Homework 1: Finding Similar Items: Textually Similar
Documents

Konstantin Sozinov, sozinov@kth.se
Kim Hammar, kimham@kth.se

November 7, 2017

1 Solution

The implementation is done in pure Scala without any big data processing framework. The func-
tionality is split into different class files: Shingling.scala, MinHashing.scala, CompareSets.scala
CompareSignatures.scala, LSH.scala, Dataset.scala and Main.scala. The first four classes
have the functionality as described in the problem description. Dataset is a class with function-
ality for reading the dataset used for evaluation '. Main is a class for orchestrating the different
steps of the pipeline: Shinglinng — MinHashing — LSH — Filter(CompareSignatures) —
FEvaluation.

2 How to run

Clone this repository and navigate to similar_items project. Then use:

sbt compile //compile

sbt test //test

sbt run //run

sbt assembly //generate fat jar

3 Evaluation and results
Amount of bytes required to store dataset in each transformation
1,25%10"+7 byles
1,00x10%7 bytes
7,50x10"+6 bytes
5,00%10"+6 byles
2,50%10"+6 byles

0 bytes

Shinaling Minhashing LSH

Figure 1: Memory analysis for different stages in comparing the documents

Thttps:/ /archive.ics.uci.edu/ml/datasets/ Twenty-+Newsgroups

https://github.com/Limmen/DataMining

Example output (t=0.8, b=10, r=10, n=100)

[info] Running kth.se.id2222.Main

Shingles size: 11624856 bytes

Size after minhashing: 153112 bytes

Number of candidates pre LSH is approx: 10816.0

Number of candidates after LSH: 5

Size after LSH: 15656 bytes

Similar items: 4

Similar pair:
src/resources/mini_newsgroups/alt.atheism/54485_copy,
src/resources/mini_newsgroups/alt.atheism/54485
similarity: 0.99

Similar pair:
src/resources/mini_newsgroups/alt.atheism/51131,
src/resources/mini_newsgroups/alt.atheism/51131copy
similarity: 0.96

Similar pair:
src/resources/mini_newsgroups/alt.atheism/54244,
src/resources/mini_newsgroups/alt.atheism/54244_copy
similarity: 0.99

Similar pair:
src/resources/mini_newsgroups/alt.atheism/53653_copy,
src/resources/mini_newsgroups/alt.atheism/53653
similarity: 0.98

Time to compute similar items: 7.256831409 seconds, number of similar items found:
[success] Total time: 8 s, completed 2017-nov-07 10:41:05

Discovery of Frequent Itemsets and Association Rules

Konstantin Sozinov, sozinov@kth.se
Kim Hammar, kimham@kth.se

November 16, 2017

1 Solution

We implemented the solution in pure scala without any big data processing framework. We used
the T10I4D100K.dat dataset uploaded on canvas. The source code is split into four classes,
Apriori.scala that implementes the Apriori algorithm; AssocRules.scala that mines associ-
ation rules from counted itemsets; DataUtils.scala that reads the data into a item-basket data
model and Main.scala that orchestrates the pipeline and prints the results.

2 How to run

Clone this repository and navigate to frequent itemsets project. Then use:

sbt compile //compile

sbt test //test

sbt run //run

sbt assembly //generate fat jar

3 Evaluation and results

Benchmarks
1.18059e+21 T T T

T

total mm—
counted mmmem |
frequent e

1.15292e+18 baskets e _|

1.1259e+15

1.09951e+12

1.07374e+09

amount (log scale)

1.048586+06 |- y

1024]
1] I]

1 2 3 4
k

Figure 1: Analysis of number of counts made at each stage (log scale). Frequent itemsets of length
3 was 1, and counted itemsets of length 4 was thus 0. In-between each iteration we also filter
the baskets (we hoped to reduce the complexity of the double-loop to count itemsets which has
complexity O(b- f - k) where b is the number of baskets, f is the number of frequent sets and k is
the size of each set (O(k) is the complexity to check if the set is subset of basket).

https://github.com/Limmen/DataMining

Example output (s=1000, c=0.5, k=3)

Counting all singletons for 100000 baskets
Total unique items to count: 870
Number of frequent singletons 375

Filtering out baskets with no frequent itemsets..

Processing frequent items for 2-sets, approximately 70312.5 sets to check and 99933 baskets

Filtering out baskets with no frequent itemsets..
Finding association rules for 2-sets

Processing frequent items for 3-sets, approximately 40.5 sets to check and 7087 baskets

Filtering out baskets with no frequent itemsets..
Finding association rules for 3-sets

Processing frequent items for 4-sets, approximately 0.5 sets to check and 1035 baskets

Filtering out baskets with no frequent itemsets..
Finding association rules for 4-sets
Done. Evaluating

Number Frequent Items of length 1: 375

Number Frequent Items of length 2: 9
Number of association rules for itemsets length: 2: 3

Association Rule: AssociationRule(Set(Item(227)),Item(390)),
confidence: 0.577007700770077,

interest: 0.550157700770077

Association Rule: AssociationRule(Set(Item(704)),Item(825)),
confidence: 0.6142697881828316,

interest: 0.5834197881828316

Association Rule: AssociationRule(Set(Item(704)),Item(39)),
confidence: 0.617056856187291,

interest: 0.574476856187291

Number Frequent Items of length 3: 1
Number of association rules for itemsets length: 3: 3

Association Rule: AssociationRule(Set(Item(825), Item(704)),Item(39)),
confidence: 0.9392014519056261,

interest: 0.8966214519056261

Association Rule: AssociationRule(Set(Item(39), Item(704)),Item(825)),
confidence: 0.9349593495934959,

interest: 0.9041093495934959

Association Rule: AssociationRule(Set(Item(39), Item(825)),Item(704)),
confidence: 0.8719460825610783,

interest: 0.8540060825610784

Number Frequent Items of length 4: O
Number of association rules for itemsets length: 4: 0

[success] Total time: 189 s, completed 2017-nov-16 11:09:11

Homework 3: Mining Data Streams

Konstantin Sozinov, sozinov@kth.se
Kim Hammar, kimham@kth.se

November 17, 2017

1 Solution

We implemented the TRIEST-IMPR algorithm® for estimating triangle counts on the Euroroad
graph dataset 2. The graph is undirected, nodes represent cities and an edge between two nodes
denotes that they are connected by an E-road. The algorithm estimates both global and local
triangle counts. The dataset is bounded but we process it in a streaming fashion by reading edge
by edge and applying the reservoir sampling.

2 Questions

1.

What were the challenges you have faced when implementing the algorithm?

One problem that we encountered was about choosing the right streaming graph processing
platform. To the best of our knowledge Apache Flink does not support streaming graph
processing. We tried to use plain Apache Flink and stream every event as an edge in our
graph but it was not clear to us how our TRIEST-IMPR counters were updated since
Flink uses updated counters in parallel way. Flink streaming typically considers the data as
unbounded and if using this approach we would generate estimates per window rather than
a global estimate of the triangle count. Since our dataset in this were bounded it would
over-complicate things to use Flink so we simply streamed the edges ourself in a non-parallel
fashion.

Can the algorithm be easily parallelized? If yes, how? If not, why? Ezxplain.

Yes it can be parallelized, different streaming nodes can run the TRIEST-IMPR algorithm in
parallel and maintain local estimates. When querying the stream or materializing the results,
the local estimates have to be merged to create the final estimate. This can for example be
done in Flink-Streaming, where the stream of edges can be split uniformly among a set of
nodes and each node updates its local sample and estimates.

Does the algorithm work for unbounded graph streams? Explain.

Yes, since the algorithm uses reservoir sampling it is meant to be used for unbounded graph
streams. The difference if the stream of edges is unbounded is that the mindset have to
be shifted. With a unbounded stream we cannot wait until all edges have been received
to materialize the estimates but rather some form of windowing strategy should be applied
to construct rolling estimates for given time periods. What notion of time to use depends
on the characteristics of the stream, for instance if the edges are time-stamped we could
use event-time, otherwise we could use processing-time. Data-driven windows are also a
possibility.

Does the algorithm support edge deletions? If not, what modification would it need? Explain.

TRIEST-IMPR does not support edge deletions. Our stream for this lab did not contain
any edge deletions so we did not implement the edge deletion part. To extend the algorithm
for edge deletion, two counters, d; and d, should be maintained to keep track of how many
times edges have been removed versus in the stream. This is necessary since the stream

Thttp://wuw.kdd.org/kdd2016/papers/files/rfp0465-de-stefanil.pdf
2http://konect.uni-koblenz.de/networks/subelj_euroroad

http://www.kdd.org/kdd2016/papers/files/rfp0465-de-stefaniA.pdf
http://konect.uni-koblenz.de/networks/subelj_euroroad

might arrive unordered. The reservoir should only keep those edges that have been inserted
more times than deleted. Effectively the counters works like a sort of tombstone.

3 How to run

Clone this repository and navigate to mining data_ streams project. Then use:

sbt compile //compile
sbt test //test
sbt run //run

sbt assembly //generate fat jar

4 Evaluation and results

Number of Edges in a Sample, M

Estimated Number of Triangles

Actual Number of Triangles

350 20 32
750 28 32
1000 30 32
1100 32 32
Benchmarks
80 T
estimate ——
total m——)
70 | B
60 |- B
50 |- B
40 B

Number of triangles

350

750 1000
Reservoir sample size

1100

Figure 1: Estimate accuracy as sample size increases, when sample size is 1100 the estimate is

correct (32).

The number of total edges in the graph we used is 1417, total number of vertices is 1,174
and average degree is ~ 2.4. As we increase number of edges in the sample the precision of our
implementation gets better. This is based on the second implementation of the TRIEST-IMPR
algorithm. The intuition behind this is that the algorithm was meant to be use at the very large
graphs (number of edges order of 10?) and precision gets better if number of edges in the reservoir
increases. As we saw in the actual paper, in order to estimate number of triangles for the Twitter
network graph (contains billions of edges), the authors choose very high M, M = 10°.

https://github.com/Limmen/DataMining

In[65]:=

ID2222 Data Mining

Homework 4: Graph Spectra
Graph 1

Kim Hammar
KTH Royal Institute of Technology

Konstantin Sozinov
KTH Royal Institute of Technology

Graph Import

SetDirectory[NotebookDirectory[]];
edgelList = Import["examplel.csv","Data"];

graph = Graph[DirectedEdge@@@ edgeList,VertexLabels-"Name"|;

Printed by Wolfram Mathematica Student Edition

2 | lab4_graph1_analysis.nb

222 169 173

General Graph Properties

Edge Count
nes- EdgeCount[graph] ;
2196
Vertex Count
In[69]:= VertexCount[graph] 3
241

Printed by Wolfram Mathematica Student Edition

lab4_graph1_analysis.nb | 3

Degree Distribution

nro)- Histogram[VertexDegree[graph],{1},"Probability",AxesLabel-{"degree","probability"}];
ListLoglLogPlot [GroupBy[VertexDegree[graph]|, Count], AxesLabel-{"count","degree"}];

degree
A A
]
o
60~ v v
re L 2 L 2 * * L 2 L R 4
o o o o o o o
o o o [e] o
t A A A A A A A A A A A
50 © < < < <& <o LR
r O [e] o (o] o (o] (o] O O O OO
A A A A A A A A A A A
° °) ° ° ° o o
v v v v v
40F v v v v v v v v
A
* L 2 L 2 L 2
° °)
]
30 ©
| | L L | L L L L | count
1 2 5 10

Log-Log plot over degree distribution to do a rough test for powerlaw. Since the distri-
bution is not linear it is probably not a powerlaw.

probability
0.10 } m
0.08 }
0.06 }

0.04 -

0.02 }
ol Hﬂﬂﬂﬂﬂmm%m
40 50

10 20 30

Regular Histogram plot over degree distribution.

Global Clustering Coefficient

Printed by Wolfram Mathematica Student Edition

4 | lab4_graph1_analysis.nb

n72- GlobalClusteringCoefficient[graph];
1008
4013
Graph Communities
Communities Count
n7a- Length[FindGraphCommunities[graph]];
5

Communities Plot

n74p- CommunityGraphPlot[graph] ;

Graph Spectra

Printed by Wolfram Mathematica Student Edition

lab4_graph1_analysis.nb | 5

Graph Spectra

nrs- A = AdjacencyMatrix[graph];
{eigenvals,eigenVecs} =Eigensystem[N[A]];

Node Centralities

PageRank Centrality

n77- MaxPageRankCentralNode = VertexList[graph][[Position[PageRankCentrality[graph],
Max [PageRankCentrality[graph]]][[111]];
HighlightGraph[graph, MaxPageRankCentralNode];

{127}

130 140

Degree Centrality

Printed by Wolfram Mathematica Student Edition

6 | lab4_graph1_analysis.nb

n79)- MaxDegreeCentralNode = VertexList[graph][[Position[DegreeCentrality[graph],
Max [DegreeCentrality[graph]]][[111]];
HighlightGraph[graph, MaxDegreeCentralNode];

(127}

90 130 140

Closeness Centrality

nsi- MaxClosenessCentralityNode = VertexList[graph][[Position[ClosenessCentrality[graph],
Max [ClosenessCentrality[graph]]][[111]];
HighlightGraph[graph, MaxClosenessCentralityNode];

{127}

Printed by Wolfram Mathematica Student Edition

lab4_graph1_analysis.nb | 7

Betweenness Centrality

na- MaxBetweenessCentralityNode = VertexList[graph][[Position[BetweennessCentrality[graph],
Max [BetweennessCentrality[graph]]][[111]];
HighlightGraph[graph, MaxBetweenessCentralityNode];

{15}

Printed by Wolfram Mathematica Student Edition

8 | lab4_graph1_analysis.nb

169173

EigenVector Centrality

nesi- MaxEigenVectorCentralityNode = VertexList[graph][[Position[EigenvectorCentrality|[graph]
Max [EigenvectorCentrality[graph]]][[111]];
HighlightGraph[graph, MaxEigenVectorCentralityNode];

{15}

Printed by Wolfram Mathematica Student Edition

lab4_graph1_analysis.nb | 9

169173

Clustering Coefficient

ne7- MaxClusterNode = VertexList[graph][[Position[LocalClusteringCoefficient[graph],
Max [LocalClusteringCoefficient[graph]]][[111]];
HighlightGraph[graph, MaxClusterNode];

{95}

Printed by Wolfram Mathematica Student Edition

10 | lab4_graph1_analysis.nb

169173

239

Adjacency Matrix Heatmap, Non-Normalized Laplacian (Kirchoff), Affinity Matrix

Plotting the heatmap of the adjacency matrix is a common way to visualize a network, it is especially effective when the
node partitons are ordered based on node-ids. In our case the partitions are perfectly ordered sequentially on the node ids
so the heatmap gives a good indication of the number of clusters.

There exists multiple versions of the Laplacian matrix with small modifications, the Kirchoff matrix is one of them. The
affinity matrix is computed as the Jordan Decomposition of the Adjaceny matrix. There are many spectrums that are useful
for graph analysis, including the spectrum of the adjacency matrix, the transition matrix and the Laplacian matrix. However,
the Laplacian matrix is the most useful for reasoning about the connectivity of the graph as well as its clustering.

In[89]:= MatrixPlot[A];
kirchoffLaplacianMatrix = KirchhoffMatrix[graph];
MatrixPlot[kirchoffLaplacianMatrix];
{affinityMatrix, s} = JordanDecomposition[N[Transpose[A]]];
MatrixPlot[affinityMatrix];

Printed by Wolfram Mathematica Student Edition

lab4_graph1_analysis.nb | 11

1 50 100 150 200 241
T

50 K- - 50
| | - n
N
gk = =
L -
- - n
100 = = | | - 100
1 | =
] -.l
= .
150 II.D - 150

..

. '!'is'

200 - g 1200
241 g Hoa1

1 50 100 150 200 241
Adjacency Matrix plot
1 50 100 150 200 241
1 [T T T T T] 1
50 -50
"=
n
100 - " 4100
150 - "n 150
"
"

200 -' 'n -200
241 | | | | 11241

1 50 100 150 200 241

KirchoffLaplacian Matrix (not normalized)

Printed by Wolfram Mathematica Student Edition

12 | lab4_graph1_analysis.nb

241

200

150

50

200

100

Affinity Matrix Plot

Degree Matrix, Simple Laplacian

The Degree Matrix D is a diagonal matrix with the degree of each node i on the diagonal (i,i). Here I also compute the simple

Laplacian matrix which is L

=D-A.

Dimensions[A];

{n,n}

In[94]:

DegreeMatrix

ConstantArray[0, {n,n}];

Total[A[[1]]]];

1, 4 <= n, fes, Degreematrix[[1,1]]

For['i

MatrixPlot[DegreeMatrix];

= DegreeMatrix - Aj;

simpleLaplacian

MatrixPlot[simpleLaplacian];

Printed by Wolfram Mathematica Student Edition

lab4_graph1_analysis.nb | 13

1 50 100 150 200 241
n : \ \ \ \ =R
50 - . -150
100 - - 100
.,
150 - - 150
.H.H.
200 - - —200
H-
.\.'\'\.
241 | | | | 17241
1 50 100 150 200 241

Degree Matrix Plot

1 50 100 150 200 241
b - \ \ \ \ =k
50 - T 450
100 - —100
i ",
150 - - 150
‘hﬂu
200 - K —200
h-
l\.'\'\.
241, | | | | 17241
1 50 100 150 200 241

Simple Laplacian Matrix Plot

Printed by Wolfram Mathematica Student Edition

14 | lab4_graph1_analysis.nb

EigenGap of Simple Laplacian and Fiedler Vector

In the Laplacian we know that A; = 0 with a corresponding eigenvector v; = [1, ..., 1]. This follows from the fact that the rows
and the columns of the Laplacian sum up to 0 (each row contains number of -1 as number of neighbors plus one entry on the
row which is the degree of the node). Further more we can tell by analyzing the higher-order eigenvalues how many connected
components the graph has and whether it is a good expander or not. In our case A; = A, = A3 = A, = 0 which means that the
graph has 4 connected components. We also know from spectral graph theory that A, < ,which is in concordance with our
results below. Furthermore, by looking at the eigen-gap between A,and Aswe can tell whether it is close or not that there is a fifth
disconnected component, and we can see that the fifth components seems to be quite well connected since the eigen-gap is
quite large.

Finally, the eigenvector associated with A,, also know as the “Fiedler Vector”, can give a bi-partition of the graph. The Fiedler
does not indicate the k-clusters but it can indicate the optimal 2-clusters (and if applied recursively it can even find k clusters,
but typically to exploit higher order eigenvectors is a better approach).

In[179]:= {smallestEigenvals, smallestEigenVecs} = Eigensystem[N[simpleLaplacian]|, -10];
ListPlot[Reverse[Chop[smallestEigenVals]], AxesLabel-{"ith smallest eigenvalue","value"
fiedlerVector = smallestEigenVecs[[-2]];

ListLinePlot[Sort[fiedlerVector]|, AxesLabel-{"node","value in fiedler vector"}];

value

1.5+ (]

1.0+

- ——————— 1 jth smallest eigenvalue
2 4 6 8 10

We can see that there is a gap between the 4th smallest eigenvalue and the 5th small-
est of the simple Laplacian. This indicates that there are 4 clusters.

Printed by Wolfram Mathematica Student Edition

lab4_graph1_analysis.nb | 15

value in fiedler vector

I ! S 1O e
L 50 100 150 200

-0.02 }

-0.04

-0.06

-0.08

O
Sorted Fiedler Vector plot, gives a near optimal 2-way partitioning by assigning nodes
to partitions based on their index in the Fiedler vector and the sign of the value in the
vector.

Ng, Jordan, & Weiss Laplacian

As mentioned, there are many variants of the laplacian matrix used in different contexts, they all have the same basic characteris-

tics/and differ only slightly. In the code snippet below the Laplacian of the Ng, Jordan & Weiss paper is computed as L =
Dfl 2 AD71 2

In[104]:= k = 4;
{n,n} = Dimensions[A];
njwLaplacian = MatrixPower [DegreeMatrix,-(1/2)].(A.MatrixPower[DegreeMatrix, -(1/2)]);
MatrixPlot[njwLaplacian];

Printed by Wolfram Mathematica Student Edition

16 | lab4_graph1_analysis.nb

1 50 100 150 200 241
T T T T T T
1*:-__-_. Lo =41
T :
L - ' i
' , o .'-_ .- '.-- -:.'
50 - TR R 450
PR
e v '-r__ L -
- .:_ - _."_ : . .
b ...I'iT.- .l:
100 .00 e e e 100
B L .

150 150

200 200

241 | | 241
1 50 100 150 200 241

Ng, Jordan, & Weiss Laplacian
Ng, Jordan, & Weiss Spectral Clustering

Here the bulk of the algorithm in the paper is implemented.
1. Decide k, we chose k = 4 since this was obvious from the preprocessing, e.g there are 4 connected components for instance.
. The eigendecomposition of the Laplacian is computed
. Xis formed as a matrix with columns being the k largest eigenvectors
. Define Y as X with all columns normalized to unit length
. Cluster Y with K-means (a row in Y is considered as a datapoint to cluster)

(=2 J*1 B I U]

. Assign the original datapoints (from the adjacency matrix) to their clusters based on what their corresponding row in Y was
clustered as.

In[108]:= k = 4;
{largestEigenvals, largestEigenVecs} = Eigensystem[N[njwLaplacian],4];
X = Transpose|largestEigenVecs];
MatrixPlot[X];
{rows,cols} = Dimensions[X];
Y = ConstantArray[@, {rows,cols}];
For[i = 1, 1 <= cols, i++, Y[[All,i]] = Normalize[X[[All, i]]]];
clusters = ClusteringComponents[Y,k,l, Method- "KMeans“];

ListPlot[clusters, AxesLabel-{'"node","cluster"}];

Printed by Wolfram Mathematica Student Edition

lab4_graph1_analysis.nb | 17

cluster

4+ D
3 L]

2 D

L L L L node
50 100 150 200

As can be seen from the plot , the 4 clusters found by the spectral clustering are:
Cluster 1: Approximately 0-120
Cluster 2 : Approximately: 120-170
Cluster 3 : Approximately: 170-210
Cluster 4: Approximately: 210 -241

Test clustering with “wrong” k

In[117]:= k = 33
clusters = ClusteringComponents[Y,k,l, Method- "KMeans"|;
ListPlot[clusters, AxesLabel-{"node","cluster"}];
k = 23
clusters = ClusteringComponents[Y,k,l, Method- "KMeans"];
ListPlot[clusters, AxesLabel-{'"node","cluster"}];
k = 53
clusters = ClusteringComponents[Y,k,l, Method- "KMeans"|;
ListPlot[clusters, AxesLabel-{"node","cluster"}];
k = 63
clusters = ClusteringComponents[Y,k,l, Method- "KMeans"];

ListPlot[clusters, AxesLabel-{'"node","cluster"}];

Printed by Wolfram Mathematica Student Edition

18 | lab4_graph1_analysis.nb

cluster
3.0[camm———
25}
20 oaE—
15F
1.0_ caEEE————
0.5-
[| [[L node
50 100 150 200
k=3
cluster
20 CEEEEE——
1.5
1.0 CEEEEE———
0.5
node
50 100 150 200
k=2
cluster
5F cau——
4l caEE——
3k caEEE————
2 [ocmnamese® ¢ waes e ¢
190 ©eens cEINDeENNDED °
I
50 100 150 200
k=5

Printed by Wolfram Mathematica Student Edition

lab4_graph1_analysis.nb | 19

cluster
6 P
50 - o
4} - oewm
3 cEsss——
2 eEsamas® 0 ees wwe o
106 ©uens cumsennmmE—= °
[| L L L node
50 100 150 200
k =6

Printed by Wolfram Mathematica Student Edition

ID2222 Data Mining

Homework 4: Graph Spectra
Graph 2

Kim Hammar
KTH Royal Institute of Technology

Konstantin Sozinov
KTH Royal Institute of Technology

Graph Import

ne471- SetDirectory[NotebookDirectory[]];
edgelList = Import["example2_clean.csv","Data"];

graph = Graph[D'irectedEdge@@@ edgeList,VertexLabels-"Name"|;

General Graph Properties

Edge Count

Printed by Wolfram Mathematica Student Edition

2 | lab4_graph2_analysis.nb

In[250]:= EdgeCount [graph] g
2418
Vertex Count
nesi- VertexCount[graph];
100
Degree Distribution
nes2- Histogram|[VertexDegree[graph],{1},"Probability",AxesLabel-{"degree","probability"}];

ListLoglLogPlot [GroupBy[VertexDegree[graph]|, Count], AxesLabel-{"count","degree"}];

degree
o
*
50+ @
§ o o
ooog
2
v v v Y V Y VVVVY
° o ° ® © O O O 000 0000000000000
o o o O O O O O O O0000O00COOOcAITID
10 ¢ < < O OO OO0V
v v V V V VVVVVVV
[] | [] HE E EEEN
5,
A A A A A A AAAAAA
7Y L L L L COUnt
1 2 5 10 20

Log-Log plot over degree distribution to do a rough test for powerlaw. The distribution
has some linear tendency but not clear enough to be powerlaw.

In[254]:=

Printed by Wolfram Mathematica Student Edition

In[255]:=

In[256]:=

In[257]:=

probability

0.12

0.10

0.08

0.06

0.04

0.02f

0.00
3

TiT

35

Ll

40 45 50 55

Global Clustering Coefficient

GlobalClusteringCoefficient[graph];

3649

9580

Graph Communities

Communities Count

Length[FindGraphCommunities[graph]];

2

Communities Plot

CommunityGraphPlot|[graph];

Printed by Wolfram Mathematica Student Edition

degree

lab4_graph2_analysis.nb |3

4| lab4_graph2_analysis.nb

Graph Spectra

Graph Spectra

nesei- A = AdjacencyMatrix[graph] ;
{eigenvals,eigenVecs} =Eigensystem[N[A]];

Node Centralities

PageRank Centrality

nze0)- MaxPageRankCentralNode = VertexList|[graph]|[[Position[PageRankCentrality[graph],
Max [PageRankCentrality[graph]|]][[111]];
HighlightGraph[graph, MaxPageRankCentralNode];

Printed by Wolfram Mathematica Student Edition

In[262]:=

In[264]:=

lab4_graph2_analysis.nb

Degree Centrality

MaxDegreeCentralNode = VertexList[graph][[Position[DegreeCentrality|[graph],
Max[DegreeCentral‘ity[graph]]] [[1]11]]] 3
H-ighl'ightGraph[graph, MaxDegreeCentralNode];

Closeness Centrality

Printed by Wolfram Mathematica Student Edition

6| lab4_graph2_analysis.nb

nzes)- MaxClosenessCentralityNode = VertexList[graph][[Position[ClosenessCentrality[graph],
Max [ClosenessCentrality[graph]]][[111]];
HighlightGraph[graph, MaxClosenessCentralityNode];

Betweenness Centrality

nee7i- MaxBetweenessCentralityNode = VertexList[graph][[Position[BetweennessCentrality[graph],
Max[BetweennessCentrality[graph]]][[1]]]];
HighlightGraph[graph, MaxBetweenessCentralityNode];

{15}

EigenVector Centrality

Printed by Wolfram Mathematica Student Edition

lab4_graph2_analysis.nb |7

nzeo)- MaxEigenVectorCentralityNode = VertexList[graph][[Position[EigenvectorCentrality|[graph]
Max [EigenvectorCentrality[graph]]][[111]];
HighlightGraph[graph, MaxEigenVectorCentralityNode];

Clustering Coefficient

nz7i)- MaxClusterNode = VertexList[graph][[Position[LocalClusteringCoefficient|[graph],
Max [LocalClusteringCoefficient[graph]]][[11]1]];
HighlightGraph[graph, MaxClusterNode];

Adjacency Matrix Heatmap, Non-Normalized Laplacian (Kirchoff), Affinity Matrix

Plotting the heatmap of the adjacency matrix is a common way to visualize a network, it is especially effective when the node

partitons are ordered based on node-ids. In our case (unlike the first example graph) there is no correlation between node-ids
and the partitions, thus the adjacency matrix is not as informative as it was for example graph 1

There exists multiple versions of the Laplacian matrix with small modifications, the Kirchoff matrix is one of them. The affinity
matrix is computed as the Jordan Decomposition of the Adjaceny matrix. There are many spectrums that are useful for graph

analysis, including the spectrum of the adjacency matrix, the transition matrix and the Laplacian matrix. However, the Lapla-

cian matrix is the most useful for reasoning about the connectivity of the graph as well as its clustering.

Printed by Wolfram Mathematica Student Edition

8 | lab4_graph2_analysis.nb

In[273]:=

MatrixPlot[A];

kirchoffLaplacianMatrix = KirchhoffMatrix[graph];
MatrixPlot [kirchofflLaplacianMatrix];

{affinityMatrix, s} = JordanDecomposition[N[Transpose[A]]];

MatrixPlot[affinityMatrix];

1 20 40 60 80 100
1L T T T T Ty
20 - 120
40 - 140

s

"

b

100 - | | | | 11100

1 20 40 60 80 100

KirchoffLaplacian Matrix (not normalized)

Printed by Wolfram Mathematica Student Edition

lab4_graph2_analysis.nb |9

Affinity Matrix Plot

Degree Matrix, Simple Laplacian
The Degree Matrix D is a diagonal matrix with the degree of each node i on the diagonal (i,i). Here I also compute the simple
Laplacian matrix whichisL=D - A.

In[278]:= {n,n} = Dimensions[A];
DegreeMatrix = ConstantArray[0, {n,n}];
For[i = 1, i <= n, i++, DegreeMatrix[[i,i]] = Total[A[[i]]]];
MatrixPlot[DegreeMatrix];
simpleLaplacian = DegreeMatrix - A;
MatrixPlot[simpleLaplacian];

Printed by Wolfram Mathematica Student Edition

10 | lab4_graph2_analysis.nb

1 20 40 60 80 100
1F \. T T T T P
20+ -120
40 - -140

60 - "-.__---. 460

80 -180
,
100, | | | | 7100
1 20 40 60 80 100
Degree Matrix Plot
1 20 40 60 80 100
1L T T T T 1
20 —20
40 140

60 - "-.__---. 60

80 -180

™,

B

100 ..-....'

L | | | | 1100

1 20 40 60 80 100

Simple Laplacian Matrix Plot

EigenGap of Simple Laplacian and Fiedler Vector

In the Laplacian we know that A; = 0 with a corresponding eigenvector v; = [1, ..., 1]. This follows from the fact that the rows
and the columns of the Laplacian sum up to 0 (each row contains number of -1 as number of neighbors plus one entry on the
row which is the degree of the node). Further more we can tell by analyzing the higher-order eigenvalues how many connected
components the graph has and whether it is a good expander or not. In our case A; = 1, = 0 which means that the graph has 2
connected components. We also know from spectral graph theory that A,, < ;which is in concordance with our results below.
Furthermore, by looking at the eigen-gap between A,and Aswe can tell whether it is close or not that there is a third discon-
nected component, and we can see that the third component seems to be quite well connected since the eigen-gap is quite large.

Printed by Wolfram Mathematica Student Edition

lab4_graph2_analysis.nb | 11

Finally, the eigenvector associated with A,, also know as the “Fiedler Vector”, can give a bi-partition of the graph. The Fiedler
does not indicate the k-clusters but it can indicate the optimal 2-clusters (and if applied recursively it can even find k clusters,
but typically to exploit higher order eigenvectors is a better approach).

{smallestEigenvals, smallestEigenVecs} = Eigensystem|[N[simpleLaplacian]|, -10];
ListPlot[Reverse[Chop[smallestEigenVals]]|, AxesLabel-{"ith smallest eigenvalue","value"
fiedlerVector = smallestEigenVecs[[-2]]};

ListLinePlot[Sort[fiedlerVector], AxesLabel-{"node","value in fiedler vector"}];

value
[
L ° o [} b
15 i
L ° *
10+
5,
r °
¢ —— 1 - 1 L1 jthsmallest eigenvalue
2 4 6 8 10

We can see that there is a gap between the 2th smallest eigenvalue and the 3th small-
est eigenvalue of the simple Laplacian. This indicates that there are 2 clusters.

value in fiedler vector
0.15

0.10

0.05

node

60 80 100

-0.05

-0.10

Sorted Fiedler Vector plot, gives a near optimal 2-way partitioning by assigning nodes
to partitions based on their index in the Fiedler vector and the sign of the value in the
vector.

Ng, Jordan, & Weiss Laplacian

As mentioned, there are many variants of the laplacian matrix used in different contexts, they all have the same basic characteris-

tics /and differ only slightly. In the code snippet below the Laplacian of the Ng, Jordan & Weiss paper is computed as L =
D—l 2 AD—I 2

Printed by Wolfram Mathematica Student Edition

12 | lab4_graph2_analysis.nb

In[288]:=

k = 2;

{n,n} = Dimensions[A];

njwLaplacian = MatrixPower [DegreeMatrix,-(1/2)].(A.MatrixPower[DegreeMatrix, -(1/2)]);
MatrixPlot[njwLaplacian];

20

40

60

80

100

Ng, Jordan, & Weiss Laplacian

Ng, Jordan, & Weiss Spectral Clustering

Here the bulk of the algorithm in the paper is implemented.

1.

. The eigendecomposition of the Laplacian is computed

S Gk W

Decide k, we chose k = 2 since this was obvious from the preprocessing, e.g there are 2 connected components for instance.

. Xis formed as a matrix with columns being the k largest eigenvectors
. Define Y as X with all columns normalized to unit length
. Cluster Y with K-means (a row in Y is considered as a datapoint to cluster)

. Assign the original datapoints (from the adjacency matrix) to their clusters based on what their corresponding row in Y was

clustered as.

In[292]:=

k = 2;

{largestEigenVals, largestEigenVecs} = Eigensystem[N[njwLaplacian],4];
X = Transpose|[largestEigenVecs];

MatrixPlot[X];

{rows,cols} = Dimensions[X];

Y = ConstantArray[0, {rows,cols}];

For[i = 1, i <= cols, i++, Y[[All,i]] = Normalize[X[[All, i]]]];
clusters = ClusteringComponents[Y,k,l, Method- "KMeans"];

ListPlot[clusters, AxesLabel-{'"node","cluster"}];

Printed by Wolfram Mathematica Student Edition

lab4_graph2_analysis.nb | 13

cluster
AR Y X X'y ‘T ¥r! 1 T T J

1.0“. o ® e o o®e o o o
05

20 40 60 80 100

As can be seen from the plot , the 2 clusters have quite mixed node-ids. One cluster is
larger than the other.

node

Test clustering with “wrong” k

Printed by Wolfram Mathematica Student Edition

14 | lab4_graph2_analysis.nb

In[301]:= k = 33
clusters = ClusteringComponents[Y,k,l, Method- "KMeans"];
ListPlot[clusters, AxesLabel-{'"node","cluster"}];
k = 43
clusters = ClusteringComponents[Y,k,l, Method- "KMeans"|;
ListPlot[clusters, AxesLabel-{"node","cluster"}];
k = 53
clusters = ClusteringComponents[Y,k,1, Method- "KMeans"];
ListPlot[clusters, AxesLabel-{'"node","cluster"}];
k = 6;
clusters = ClusteringComponents[Y,k,l, Method- "KMeans"|;

ListPlot[clusters, AxesLabel-{"node","cluster"}];

cluster
30w ® ®e o oo o o o
25}
20[0 0@ co® wmeome am® oo ® oan oo
1.5F
1000 © GEIN® 000 ©WOD CRWENIM WNI00
0.5F
L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 node
20 40 60 80 100
k=3
cluster
4 oo omee amam» o e
3 (1) ooam® ¢ e oo
i me ® o o eeeo o ° 0
10 ®ancmom ee ° mem ane
L 1 L L L 1 L L L 1 L L L 1 L L L 1 node
20 40 60 80 100
k=4

Printed by Wolfram Mathematica Student Edition

lab4_graph2_analysis.nb | 15

cluster
5[coam® 0w o omn oo
4t) wme ome o e)
Jme® e o eee o oo
2o @ com wmee (X
10 ¢ ® ewe@ L) ane
L L L L L L L L L L L L L L L L L L node
20 40 60 80 100
k=5
cluster
6) oo o oooe
5F comm®@eo o a oo
4t ° me ® ®e @0
jfme @ @ o eo o o o0
oo @ com ames (X}
19 o ® ew@®] ane
1 1 1 1 1 node
20 40 60 80 100
k =6

Printed by Wolfram Mathematica Student Edition

Homework 5: K-way Graph Partitioning Using JaBelJa

Konstantin Sozinov, sozinov@kth.se
Kim Hammar, kimham@kth.se

December 12, 2017

1 Introduction

The main algorithm can be found in the Jabeja.java file. We implemented the Ja-Be-Ja distributed
graph partitoning algorithm in Java, following the given template code as well as the pseudo-code
in the paper. This report includes evalautions of the algorithm on three graphs: add20, elt3 and
twitter. The evaluations indicate that different parameters of the algorithm are suitable for each
of the graphs in a number of metrics: convergence time, edge-cut, swaps, and node-migrations.
Finally, we implemented our own extension to the simulated annealing of Ja-Be-Ja and demonstrate
some interesting results.

The algorithm is vertex-parallel. Each vertex performs local search to improve the partition-
ing by minimizing the edge cuts locally. Formally, the local search of node p tries to minimize
arg min, ZveNp d, — dy(c), where N, is the neighborhood of p, d, = |N,|, and d,(c) is the num-
ber of neighbors with color c. Each vertex only has access to its local view of nodes and edges
in the graph, and attempts to swap colors with its neighbors to improve its local situation, and
(hopefully) also improve the global partitioning. The global edge-cut size is also denoted as the
energy of the system. Ja-Be-Ja is an heuristic algorithm based on a portion of randomness when
using simulated annealing. Ja-Be-Ja does not provide any upper or lower bound guarantees on
the resulting partitions. Nodes only swap colors if it reduces their local energy. There are three
policies to select nodes for swapping: random, local, and uniform. A node will go through all its
selected nodes and see which one is best to swap with for each iteration.

To escape local minimas, Ja-Be-Ja utilizes simulated annealing. The basic simulated annealing
outlined in the paper uses a temperature factor T, when T' > 1 swap-decisions are biased towards
swapping rather than not-swapping, even if it could increase the energy of the system. 7T is
reduced over time until it reaches 1. The second version of simulated annealing uses the technique
outlined in a blog post '. To summarize, this approach to simulated annealing goes over all
neighboring solutions and selects the best solution using the following formula for acceptance
probability, ap = P Furthermore, we also implemented this technique using restarts,
meaning that when 7" = 0 it is reset back to 1.

Finally, our own version of simulated annealing got inspiration from the Momentum technique,
known to improve Gradient Descent convergence time. Formally we use momentum as follows:

momentum = maz (0, p - (), — D))

cold—(cnew —momentum)

ap =e

Where p is the momentum coefficient. When using momentum we did not use any restarts of
T.
2 Evaluation and results

For all tasks we used the hybrid selection policy as that was presented as the best policy in the
paper. Additionally we tried to stick to the values of o and § that performed best in the paper.

Ihttp://katrinaeg.com/simulated-annealing.html

http://katrinaeg.com/simulated-annealing.html

2.1 Task 1 - Linear Simulated Annealing, no restarts, no randomness

graph

delta

T

edge-cut

rounds

swaps

migrations

partitions

converge

alpha

policy

add20
3elt
twitter

0.003
0.003
0.003

2000

2
2
2

2095
2604
41156

1000
1000
1000

1090263
1580209
899515

1751
3328
2049

4
4
4

outpuk/3elt . graph_NS_HYBRID_GICP_ROUND_ROBIN_T_2.0_0_0.003_RNSS_3_URSS_6_A_2.0_R_1000.txt

yes
yes
yes

2000
7000
6000 —
5000 —

Edge Cut

Suaps

Migrations

Edge Cut

Suaps

Migrations

4000
3000
2000
1000

o

T
Edge-Cut

o

1.6e408

1.de+08

1.2e408

1e+0g

FO0000

00000

400000

200000

o

3500

100 200

300

400 500
Rounds

600 700

800

Suaps

100 200

300

400 500

Rounds

600 700

800

300

1000

o W

2500

2000

1500

1000 =

Son —

FTgratIon

5000

100 200

300

autput/adid20.2raph_NS_HVBRID_GICE
T T

ano 500
Rounds

600 700

Figure 1: 3elt

800

P_ROUND_ROBIN_T_2.0_D_0.003_RNSS_3_URSS_6_A_2.0_R_1000.txt
T

900

1000

4500
4000
3500
3000
2500
2000 -
1500 -
1000
500

o

T
Edge-Cut

o

1.2e408

1e+06

FO0000

00000

400000

200000

o

1800

100 200

300

400 500
Rounds

600 700

800

Suaps

100 200

300

400 500

Rounds

600 700

800

300

1000

1600
1400 —
1200 -
1000 =
800
£o0 —
q00
200

T
Migrations

ano 500
Rounds

600 700

Figure 2: add20

800

900

2
2
2

hybrid
hybrid
hybrid

Edge Cut

Suaps

Nigrations

oubput/tuither . grapt
T

h_NS_HYERID_GICP_ROUND_ROBIN_T_2.0_D_0.003_RNSS_3_URSS_6_A_Z.0_R_1000 . txt

140000

120000

100000

0000

60000

40000

20000 |-

o

T
Edge-Cut

200000

dox

0 500
Rouncts

600

700

200

900

200000
700000
00000
00000
400000
300000
200000

100000

o

Swaps

don

0 500
Rauncts

00

700

200

900

2500

BT e

1500

1000 —

500

T
Migrations

a00

500
Rounds

600

Figure 3: twitter

700

800

900

1000

What can be noted about these results are that the algorithm converged early and to a bad
solution (local optima) in all three cases.

2.2 Task 2.1 - Linear Simulated annealing, no restarts, randomness and
acceptance probability

graph delta T edge-cut rounds swaps migrations partitions converge alpha policy
3elt 0.003 1 2190 1000 103586 3274 4 yes 2 hybrid
add20 0.003 1 2060 1000 373826 1745 4 yes 2 hybrid
twitter 0.003 1 41115 1000 48804 2046 4 yes 2 hybrid

Edge Cut

Suaps

Nigrations

Edge Cut

Suaps

Nigrations

output/Jelt .graph_NS_HYBRID_GICP_ROUND_ROBIN_T_1.0_0_0.003_RNSS_3_URSS_6_A_2.0_R_1000.txt
T

2000
8000
7000
G000
5000 —
4000
3000 —
2000
1000 =

T
Edge-Cut ——

e

120000

100000

80000

60000

40000

20000

s

200 300 400 500 00 700 00
Rounds

900

1000

Swaps

200 300 400 500 00 700 200
Rauncts

900

1000

3500

3000

2500

2000

1500

1000

500

200 300 a00 500 600 700 800
Rounds

Figure 4: 3elt

output/add2 .graph_NS_HVBRID_BICP_ROUNO_ROBIN_T_1.0_D_0.003_RNSS_3_URSS_6_A_Z.0_R_1000.txt

900

1000

4500
4000
3500
3000
2500
2000 -
1500
1000

T
Edge-Cut ——

400000
350000
300000
250000
200000
150000
100000

50000

o

100

200 300 400 500 00 700 00
Rounds

900

1000

Swaps

0

100

200 300 400 500 00 700 200
Rauncts

900

1000

1800 :
1600 W}Wkp—_‘_—

1400
1200
1000
800
600
400

—— T L

T
Higrations

100

200 300 a00 500 600 700 800
Rounds

Figure 5: add20

900

1000

output/tuitter.graph_NS_HYBRID_GICP_ROUND_ROBIN_T_1.0_0_0.003_RNSS_3_URSS_6_A_Z.0_R_1000. txt
T T T T T T

120000 T

T
Edge-Cut
100000 - R

80000 |- ~

E0000 \L —

40000 |-

Edge Cut

20000 |- —

0 100 200 300 00 500 600 700 200 900 1000
Rouncts

Suaps

o 100 200 300 400 500 00 700 200 900 1000
Raunds

T
Migrations

Nigrations

1 1 I 1 I I 1 I I
o
[100 200 300 a00 500 600 700 800 900 1000
Rounds

Figure 6: twitter

What can be noted about these results are that the new simulated annealing technique gave a
lot better results on 3elt, but almost the same results on add20 and twitter graphs. Furthermore
the algorithm converged in all cases (local optima problem again).

2.3 Task 2.2 - Linear Simulated annealing with restarts, randomness
and acceptance probability

graph delta T edge- rounds swaps migrations partitions converge alpha policy restart
cut

3elt 0.003 1 2037 1000 4463446 3296 4 no 2 hybrid 1

add20 0.003 1 2348 1000 2303961 1746 4 no 2 hybrid 1

twitter 0.003 1 41147 1000 2494681 2049 4 yes 2 hybrid 1

Edge Cut

Suaps

Nigrations

Edge Cut

Suaps

Nigrations

2000
8000
7000
G000
5000
4000
3000
2000
1000

output/Jelt .graph_NS_HYBRID_GICF.

_ROUND_ROBIN_T_L.0_D_0.003_RNSS_3_URSS_6_A_2.0_R_1000.txt
T

T
Edge-Cut ——

4.5e408

de+06

3.5e+06

3e+06

2.5e408

Ze+06

1.5e+06

1e+06

500000

3500

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

1500

1000

500

o

100

200 300 400

500 00 700 00
Rounds

900 1000

o

100

200 300

400

500 £00 700 00
Raunes

900 1000

100

200 300 a00

500 600 700 800
Rounds

Figure 7: 3elt

output/add2 .graph_NS_HVBRID_BICP_ROUNO_ROBIN_T_1.0_D_0.003_RNSS_3_URSS_6_A_Z.0_R_1000.txt

900 1000

T
Edge-Cut ——

2.5e408

Ze+06

1.5e408

1e+0g

Son0a0

1800
1600
1400
1200
1000
800
600
400
200

100

200 300 400

500 00 700 00
Rounds

900 1000

Swaps

200 300

400

500 £00 700 00
Raunes

900 1000

T T

L
Nigrations

100

200 300 a00

500 600 700 800
Rounds

Figure 8: add20

900 1000

output/tuitter.graph_NS_HYBRID_GICP_ROUND_ROBIN_T_1.0_0_0.003_RNSS_3_URSS_6_A_Z.0_R_1000. txt
T

120000 T T T T T T

T
Edge-Cut

100000 | R
80000 R
v
s
a
o E000D B
&
2
&
40000 -
20000 - B
o L L L I L I I I I
0 100 200 300 400 500 600 700 300 500 1000
Rauncs
2.5e406 T T T T
Zet06 - B
1.5e406 - B
w
&
H
a
1e+06 [~ R
500000 - 1
o L L I I L I L I I
o 100 200 300 400 500 00 700 800 900 1600
Rounds
2500 T T T T T T
Migrations
2000 r‘m 8
&
£ 1500 - B
be)
&
&
~ 1000 — *
£
500 - B
N 1 1 I 1 I I 1 I I
o 100 200 300 400 500 600 700 600 900 1000
Rounds

Figure 9: twitter

The results demonstrate that adding restarts did not help much without tuning the rest of the
parameters.

2.4 Task 2.3 Exponential simulated annealing with restarts, randomness
and acceptance probability

graph delta T edge- rounds swaps migrations partitions converge alpha policy restart
cut

3elt 0.003 1 2504 1000 4713193 3328 4 no 2 hybrid 1

add20 0.003 1 2471 1000 2392641 1679 4 no 2 hybrid 1

twitter 0.003 1 41327 1000 2636468 2045 4 yes 2 hybrid 1

Edge Cut

Suaps

Nigrations

Edge Cut

Suaps

Nigrations

2000

output/Jelt .graph_NS_HYBRID_GICF.

_ROUND_ROBIN_T_L.0_D_0.003_RNSS_3_URSS_6_A_2.0_R_1000.txt
T

8000
7000
G000
5000
4000
3000
2000
1000 =

T
Edge-Cut ——

100

200 300 400

500 00 700 00
Rounds

900 1000

Se+05
4.5e+08 -
de+06
3.5e406 [~
3e+05 -
2.58406
Ze+0g
1.5e+08 |-
de+0s —
500000 =

Swaps

o

3500

100

200 300

500 £00 700 00
Raunes

900 1000

3000 [~

2500

2000

1500

1000

500

100

200 300 a00

500 600 700 800
Rounds

Figure 10: 3elt

output/add2 .graph_NS_HVBRID_BICP_ROUNO_ROBIN_T_1.0_D_0.003_RNSS_3_URSS_6_A_Z.0_R_1000.txt

900 1000

4000

3500

3000 -

2500

2000

1500

1000

500

T
Edge-Cut ——

2.5e408

100

200 300 400

500 00 700 00
Rounds

900 1000

Ze+06 -

1.5e408 -

1e+0g -

Son000 —

Swaps

100

200 300

500 £00 700 00
Raunes

900 1000

1800

1600 |-
1400
1200
1000
800
600
400

100

200 300 a00

500 600 700 800
Rounds

Figure 11: add20

900 1000

120000
100000 -

80000 |-

E0000 L

Edge Cut

output/tuitter.graph_NS_HYBRID_GICP_ROUND_ROBIN_T_1.0_0_0.003_RNSS_3_URSS_6_A_Z.0_R_1000. txt
T T

T
Edge-Cut ——

40000 |-

20000 |-

o

100

200

300 00 500 600
Rouncts

700

200

900 1000

38406
2.56406 -
26405 [
w
T 1508 -
H
&
1evos [

500000 =

o

Swaps

200

300 400 500 £00
Raunes

700

00

900 1000

2500

2000 r’

1500
2 1000

500

T
Migrations

100

200

300 a00 500 600
Rounds

Figure 12: twitter

700

800

900 1000

The results with exponential simulated annealing without parameter tuning gave consistently

worse results.

2.5 Task 2.4 Linea simulated annealing with restarts, randomness and
acceptance probability - Parameter tuning

graph delta T edge- rounds swaps migrations partitions converge alpha policy restart
cut
3elt 0.000011 1021 10000 42010302 3441 4 no 2 hybrid 1
3elt 0.000011 1208 10000 42541398 3425 4 no 1 hybrid 1
3elt 0.003 1 1011 10000 44596460 3422 4 no 2 hybrid 1
3elt 0.003 1 731 50000 222928227 3435 4 yes 2 hybrid 1
add20 0.000011 2196 10000 22126510 1753 4 no 2 hybrid 1
add20 0.000011 1792 10000 21773341 1757 4 yes 1 hybrid 1
add20 0.003 1 1780 10000 22704110 1734 4 yes 1 hybrid 1
twitter 0.000011 41258 2000 4739316 2046 4 yes 2 hybrid 1
twitter 0.003 1 40841 2000 5000891 2043 4 yes 1 hybrid 1

Edge Cut

Suaps

Nigrations

Edge Cut

Suaps

Nigrations

2000

output/3elt .graph_NS_HYBRID_GICRP_ROUND_ROBIN_T_1.0_0_0.003_RNSS_3_URSS_6_A_2.0_R_50000.txt

8000
7000
G000~
5000 [~
4000
3000
2000
1000 =

T
Edge-Cut ——

2.5e400

ze+08

1.5e408

1e+08

Se+07

3500

3000

2500

2000

1500

1000

5000

10000

15000 20000 25000 30000 35000 40000
Rounds

45000 50000

Swaps

5000

10000

15000 20000 25000 30000 35000 40000
Raunes

45000 50000

Migrations

4500

5000

10000

15000 20000 25000 30000 35000 40000
Rounds

Figure 13: 3elt

outputAadd20 . graph_NS_HYBRID_GICP_ROUND_ROBIN_T_1.0_D_0.003_RNSS_3_URSS_6_A_1.0_R_10000 .txt

45000 50000

4000 —
3500
3000
2500
2000 -
1500
1000
500

T
Edge-Cut ——

2.5e407

1000

2000

3000 4000 5000 £000 7000 2000
Rounds

9000 10000

Ze+07 -

1.5e407 |-

1e+07 -

Se+05 —

Swaps

1800

1000

2000

3000 4000 5000 £000 7000 000
Raunes

9000 10000

1600 f"'___‘u

1400
1200
1000
800
600
400
200

T
figrations

1000

2000

3000 4000 5000 6000 7000 8000
Rounds

Figure 14: add20

10

9000 10000

120000

100000

80000 |-

E0000

Edge Cut

40000

20000

o

P_ROUND_ROBIN_T_1.0_0_0.003_RNSS_3_URSS_6_A_1.0_R_2000 . txt

oubput/tuitber . graph_NS_HYERID_GICH
T T

T
Edge-Cut ——

0

200

400

o0 B0

1000
Rouncts

1200

1400

1600

1800

BE+H0E

Se+06

qe+06

Je+06 -

T
Swaps

200

400

00 200

1000
Raunds

1200

1400

1600

1800

2500

2000

1500

2 1000

500

T
Migrations

200

400

600 800

1000
Rounds

1200

Figure 15: twitter

1400

1600

1600

2000

From these results we can see that by tuning some parameters, primarily alpha, and the number
of rounds, we can greatly improve the partitions on all graphs. Both twitter and add20 gave better

results with o« = 1.

2.6 Bonus Task: Momentum + Simulated Annealing

graph delta T edge- rounds swaps migrations partitions converge alpha policy momentum
cut
3elt 0.003 1 1256 1000 4280889 3420 4 no 2 hybrid 0.001
3elt 0.003 1 5139 1000 4685823 3535 4 no 2 hybrid 10
3elt 0.003 1 1344 1000 4281498 3397 4 no 2 hybrid 0.0001
3elt 0.003 1 697 10000 42315849 3457 4 no 2 hybrid 0.001
3elt 0.003 1 518 50000 210569840 3463 4 yes 2 hybrid 0.001
add20 0.003 1 2095 1000 2294945 1815 4 no 2 hybrid 0.001
add20 0.003 1 1997 10000 22776283 1785 4 yes 1 hybrid 0.00001
twitter 0.003 1 41137 1000 2485027 2034 4 yes 2 hybrid 0.001
twitter 0.003 1 40878 1000 2498748 2035 4 yes 1 hybrid 0.001
twitter 0.003 1 40833 1000 2488748 2041 4 yes 1 hybrid 0.0001
twitter 0.003 1 41436 1000 2490911 2068 4 yes 1 hybrid 0.00001

With the momentum technique we achieved the best results on 3elt! And about the same results
on add20 and twitter. Primarily the momentum improved the convergence time as we can see that
only after 1000 iterations we got pretty good results on 3elt.

3 Conclusion

We got pretty close to the results presented in the paper but still a bit off, this is likely because we
did not tune all parameters, for example we did very little tuning of §, T, «, restart, momentum.
For proper evaluation we could have applied grid search or random search to find the optimal
parameters.

Finally, momentum looks like an promising techniques to improve convergence rate on some

graphs.

11

4 How to run

Clone this repository and navigate to jabeja project. Then use:

/run.sh -graph ./graphs/3elt.graph -rounds 5000 -numPartitions 4 -temp 1
-delta 0.00001 -restart 0.000001 -alpha 1 -nodeSelectionPolicy HYBRID -momentum 0.001

12

https://github.com/Limmen/DataMining

	Solution
	How to run
	Evaluation and results
	Solution (1)
	How to run (1)
	Evaluation and results (1)
	Solution (2)
	Questions
	How to run (2)
	Evaluation and results (2)
	Introduction
	Evaluation and results (3)
	Task 1 - Linear Simulated Annealing, no restarts, no randomness
	Task 2.1 - Linear Simulated annealing, no restarts, randomness and acceptance probability
	Task 2.2 - Linear Simulated annealing with restarts, randomness and acceptance probability
	Task 2.3 Exponential simulated annealing with restarts, randomness and acceptance probability
	Task 2.4 Linea simulated annealing with restarts, randomness and acceptance probability - Parameter tuning
	Bonus Task: Momentum + Simulated Annealing

	Conclusion
	How to run (3)

