms to have poor
performance.

This work fits in the broad context of policy-based man-
agement, a concept that was developed in the late 1990s and
focused primarily on rules that guide the behavior of network
elements to facilitate and automate their administration. Note
that we use the term policy in this paper with the precise
meaning of reinforcement learning, not with the broader
meaning of policy-based management. Our work further lies
in the scope of Intent-based networking, a concept proposed
in the mid 2010s, which builds on the foundations of policy-
based management and deals with network objectives from a
business or operational perspective.

The main contributions of this paper are:
• We develop an approach for efficient policy adaptation in

networked systems based on the rollout method. To our
knowledge, we are the first to study and apply rollout in
this context. Our implementation is available at [19].

• We describe the design space of rollout for policy adaptation
in networked systems and provide a guide for selecting a
specific rollout algorithm.

• We evaluate our policy adaptation approach using a service
mesh running on a lab testbed and show that it outperforms
state-of-the-art offline reinforcement learning methods for
the policy adaptation task.

II. THEORETICAL BACKGROUND

A. Discrete-Time Dynamical Systems

We model a networked system as a discrete-time dynamical
system which is defined by the system model

st+1 = f(st, at, wt, t), (1)

where st ∈ S is the system state at time t, at ∈ A is the
action, and wt ∈ W is a random disturbance which realizes
the random variable Wt. Actions are decided by a control

policy π : S → A and the disturbances are sampled from a
probability distribution P (· | st, at) [12].

Each state transition is associated with a reward r(st, at) ∈
R and a policy is said to be optimal if it maximizes the
expected cumulative discounted reward

E(Wt)t=1,2,...,N

[
N∑
t=1

γt−1r(st, at)

]
, (2)

where N > 1 is the time horizon and γ ∈ [0, 1] is a discount
factor.

The Bellman equation [20, Eq. 1] relates a policy π to the
value function V π , which is defined as

V π(st) ≜ EW [r(st, π(st)) + γV π(f(st, π(st), wt))] , (3)

for all st ∈ S.
As any policy that maximizes (2) also satisfies

π⋆(st) ∈ argmax
at∈A

EW

[
r(st, at) + γV π⋆

(st+1) | st, at
]
,

the Bellman equation (3) effectively provides an alternative op-
timality condition (sufficient and necessary) to (2). (Remarks:
in this paper we restrict ourselves to finite state and action
spaces which ensures that a maximizer of (2) always exists,
which is why we write max instead of sup; if the system
model f or the reward function r are time-dependent, or if
the time horizon N is finite, then π⋆ and V ⋆ may be non-
stationary, denoted as π⋆

t and V ⋆
t .)

B. Dynamic Programming

Dynamic programming algorithms, e.g., value iteration and
policy iteration, use the Bellman equation (3) to obtain an
optimal policy through successive approximations of V π⋆

.
Let T and Tπ denote Bellman operators defined as

(TV)(s) ≜ max
a∈A

EW [r(s, a) + γV (f(s, a,W))] (4)

(TπV)(s) ≜ EW [r(s, π(s)) + γV (f(s, π(s),W))] (5)

for all s ∈ S. Using these operators, value iteration can be
defined through the recursion Vk+1 = TVk. Similarly, policy
iteration can be defined through the following two equations

V πk = TπV
πk (6)

πk+1(s) ∈ argmax
a∈A

EW [r(s, a) + γV πk(f(s, a,W))] (7)

for all s ∈ S and k = 1, 2,
If |S| < ∞, |A| < ∞ and γ ∈ [0, 1) or N < ∞,

then the value functions produced by value iteration satisfy
limk→∞ Vk = V π⋆

[13, Thm. 6.3.1] and the policies produced
by (6)–(7) satisfy limk→∞ πk = π⋆ [13, Thm. 6.4.2].

C. Relation Between Policy Iteration and Newton’s Method

Policy iteration can be viewed as a vector space version
of Newton’s method for solving the Bellman equation for the
optimal policy π⋆ (3). To see this, note that the value functions
produced by policy iteration satisfy Tπk

V πk−1 = TV πk−1 ,
where Tπk

is linear and T is non-linear. Hence, policy iteration

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 03,2024 at 04:27:00 UTC from IEEE Xplore. Restrictions apply.

effectively linearizes the Bellman operator around V πk−1 and
then solves for the fixed point, analogous to Newton’s method.
For further details on the relation between policy iteration and
Newton’s method see [13], [21].

D. The Rollout Method for Online Policy Improvement
The rollout method with a base policy π̂ can be viewed as

a single step of policy iteration applied to a specific state [12].
That is, given a state st, we first compute V π̂(st) by rolling
out the system model (i.e., running simulations of the model)
and taking actions prescribed by the base policy π̂ (6). We
then solve (7) to obtain an improved policy π̃, which we call
the rollout policy. Lastly, we use the rollout policy to select
the next action to apply to the system, i.e., at = π̃(st). After
applying the action at, the system transitions to a new state
st+1 and the same process is repeated.

The rollout framework includes several enhancements to the
general method described above. In particular:

Approximation in value space. In practice, it is often compu-
tationally intractable to compute V π̂(s) as it requires enumer-
ating the entire state space (6). For this reason, it is common
to perform the policy iteration step with an approximation of
V π̂(s). Typical ways to approximate V π̂(s) are offline neural
network training and online Monte-Carlo methods.

Multi-step lookahead. The one-step lookahead maximization
used in the policy iteration step (7) can be exchanged with
an l-step lookahead maximization, where l ≥ 1. The effect of
using l > 1-step lookahead maximization is that the starting
point of the Newton step is moved closer to the optimal value
function through l − 1 value iterations [12].

Multi-agent rollout. When a control action is of the form
a = (a1, . . . , am), the computational complexity of one-step
lookahead maximization grows exponentially with the number
of dimensions m. To circumvent this challenge, multi-agent
rollout replaces the maximization over the joint action space
with m successive one-dimensional maximizations (i.e., m
agents). These successive maximizations define a modified but
equivalent control problem. In this modified control problem,
each agent only has to consider one dimension of the action
space, which means that the number of lookahead-values that
have to be computed (i.e., the number of evaluations of (7)) is
reduced from O(nm) to O(nm) (given that ai ∈ {1, . . . , n}
for all i) [12]. The drawback of multi-agent rollout is that it
introduces additional artificial states that represent the sequen-
tial selection of actions. While this means that the size of the
state space is increased, it is a minor drawback in practice
as it does not increase the computational requirements of the
rollout algorithm.

Asynchronous multi-agent rollout. The multi-agent rollout
algorithm can be executed asynchronously to reduce the com-
putational time. In the asynchronous version, the controls are
computed in parallel rather than sequentially. This algorithm
may work well for some problems but does not have the same
theoretical guarantees as the standard rollout and multi-agent
rollout algorithms [12].

Fig. 2. Example of a service mesh. The nodes are microservices and the links
represent microservice invocations. di is the end-to-end delay of processing a
request of service i; p(j,k),i denotes the routing probability of microservice
j invoking microservice k to process a request for service i.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a service mesh that provides a set of services
to a client population. The services are built from microservice
components and can be understood as contiguous subgraphs
on a directed graph that represents the service mesh (see Fig.
2). In the following, we formally model the service mesh as
a discrete-time dynamical system with graph structure and
formulate the problem of meeting management objectives as
an optimal control problem.

A. Modeling the Service Mesh

Denote with G ≜ (V, E) the directed graph of the service
mesh where V represents the set of nodes and E represents the
set of edges. Each node k ∈ V offers a specific microservice
and a directed edge (j, k) ∈ E represents the invocation of the
microservice of node k by node j.

The nodes of the service mesh collectively provide a set of
services S = {S1, . . . , S|S |}, which we model as subgraphs
of G. Associated with each node k ∈ V is a CPU allocation
ck ∈ R+ and associated with each service Si are performance
metrics, such as end-to-end response time di ∈ R+ and service
utility ui ∈ R+.

The services are consumed by clients that generate service
requests, each of which can be considered a traversal of the
subgraph of the requested service. A service request can be
fulfilled in several ways, corresponding to different graph
traversals. The specific traversal path for a request is decided
by a set of routing probabilities p(j,k),i ∈ [0, 1], where each
probability is associated with an edge (j, k) ∈ E . (For each
node j ∈ V with at least one edge (j, k) ∈ E , the routing
probabilities satisfy

∑
(j,k)∈E p(j,k),i = 1 ∀Si ∈ S).

The stream of service requests generated by the clients
induces an offered load li ∈ R+ (in requests per second) for
each service Si ∈ S , which we assume evolves according to a
load function li,t = λi(t, wt). Here wt is a random disturbance
which realizes the random variable Wt. To balance the load
and bound the response time di of a service Si, the service
mesh may block a fraction bi ∈ [0, 1] of the service requests
for Si, which results in the carried load l

(c)
i ≜ (1− bi)li.

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 03,2024 at 04:27:00 UTC from IEEE Xplore. Restrictions apply.

B. Resource Allocation to Meet Management Objectives

We consider the problem of dynamically controlling the
routing probabilities p(j,k),i, the blocking rates bi, and the CPU
allocations cj to meet a given management objective. For the
results reported in this paper, we focus on the management
objective of minimizing the number of CPU cores cj while
bounding the response time di < Oi of each service Si ∈ S .
This objective can formally be expressed as

minimize
∑
j

cj subject to di < Oi for all Si ∈ S . (8)

We model the problem of meeting the above objective as
the problem of controlling a discrete-time dynamical system
that evolves in time-steps t = 1, 2, In this model, the
management objective is encoded with the following reward
function

r(st, at) ≜

1−

∑|V|
j=1 cj

|V|cmax∆c
if di ≤ Oi,∀Si ∈ S∑

Si∈S

(Oi − di) if ∃Si ∈ S , di > Oi.
(9)

This function gives increasing rewards as the delays are
reduced to the specified thresholds, as defined by the term∑

i(Oi − di). When the delay thresholds are met, the reward
increases when the number of allocated CPUs is decreased.
(∆c and cmax denote the “discretization step for CPU alloca-
tion” and “maximum number of CPU units”, respectively.) We
obtain the delay di for each service Si ∈ S through a delay
function αi that we estimate from system measurements (14).

The system state st is defined by the service loads, the rout-
ing probabilities, the blocking rates, and the CPU allocations:

st ≜ (li,t, p(j,k),i,t, bi,t, cj,t)i∈S ,(j,k)∈E,j∈V . (10)

The evolution of the state depends on the load as well as the
control actions, which we model as

st+1 ≜ f(st, at, wt, t) t = 1, 2, . . . , (11)

where f is the system model (1), wt ∈ W is a random
disturbance, and at is the control action at time t, which is
defined as

at ≜ ((a
(p)
(j,k),i,t, a

(b)
i,t , a

(c)
j,t))i∈S ,(j,k)∈E,k,j∈V , (12)

where a
(p)
(j,k),i,t ∈ {−∆p, 0,∆p} indicates the change in

routing probability for edge (j, k) and service Si, a
(b)
i,t ∈

{−∆b, 0,∆b} indicates the change in blocking rate for service
Si, and a

(c)
j,t ∈ {−∆c, 0,∆c} indicates the change in allocated

CPU cores for node j.
Given (12), the system model (11) can be stated more

explicitly as

wt+1 ∼ P (· | st, at) (13a)
li,t+1 = λi(t+ 1, wt+1) i ∈ S (13b)

p(j,k),i,t+1 = p(j,k),i,t + a
(p)
(j,k),i,t i ∈ S , (j, k) ∈ E (13c)

bi,t+1 = bi,t + a
(p)
i,t i ∈ S (13d)

cj,t+1 = cj,t + a
(c)
j,t j ∈ V, (13e)

where t = 1, 2, . . . and wt+1 ∼ P (· | st, at) denotes that wt+1

is sampled from P .
Based on (13), we compute the delay as

di,t+1 = αi(st, at, wt+1) i ∈ S , (14)

where αi is a delay estimator for service i.
We restrict the set of allowable actions at time t to be A(st),

where A(st) is the set of actions that keeps the state of the
system within its operating region [22]. We say that a system
state st is within the operating region Op,t if the variances
of the response times (di,t)i∈S are small. In this work, we
consider a variance to be small if it is smaller than 50% of
the mean. Formally,

Op,t =

{
st | st ∈ S, σdi,t,st ≤

di,t
2
∀i ∈ S

}
, (15)

where σdi,t,s is the standard deviation of di,t in state s.
As the reward function (9) encodes the management ob-

jective (8), our goal is to find a policy πt : S → A that
maximizes the expected cumulative discounted reward. The
control problem of finding such a policy can be stated as

maximize
πt∈Π

E(Wt)t=1,2,...

[∞∑
t=1

γt−1r(st, at)

]
(16a)

subject to st+1 = f(st, at, wt, t) ∈ S (16b)
at+1 = πt(st) ∈ A(st) (16c)
wt+1 ∼ P (· | st, at) ∈ W, (16d)

where Π is the policy space, γ ∈ (0, 1) is a discount
factor; (16b) captures the dynamics; (16c) captures the actions
and the operating region constraint; and (16d) captures the
disturbances.

Solving (16) yields an optimal control policy π⋆
t . From

standard results in Markov decision theory we know that (16)
is well-defined in the following sense.

Proposition 1. There exists an optimal non-stationary and
deterministic policy π⋆

t : S → A that solves (16). Further,
if the load function λi(t, wt) for each service Si ∈ S
is constant, there exists an optimal stationary deterministic
policy π⋆ : S → A.

Proof. From (10)–(12) we know that solving (16) is equivalent
to solving a finite discounted Markov decision process (MDP)
with bounded rewards. If the load is constant, the dynamics
of the MDP are stationary, otherwise they are time-dependent.
The statement then follows from standard results in Markov
decision theory, see e.g., Proposition 4.4.3 and Theorem 6.2.10
in [13]. For the sake of brevity we do not restate the proof.

IV. ADAPTIVE CONTROL THROUGH ROLLOUT

Our approach for policy adaptation in networked systems
involves two parts: (i) construction of a base policy; and (ii),
online adaptation of the base policy through rollout.

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 03,2024 at 04:27:00 UTC from IEEE Xplore. Restrictions apply.

A. Base policies

We consider three base policies: π̂RANDOM, π̂GREEDY, and π̂PPO.
The base policy π̂RANDOM selects actions uniformly at random,
i.e., π̂RANDOM(a | s) = 1

A(s) for all a ∈ A(s). Similarly,
π̂GREEDY is a heuristic base policy that greedily selects the
action that has the highest immediate reward in each state,
i.e., π̂GREEDY(s) ∈ argmaxa∈A(s) r(s, a) − 10−3∥a∥, where
10−3∥a∥ is a regularization term. Lastly, the deterministic base
policy π̂PPO is obtained through offline reinforcement learning
with the PPO algorithm [23, Alg. 1].

B. Online Adaptation of a Base Policy

Our approach for adapting a given base policy π̂ to changes
in the target system is based on the rollout method described
in §II and involves repeating five steps: (i) measure the system
state; (ii) estimate V π̂

t (3); (In this work, we estimate V π̂RANDOM

and V π̂GREEDY through online Monte-Carlo simulations and we
estimate V π̂PPO through offline neural network training.) (iii)
perform one step of policy iteration (6)–(7) to transform π̂
into a new rollout policy π̃; (iv) use π̃ to select the control to
apply to the system; and (v) update the system model f (16b)
and the delay functions (αi)i∈S (14) (the delay functions
are required to compute the reward). The pseudocode of our
rollout algorithm that implements these five steps is listed in
Alg. 1. (Note that Alg. 1 implements the multi-agent rollout
method, which reduces to the single-agent rollout method
when the action space is of dimension 1.)

C. Theoretical Guarantees

The principal aim of the policy adaptation approach de-
scribed above is policy improvement, i.e., that the adapted
rollout policy is improved with respect to the base policy.
In this section, we briefly discuss conditions under which
this improvement is guaranteed to hold. For a more thorough
treatment of the theory we refer the reader to Bertsekas [12].

Any base policy that is sequentially consistent has the
policy improvement property [12, Prop. 2.3.1]. A policy is
said to be sequentially consistent if when it generates the
sequence (sk, ak, sk+1, ak+1, . . .) starting from state sk it also
generates the sequence (sk+1, ak+1, . . .) from state sk+1 [12,
Def. 2.3.1]. Clearly, any Markovian deterministic policy is
sequentially consistent whereas a stochastic policy may not
be sequentially consistent. We thus have the following basic
result.

Proposition 2. The base policies π̂GREEDY and π̂PPO are sequen-
tially consistent. The base policy π̂RANDOM is not sequentially
consistent.

Proof. The proof is immediate from the definitions of π̂GREEDY,
π̂PPO, and π̂RANDOM. In particular, π̂GREEDY and π̂PPO are deter-
ministic Markovian policies whereas π̂RANDOM is a stochastic
policy.

Corollary 1. The rollout policies π̃GREEDY and π̃PPO adapted
from π̂GREEDY and π̂PPO through Alg. 1 satisfy V π̃GREEDY(s) ≥

Algorithm 1: Online policy adaptation.
Input : Base policy π̂, system model f ,

reward function r, delay functions (αi)i∈S ,
lookahead horizon l, discount factor γ,
set of states S , set of actions A

Output: Control actions a1, a2, . . . prescribed by π̃
1 Algorithm

OnlinePolicyAdaptation(π̂, f, l, γ,S,A, r, (αi)i∈S)

2 Initialize D0 ≜ ∅, a0 = ⊥, s0 = ⊥
3 for t = 1, 2, . . . do
4 Measure the system state st
5 Update dataset Dt ← Dt−1 ∪ {(st−1, at−1, st)}
6 f, (αi)i∈S ← SystemModel(f, (αi)i∈S),Dt)
7 π̃t ← Rollout(π̂, st, f, γ,S,A, r, (αi)i∈S)
8 Apply control at = π̃t(st)
9 end
1 Procedure Rollout(π̂, st, f, γ,S,A, r, (αi)i∈S)
2 N ← dim(A)
3 for agent i ∈ N do
4 in parallel for ai,t ∈ Ai(st) do
5 at ← (ã1,t, . . . , ai,t, π̂(st)i+1, . . . , π̂(st)N)
6 Rai,t

← r(st, at) + argmaxπ̃t+1,...,π̃t+l−1

7 E
[∑k+l−1

k=t+1 r(sk, π̃k(sk)) + γlV π̂
t (sk+l)

]
8 where V π̂

t (s) = StateValue(s, π̂, f)
9 ãi,t ← argmaxai,t

Rai,t

10 end
11 π̃t(st)← (ã1,t, . . . , ãN,t)
12 π̃t(s)← π̂(s) ∀s ∈ S \ {st}
13 return π̃t

1 Procedure StateValue(s, π̂, f)
2 Estimate V π̂(s) using f
3 return V π̂(s)
1 Procedure SystemModel(f, (αi)i∈S),Dt)
2 Update f and (αi)i∈S based on Dt

3 (In this paper we use random forest regression.)
4 return f

V π̂GREEDY(s) and V π̃PPO(s) ≥ V π̂PPO(s) for all s ∈ S with respect
to the system model f and the reward function r.

Proof. The statement is a direct consequence of Prop. 2 and
[12, Prop. 2.3.1]. In the interest of space we do not restate the
proof here.

V. TARGET SYSTEM AND EVALUATION SCENARIOS

In this section, we describe our setup to evaluate the rollout
approach described above. We first detail the target system
which is used for evaluation (§V-A). Then we describe our
method for learning the system model based on measurements
from the target system (§V-B). Lastly, we define two eval-
uation scenarios to assess the performance of our approach
(§V-C).

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 03,2024 at 04:27:00 UTC from IEEE Xplore. Restrictions apply.

A. Target System: The KTH Testbed

The target system in this work is a service mesh consisting
of two services provided by five microservice components:
an information service (S1) and a compute service (S2). The
service mesh is realized using Kubernetes [17] and Istio [18],
and runs on top of a server cluster with 10 servers connected
through a Gigabit Ethernet switch. (See [4] for more details
about the cluster and the services.)

B. Online Learning of the System Model

Using the measurements collected from the target system,
we estimate the delay functions (αi)i∈S (14) through ran-
dom forest regressors that are re-trained periodically on data
collected from the target system [10], [24], [25]. For the
evaluation results reported in this paper, we re-fit the regressors
every time-step. (A time-step on the testbed is defined to be 30
seconds.) To evaluate the performance of the fitted regressors,
we use the Normalized Mean Absolute Error (NMAE) metric

defined as 1
y

(
1
m

m∑
i=1

|yi − ŷi|
)

, where ŷi is the ith predicted

response time, yi is the ith measured response time, y is the
average of the measured response times, and m is the number
of samples.

C. Evaluation Scenarios

Following the problem formulation in §III, we define two
scenarios to evaluate our approach for policy adaptation. In
both scenarios, the goal is to adapt a given base policy to
meet the management objective of minimizing CPU usage
while meeting delay bounds on service requests under varying
system configurations (see (8)–(9)). To meet this objective, we
consider two control functions: routing a

(p)
(j,k),i,t and scaling

a
(c)
j,t , with the control steps ∆p = 0.2 and ∆c = 1 (12).
Our aim in evaluating the scenarios is to assess the fol-

lowing: a) the performance of the rollout method; b) the
computational time required for policy adaptation; and c) the
trade-offs between different rollout algorithms.

Scenario 1: Rollout with different base policies. In this
scenario, we investigate the impact of different base policies
on the rollout. In addition, we study the effect of different
lookahead steps, as well as how multi-agent rollout compares
to the single agent rollout. We evaluate rollout with the three
base policies defined in §IV (i.e., π̂PPO, π̂RANDOM, and π̂GREEDY).

The scenario includes two services on the service mesh:
information service S1 and compute service S2. The service
loads are kept constant with l1 = 4 req/sec and l2 = 15
req/sec.

Scenario 2: Rollout with changing services. In this scenario,
we investigate the performance of the rollout method on the
task of adapting a given base policy to a change in the number
of services running on the target system.

The scenario is divided into two time intervals. In the first
interval, which begins at t0, we run the compute service S2 and
load it with a constant load of l2 = 1 req/sec. In the second
time interval, which begins at t1, we start the information

service S1 in the background on processing node 2 and load
it with l1 = 20 req/sec.

As opposed to the first scenario, where we evaluate rollout
with different base policies, in this scenario we focus on adapt-
ing the PPO base policy π̂PPO and compare the performance of
the rollout method with the performance of offline retraining,
which is the most popular method for policy adaptation among
previous works (see §VII for a review of related work).

VI. EXPERIMENTAL EVALUATION

This section describes the evaluation results for the two
scenarios defined above. We evaluate the adapted policies both
in simulation and on the target system described in §V-A.
The source code of our implementation is available at [19].
Hyperparameters are listed in [4].

A. Evaluation Results for Scenario 1

As described in §V-C, for scenario 1 we run services
S1 and S2 under constant load. To illustrate the different
behavior of these services, we show the empirical distributions
of the response times (histogram) as well as the predicted
distributions (solid line) in Figure 3b. We observe that the
distribution of service S2 has a long tail while the distribution
of service S1 has a small variance.

To illustrate the behavior of the base policies, we show the
learning curve of the PPO policy π̂PPO and compare it with the
performance of the greedy policy π̂GREEDY, the random policy
π̂RANDOM, and the optimal policy π⋆. This is shown in Figure
3c. After convergence, the PPO policy π̂PPO performs close to
optimal, the greedy policy π̂GREEDY performs worse, and the
random policy π̂RANDOM is the least effective policy.

Figure 3a compares the performance of the three base
policies (blue curves) with the respective rollout policies (red
curves) with 1-step lookahead (i.e., l = 1) for 20 control
cycles. The optimal policy is indicated with the dashed black
line. We observe that the performances of the PPO and the
greedy rollout policies (i.e., π̃PPO and π̃GREEDY) are close to
the performance of the optimal policy, while the performance
of the random rollout policy π̃RANDOM is not. In fact, π̃RANDOM

performs even worse than the base policy π̂RANDOM. Recall that
π̂PPO and π̂GREEDY are sequentially consistent and therefore, the
rollout policies π̃PPO and π̃GREEDY are guaranteed to improve
the base policies π̂PPO and π̂GREEDY, which is consistent with
our results (see Corollary 1). (In contrast, π̂RANDOM is not
sequentially consistent.)

We investigate different lookahead horizons l. Since the
greedy rollout policy π̃GREEDY and the PPO rollout policy
π̃PPO achieve optimal performance with the lookahead horizon
l = 1, increasing l does not give any improvement. Figure
3e shows measurements of the performance of the random
rollout policy π̃RANDOM with different lookahead horizons. We
observe that the performance increases significantly from l = 1
to l = 2 where the policy has optimal performance. It then
decreases from l = 2 to l = 3 and slightly increases again from
l = 3 to l = 4. While we expect an increasing performance

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 03,2024 at 04:27:00 UTC from IEEE Xplore. Restrictions apply.

(a) Scenario 1: Policy adaptation of three base policies in simulation for t = 1, 2, . . . , 20 with l = 1 for scenario 1; the curves indicate the mean and standard
deviation (± σ√

5
) over five evaluations with different random seeds.

(b) Scenarios 1 and 2: The histograms show em-
pirical distributions of response times d1 and d2;
the overlaid curves depict the distribution of pre-
dictions generated by fitted random forest models.

(c) Scenario 1: Learning curves from offline train-
ing of π̂PPO in simulation; the curves indicate
the mean and standard deviation (± σ√

5
) over five

evaluations with different random seeds.

(d) Scenario 2: Performance of the estimated sys-
tem model in terms of NMAE; the average NMAE
before the change is 0.0079 and the average
NMAE after the change is 0.0135.

(e) Scenario 1: Online policy adaptation of the random base policy π̂RANDOM

for varying lookahead horizons l = 1, . . . , 4; the curves indicate the mean
and standard deviation (± σ√

5
) over five evaluations with different random

seeds.

(f) Scenario 1: Time for adapting the PPO base policy π̂PPO , using different
methods: the single-agent rollout (purple), multi-agent rollout (pink), and
asynchronous multi-agent rollout (beige); the green bars represent the offline
retraining baseline; the error bars indicate standard deviations from 3
measurements.

(g) Scenario 2: Reward trajectories of the PPO base policy π̂PPO and the
rollout policy on the target system for l = 1; the curves indicate the mean
and standard deviation (± σ√

5
) over five evaluations with different random

seeds.

(h) Scenario 2: Response times of the simulated system when running the
PPO base policy π̂PPO and the rollout policy on the target system for l =
1; the curves indicate the mean and standard deviation (± σ√

5
) over five

evaluations with different random seeds.

Fig. 3. Evaluation results for scenarios 1 and 2.

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 03,2024 at 04:27:00 UTC from IEEE Xplore. Restrictions apply.

from l = 1 to l = 2, we do not fully understand the behavior
of the system for l > 2.

We study the computing time for the PPO rollout policies
π̃PPO for different configurations. Figure 3f shows the comput-
ing time for different lookahead horizons, as well as for single-
agent and multi-agent configurations. With multi-agent, we
measure synchronous versus asynchronous setups (see §II-D).
We observe that multi-agent rollout has shorter computing
times than single-agent rollout, which we can explain with the
reduced size of the action space (see §II-D). As we expect,
the computing time increases when l becomes larger. This
increase is larger for single agents than for multi-agents due
to the above reasons. If we compare single-agent rollout with
offline retraining, we see that for horizon l < 3, rollout takes
orders of magnitude less time. The computing time becomes
comparable for l ≥ 3.

B. Evaluation Results for Scenario 2

As described in §V-C, this scenario is divided into two
time intervals: one before the change in the target system
([t0, t1]) and one after the change ([t1,∞)). Figures 3g and 3h
show the reward trajectories and the response time trajectories
obtained when running the PPO base policy π̂PPO and the
rollout policy π̃PPO on the target system (i.e., the KTH testbed).
We observe that the performance of π̂PPO is close to optimal
before the change but drops drastically after the change at time
t1. After time t2, the rollout policy π̃PPO quickly improves the
performance of the system. When comparing the results from
the simulator with those from the target system, we note that
the figures from the target system show higher variance and
slightly worse performance. In this scenario, the performance
of rollout with l > 1 is the same as that of rollout with l = 1.
The execution times for both standard rollout and multi-agent
rollout exhibit similar trends as those observed in scenario 1.

Lastly, Fig. 3d shows the evolution of the predicted response
time and the prediction error measured in NMAE of the
estimated system model. We observe that after the change
in the target system (indicated by the dashed vertical line),
the error doubles. This is expected as the system model is not
updated immediately when the change occurs. We note that as
time progresses after the change, the system model is updated
which causes the error to decrease gradually.

C. Discussion of the Evaluation Results

The key findings can be summarized as follows.

(i) Compared with reoptimization, rollout can provide a
computationally effective way to adapt a base policy
to near-optimal performance.

(ii) Using PPO or greedy base policies, rollout with a looka-
head of l = 1 can significantly improve the performance
of the base policy.

(iii) In case of a multi-dimensional control problem, as
manifested in the scenarios we studied, the multi-agent
rollout can drastically reduce the needed computing time
for the rollout policy.

VII. RELATED WORK

Existing approaches for policy adaptation in networked
systems include offline reinforcement learning [2]–[5], [10],
dynamic programming [9], online reinforcement learning [11],
[26]–[28], transfer learning [8], [29]–[31], and meta learning
[7], [32]–[34].

The most common approach for policy adaptation in net-
worked systems is offline retraining. Examples of previous
work that use offline retraining in the context of networked
systems include [2]–[6], [9], [10]. The main advantage of
our approach compared to these references is that it is more
efficient. In particular, we show that we are able to obtain the
same performance as offline retraining by using one step of
policy iteration online, which is significantly more efficient
than retraining (see Fig. 3f).

Online model-free learning approaches adapt policies by
updating them for each new measurement obtained from the
target system. Examples of previous work that use online
learning in the context of networked systems include [11],
[26]–[28], [30]. The main benefit of our rollout approach
compared to these works is that it has stronger theoretical
guarantees (see §II).

Transfer learning and meta learning refer to reinforcement
learning methods that aim to speed up the learning process
by leveraging commonalities between different control tasks
and domains. Examples of previous works that use transfer
learning and meta learning for policy adaptation in networked
systems include [7], [8], [29]–[36]. The main benefit of our
rollout approach compared to these approaches is that it has
stronger theoretical guarantees. In particular, our approach is
guaranteed to improve the base policy (see Prop. 2 and Cor.
1). No such guarantee is available for the transfer learning and
meta learning approaches.

VIII. CONCLUSION AND FUTURE WORK

We present a novel approach to policy adaptation in net-
worked systems based on the concept of rollout. In this ap-
proach, a given base policy is transformed it into an improved
rollout policy. We perform an experimental evaluation on a
testbed where we run information and computing services on
a service mesh and study resource control policies. We find
that rollout policies often achieve comparable performance
to policies obtained through offline retraining but at much
lower computing costs. We conclude that rollout, which has
been successfully applied in other domains, is an effective
method for policy adaptation in networked systems. Our future
work includes studying scalable methods for online training of
system models.

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 03,2024 at 04:27:00 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Bertsekas, Reinforcement learning and optimal control. Athena
Scientific, 2019.

[2] F. Shahab Samani and R. Stadler, “Dynamically meeting performance
objectives for multiple services on a service mesh,” in 2022 18th
International Conference on Network and Service Management (CNSM),
2022, pp. 219–225.

[3] F. S. Samani, K. Hammar, and R. Stadler, “Demonstrating a system
for dynamically meeting management objectives on a service mesh,”
in NOMS 2023-2023 IEEE/IFIP Network Operations and Management
Symposium, 2023, pp. 1–3.

[4] F. S. Samani and R. Stadler, “A framework for dynamically meet-
ing performance objectives on a service mesh,” arXiv preprint
arXiv:2306.14178, 2023.

[5] S. Schneider, R. Khalili, A. Manzoor, H. Qarawlus, R. Schellenberg,
H. Karl, and A. Hecker, “Self-learning multi-objective service coordina-
tion using deep reinforcement learning,” IEEE Transactions on Network
and Service Management, vol. 18, no. 3, pp. 3829–3842, 2021.

[6] D. Garg, N. C. Narendra, and S. Tesfatsion, “Heuristic and reinforcement
learning algorithms for dynamic service placement on mobile edge
cloud,” arXiv preprint arXiv:2111.00240, 2021.

[7] H. Qiu, W. Mao, C. Wang, H. Franke, A. Youssef, Z. T. Kalbarczyk,
T. Başar, and R. K. Iyer, “{AWARE}: Automate workload autoscaling
with reinforcement learning in production cloud systems,” in 2023
USENIX Annual Technical Conference (USENIX ATC 23), 2023, pp.
387–402.

[8] P. Liu, G. Bravo-Rocca, J. Guitart, A. Dholakia, D. Ellison, and M. Ho-
dak, “Scanflow-k8s: Agent-based framework for autonomic management
and supervision of ml workflows in kubernetes clusters,” in 2022
22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2022, pp. 376–385.

[9] J.-S. Yang, P. Liu, and J.-J. Wu, “Workload characteristics-aware vir-
tual machine consolidation algorithmsgarg2021heuristic,” in 4th IEEE
International Conference on Cloud Computing Technology and Science
Proceedings, 2012, pp. 42–49.

[10] K. Hammar and R. Stadler, “An online framework for adapting security
policies in dynamic it environments,” in 2022 18th International Con-
ference on Network and Service Management (CNSM). IEEE, 2022,
pp. 359–363.

[11] Z. Yang, P. Nguyen, H. Jin, and K. Nahrstedt, “Miras: Model-based re-
inforcement learning for microservice resource allocation over scientific
workflows,” in 2019 IEEE 39th international conference on distributed
computing systems (ICDCS). IEEE, 2019, pp. 122–132.

[12] D. Bertsekas, Rollout, Policy Iteration, and Distributed Reinforcement
Learning, ser. Athena scientific optimization and computation series.
Athena Scientific, 2021. [Online]. Available: https://books.google.se/
books?id=0FflzQEACAAJ

[13] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[14] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[15] H. Wang, M. Preuss, and A. Plaat, “Warm-start alphazero self-play
search enhancements,” in Parallel Problem Solving from Nature–PPSN
XVI: 16th International Conference, PPSN 2020, Leiden, The Nether-
lands, September 5-9, 2020, Proceedings, Part II 16. Springer, 2020,
pp. 528–542.

[16] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep
learning for real-time atari game play using offline monte-carlo
tree search planning,” in Advances in Neural Information Processing
Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, Eds., vol. 27. Curran Associates, Inc.,
2014. [Online]. Available: https://proceedings.neurips.cc/paper files/
paper/2014/file/8bb88f80d334b1869781beb89f7b73be-Paper.pdf

[17] Kubernetes community, “Production-grade container orchestration,”
2014. [Online]. Available at: https://kubernetes.io/, Accessed on: June
7, 2022.

[18] Istio community, “Simplify observability, traffic management, security,
and policy with the leading service mesh,” 2017. [Online]. Available at:
https://istio.io/, Accessed on: June 7, 2022.

[19] Forough Shahab Samani and Kim Hammar, “Online policy adaptation
through rollouts,” [Online]. Available at: https://github.com/foroughsh/
online policy adaptation using rollout/, Accessed on: Sep 28 7, 2023.,
2023.

[20] R. Bellman, Dynamic Programming. Dover Publications, 1957.
[21] D. Bertsekas, Lessons from AlphaZero for Optimal, Model Predictive,

and Adaptive Control, ser. Athena Scientific optimization and
computation series. Athena Scientific, 2022. [Online]. Available:
https://books.google.se/books?id=KRllEAAAQBAJ

[22] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback control
of computing systems. John Wiley & Sons, 2004.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, 2017, http://arxiv.org/
abs/1707.06347. [Online]. Available: http://arxiv.org/abs/1707.06347

[24] L. Breiman, “Random Forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[25] Sklearn community, “sklearn.ensemble.RandomForestClassifier,” 2007.
[Online]. Available at: https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html, Accessed on: June 7,
2022.

[26] L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio–temporal edge service
placement: A bandit learning approach,” IEEE Transactions on Wireless
Communications, vol. 17, no. 12, pp. 8388–8401, 2018.

[27] Z. Wang, P. Li, C.-J. M. Liang, F. Wu, and F. Y. Yan, “Autothrottle:
A practical framework for harvesting cpus from slo-targeted microser-
vices,” arXiv preprint arXiv:2212.12180, 2022.

[28] F. Rossi, V. Cardellini, and F. L. Presti, “Self-adaptive threshold-
based policy for microservices elasticity,” in 2020 28th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 2020, pp. 1–8.

[29] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, “Firm:
An intelligent fine-grained resource management framework for slo-
oriented microservices,” in Proceedings of The 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’20), 2020.

[30] Q. Fettes, A. Karanth, R. Bunescu, B. Beckwith, and S. Subramoney,
“Reclaimer: A reinforcement learning approach to dynamic resource
allocation for cloud microservices,” arXiv preprint arXiv:2304.07941,
2023.

[31] W. Li, B. Liu, H. Gao, and X. Su, “Transfer learning based algorithm
for service deployment under microservice architecture,” in International
Conference on Communications and Networking in China. Springer,
2021, pp. 52–62.

[32] H. Liu, P. Chen, and Z. Zhao, “Towards a robust meta-reinforcement
learning-based scheduling framework for time critical tasks in cloud
environments,” in 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD). IEEE, 2021, pp. 637–647.

[33] H. Liu, P. Chen, X. Ouyang, H. Gao, B. Yan, P. Grosso, and Z. Zhao,
“Robustness challenges in reinforcement learning based time-critical
cloud resource scheduling: A meta-learning based solution,” Future
Generation Computer Systems, vol. 146, pp. 18–33, 2023.

[34] X. Xiu, J. Li, Y. Long, and W. Wu, “Mrlcc: an adaptive cloud task
scheduling method based on meta reinforcement learning,” Journal of
Cloud Computing, vol. 12, no. 1, pp. 1–12, 2023.

[35] S. Li, L. Wang, W. Wang, Y. Yu, and B. Li, “George: Learning to place
long-lived containers in large clusters with operation constraints,” in
Proceedings of the ACM Symposium on Cloud Computing, 2021, pp.
258–272.

[36] S. Xue, C. Qu, X. Shi, C. Liao, S. Zhu, X. Tan, L. Ma, S. Wang,
S. Wang, Y. Hu et al., “A meta reinforcement learning approach for
predictive autoscaling in the cloud,” in Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2022,
pp. 4290–4299.

2024 IEEE/IFIP Network Operations and Management Symposium (NOMS 2024)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 03,2024 at 04:27:00 UTC from IEEE Xplore. Restrictions apply.

