Web Intelligence 18 (2020) 53-67
DOI 10.3233/WEB-200428
10S Press

53

Deep text classification of Instagram data
using word embeddings and weak

supervision!

Kim Hammar *, Shatha Jaradat, Nima Dokoohaki and Mihhail Matskin

Department of Software and Computer Systems, KTH Royal Institute of Technology, Stockholm, Sweden
E-mails: kimham@kth.se, shatha@kth.se, nimad @kth.se, misha@kth.se

Abstract. With the advent of social media, our online feeds increasingly consist of short, informal, and unstructured text. In-
stagram is one of the largest social media platforms, containing both text and images. However, most of the prior research on
text processing in social media is focused on analyzing Twitter data, and little attention has been paid to text mining of Insta-
gram data. Moreover, many text mining methods rely on training data annotated manually by humans, which in practice is both
difficult and expensive to obtain. In this paper, we present methods for weakly supervised text classification of Instagram text.
We analyze a corpora of Instagram posts from the fashion domain and train a deep clothing classifier with weak supervision to
classify Instagram posts based on the associated text.

With our experiments, we demonstrate that in absence of annotated training data, using weak supervision to train models is a
viable approach. With weak supervision we were able to label a large dataset in hours, something that would have taken months
to do with human annotators. Using the dataset labeled with weak supervision in combination with generative modeling, an Fj
score of 0.61 is achieved on the task of classifying the image contents of Instagram posts based solely on the associated text,

which is on level with human performance.

Keywords: Instagram, weak supervision, word embeddings, deep learning

1. Introduction

Text processing is present in our everyday life and
empowers several important utilities, such as, machine
translation, web search, personal assistants, and user
recommendations. Today, social media is one of the
largest sources of text, and while social media fosters
the development of a new type of text processing appli-
cations, it also brings with it its own set of challenges
due to the informal language.

Text in social media is unstructured and has a more
informal and conversational tone than text from con-

IThis paper is an extended version of our conference paper “Deep
Text Mining of Instagram Data Without Strong Supervision” pub-
lished in 2018 IEEE/WIC/ACM International Conference on Web
Intelligence (WI).

*Corresponding author. E-mail: kimham @kth.se.

ventional media outlets [3]. For instance, text in social
media is rich of abbreviations, hashtags, emojis, and
misspellings.

Traditional Natural Language Processing (NLP)-
tools are designed for formal text and are less effective
when applied on informal text from social media [28].
This is why recent research efforts have tried to adapt
NLP tools to the social media domain [13]. Moreover,
methods within the intersection of NLP and machine
learning applied to social media have been successful
in information extraction [29], classification [19], and
conversation modeling [27].

Results of the previous work are not enough for our
purposes due to the following reasons: (1) many re-
sults rely on access to massive quantities of annotated
data, something that is not available in our domain;
(2) most of the work is focused on Twitter, with little

2405-6456/20/$35.00 © 2020 — IOS Press and the authors. All rights reserved

mailto:kimham@kth.se
mailto:shatha@kth.se
mailto:nimad@kth.se
mailto:misha@kth.se
mailto:kimham@kth.se

54 K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision

attention to image sharing platforms like Instagram;’
and (3) to the best of our knowledge, no prior assess-
ment of complex, multi-label, classification in social
media has been made.

Acquisition of annotated data that is accurate and
can be used for training text classification models is
expensive. Especially in a shifting data domain like so-
cial media. In this research, we explore the boundaries
of text mining methods that can be effective without
this type of strong supervision. In particular, we evalu-
ate text classifiers trained with a programmatic type of
supervision referred to as weak supervision.

Even if we assume that the main research results
from Twitter will be useful in our research on Insta-
gram, we still should take into account several impor-
tant differences between the two domains. The most
prevalent discrepancies are that Instagram is an image-
sharing medium while Twitter is a micro-blogging
medium, and that Twitter has a character-limit per
tweet.

In this paper, we focus on the task of classifying
Instagram posts into clothing categories based on the
associated text (Fig. 1), it is an extension of a previ-
ous conference paper [15]. The work presented in this
paper is part of a larger research project. The project
aspires to improve the state-of-the-art in fashion rec-
ommendation by employing activities in social media

Unlabeled Instagram Text

©) Deep Model >

Weak Supervision

BIOIO

QOO
6)ofo)
0(010J6)

Open APIs

. Q. ©®
O:0)

LA o o7
OO

Domain knowledge Transfer Learning

Fig. 1. In this paper we investigate methods for training a text clas-
sifier without manually labeled data (strong supervision). Instead,
we use algorithmic labeling of a large text corpora from the fashion
domain on Instagram, and use that dataset to train a deep model to
classify Instagram posts into fashion categories.

2Instagram.oom

and using data crossing multiple domains in the rec-
ommendations [17]. In future work, the text process-
ing methods presented in this paper will be integrated
with computer vision models in the project.

Just as other consumption-driven industries, the
fashion industry has been influenced by the emergence
of social media. Social media is progressively getting
more attention by fashion brands and retailers as a
source for detecting trends, adapting user recommen-
dations, and for marketing purposes [4]. To give an ex-
ample, the image-sharing platform Instagram has be-
come a popular medium for fashion branding and com-
munity engagement [1]. This is why extraction and
classification of fashion attributes on Instagram is an
important task for several modern applications work-
ing with user recommendation and detection of fashion
trends.

In addition to hosting images, Instagram contains
large volumes of user generated text. Specifically, an
Instagram post can be associated with an image cap-
tion written by the author of the post, by comments
written by other users, and by “tags” in the image that
refer to other users. Despite being a platform rich of
text, little prior work has paid attention to the promis-
ing applications of text mining on Instagram. From our
case study on Instagram posts in the fashion commu-
nity, it was revealed that the text often indicates the
clothing on the associated image, an example of this
is given in Fig. 2. We believe that there is a value in
the text on Instagram that currently is unutilized. For
example, the text on Instagram can be mined and used
for predictive modeling and analytics.

Our contribution in this paper includes:

— An empirical study of Instagram text.
— An evaluation of word embeddings trained on In-
stagram text.

.{‘ [y | Following

e Wow &
pe—piy C'est le méme que toi =
bk = -

[SANLNAS man. Where is that coat

from??! | have to have it!!

wsmn g |t's s0000 fluffy I'm gonna diiiiiie
-

=mgn memmr So cozy and noticable & &
———— i == H&M! Sold
out tho =

RSN Beauty & & & &
sy Bista jackan!! = Sa glad jag
fick tag i en ocksa for ett tag sen & s&
fruktansvirt varm dock, méste nastan vénta
pa snd.... Eem——

Fig. 2. An Instagram post from the fashion community.

http://Instagram.com

K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision 55

— A novel pipeline for multi-label clothing classifi-
cation of the text associated with Instagram posts
using weak supervision and the data program-
ming paradigm [26].

Our empirical study provides one of the few available
studies on Instagram text and shows that the text is
noisy, that the text distribution exhibits the long-tail
phenomenon, and that comment sections on Instagram
often are multi-lingual. Moreover, experimental results
demonstrate that the FastText algorithm for training
word embeddings [5], that can capture the morphol-
ogy of words, is also suited for the noisy type of text
that can be found in social media. Finally, we train a
deep text classifier using weak supervision and data
programming. The classifier achieves an F; score of
0.61 on the task of clothing prediction of Instagram
posts based on the text. The accuracy of the classifier
is on level with human performance on the task and
beats a baseline that uses majority voting.

The rest of this paper is structured as follows. In
Section 2 we describe related work, and in Section 3
we present our approach to the problem. In Section 4
we summarize the experimental setup and Section 5
contains the results from our evaluations as well as our
interpretation of the results. Lastly, Section 6 includes
our conclusions and suggestions for future research di-
rections.

2. Related work

Our research extends prior work on learning domain
specific word embeddings (Section 2.1) and weakly
supervised text classification (Section 2.2) working
with informal text from social media.

2.1. Learning domain specific word embeddings

The practice of constructing word embeddings tar-
geted to a specific domain is a relatively new field of
research as most prior research have focused on con-
structing generic word embeddings, not optimized to
a specific domain. Prior work that resembles our ef-
fort in learning word embeddings for the fashion do-
main are (1) [30] introduces word embeddings for the
construction domain; (2) [23] compared embeddings
specific to the biomedical domain with off-the-shelf
embeddings;3 (3) [7] presents a study on the most

30ﬁ"—the—shelf embeddings refers to pre-trained embeddings
available online, trained on generic text rather than domain-specific
text.

important hyperparameters for learning embeddings
for the biomedical domain; (4) [6] trains embeddings
on a corpora of tweets to study transfer of sentiment
across problem domains; (5) [11] presents emoji2vec,
a method for learning word embeddings for emojis;
and (6) [10] propose a supervised method for train-
ing embeddings, with hashtags as a supervision sig-
nal.

Similar to our experiments (1) used a domain-
specific dataset for intrinsic evaluation for embed-
dings. However, they did not tune the hyperparame-
ters, and their evaluation focused on a single set of
off-the-shelf word embeddings. In summary, their re-
sults indicate that off-the-shelf embeddings performed
comparably to domain-specific embeddings on several
tasks.

In (2) an extrinsic evaluation of domain-specific em-
beddings was made, the evaluation compared embed-
dings trained on biomedical text with off-the-shelf em-
beddings on a classification task. Without detailed tun-
ing of hyperparameters, the results indicated that the
domain-specific embeddings only gave a modest im-
provement over the off-the-shelf ones.

In (3) it was found that performance of embeddings
can be notably improved by tuning the hyperparame-
ters, rather than sticking to the default values. More-
over, their results indicate that tuning of hyperparame-
ters can be contradictory between intrinsic and extrin-
sic evaluations.

Our research differ from (1)—(3) by targeting noisy
text from social media, rather than newswire text. The
work in (4)—(6) is similar to ours in that they use
word embeddings in the social domain but differ from
our work in other aspects. In (4) word embeddings
are trained using a corpora of tweets but the study
lacks an comparison of the embeddings trained using
tweets and generic embeddings trained on newswire
text. (5) reports an improved accuracy when training
embeddings directly on Unicode descriptions of emo-
jis, instead of learning the embeddings on a large col-
lection of tweets. Their motivation is, similar to ours,
that off-the-shelf embeddings lack representations for
many tokens that are commonplace in social media.
Finally (6) use hashtags as a supervision signal when
training word embeddings, this results in embeddings
that are similar based on hashtags, which loses fine-
grained word meanings required for the classification
task studied in this paper.

56 K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision

2.2. Text classification without strong supervision

For the task of classifying Instagram text, our re-
search builds primarily on results from supervised ma-
chine learning. The success of this paradigm of ma-
chine learning has traditionally been coupled to anno-
tated datasets. Notable results in supervised text classi-
fication are [18] and [9], both of which differ from our
research in that they assume access to a large annotated
text corpora for training the classifier.

More recently, research on exploiting unlabeled
data for training has received attention. For certain
tasks, completely unsupervised learning is enough,
such as the task of learning word embeddings. For
other tasks, a blend of supervised and unsupervised
learning is appropriate. Semi-supervised and weakly-
supervised learning are two approaches to learning
with limited amount of supervision, while having ac-
cess to an abundant amount of unlabeled data.

2.2.1. Semi-supervised learning

In semi-supervised learning, even though it is as-
sumed that a smaller amount of labeled training data
are available, the goal is to combine that data with a
larger portion of unlabeled data. To train with unla-
beled data, semi-supervised learning makes use of as-
sumptions about the data, such as the data distribution.
With the right assumptions, semi-supervised learning
algorithms are able to relate the unlabeled data with
the labeled data to drive the learning process.

2.2.2. Weakly-supervised learning

Weakly supervised learning methods rely on avail-
ability of weak-supervision signals and do not assume
that any labeled data are available. A weak supervi-
sion signal can for instance be in the form of an exter-
nal API, a crowdworker, or a domain heuristic. As op-
posed to strong supervision, weak supervision seldom
has perfect accuracy or coverage.

Specifically, related to our research is the data pro-
gramming paradigm presented in [26], the paradigm
has achieved promising results on several text clas-
sification tasks. Data programming has been applied
to binary and multinomial text extraction and clas-
sification tasks [25,26] and is currently being used
within Google for training various classifiers [2]. To
the best of our knowledge, it has neither been applied
to multi-label classification tasks, nor to social media
text.

3. Methodology

In Section 3.1 we outline how our analysis of the In-
stagram corpora was performed. Section 3.2 describes
our second contribution, which is an evaluation of
word embeddings trained on Instagram text. Finally,
Section 3.3 presents the pipeline we used to train a
deep text classifier using weak supervision. The code
for the implementations and the trained embeddings
are publicly available.*

3.1. Empirical study of Instagram text

Of special interest in our study was to elucidate how
the Instagram text differs from newswire text, as it af-
fects the choice of processing methods. We analyzed
a corpora of Instagram posts by measuring the frac-
tion of online-specific tokens, the number of Out-Of-
Vocabulary (OOV) words, the number of languages in
the corpora, and the text distribution.

3.2. Learning domain-specific word embeddings

Considering the peculiarity of Instagram text com-
pared to newswire text, we have surveyed the benefit of
training new word embeddings for the fashion domain
on Instagram. We have performed an evaluation of em-
beddings trained on our corpora of Instagram posts us-
ing Word2vec, Glove, and FastText, with varying hy-
perparameters. Parameters that were not tuned in the
evaluation, were kept to their default values, listed in
Table 1.

To examine the difference between domain-specific
word embeddings and generic word embeddings,
the embeddings trained on the Instagram corpora
were compared with the state-of-the-art off-the-shelf

Table 1
Default parameters used when training word embeddings

Parameter Value
Iterations 15
MinCount 5

Learning rate 0.025
Learning rate update rate 100
Minimum n-gram (FastText) 3

Maximum n-gram (FastText) 6

Output layer Hierarchical softmax
Max count (GloVe) 100

4https:// github.com/shatha2014/FashionRec

https://github.com/shatha2014/FashionRec

K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision 57

Generative Model 7, 5(A, Y)

Discriminative Model d

CNN for Text classification

OO

dress =0

coat=1

skirt-o

(O' Labeling Functions 2; Votes v;
) Google CloudPlatform —t jacket,jeans
Here is my SEMCLUSTER st jeans,coat
outfit of the X
day #street- i deepomatic [jeans,shoes
style #me | —> KEYWORDSYNTACTIC —* nil
#canada KEYWORDSEMANTIC —f coatjeans
#goals #chic = clarifai t
.) o coa
#denim == clarirail
DEEPDETECT — coat

6]66]6]6]6]66/61616]

Fig. 3. A pipeline for weakly supervised text classification of Instagram posts.

embeddings, provided by Google, Facebook, and
Stanford’s NLP group. Specifically, the baselines
were: (1) FASTTEXT-WIKI, consisting of embeddings
pre-trained with the FastText algorithm on a corpus
of Wikipedia articles, published by Facebook [5];
(2) WORD2VEC-GNEWS, consisting of embeddings
pre-trained with the Word2vec algorithm on a corpus
of Google news articles, published by Google [14]; (3)
and (4) GLOVE-WIKI, and GLOVE-TWITTER, con-
sisting of embeddings pre-trained with the GloVe al-
gorithm respectively on a corpus of Wikipedia articles,
and tweets, published by the Stanford NLP group [24].

3.3. Clothing classification of Instagram posts

This section presents a pipeline for weakly super-
vised text classification to predict clothing items in
Instagram posts. The pipeline is visualized in Fig. 3
and includes steps devoted to labeling a dataset with
weak supervision (Section 3.3.3), combining weak la-
bels with data programming to produce probabilistic
labels (Section 3.3.2), and training a discriminative
model using the probabilistic labels (Section 3.3.5).

3.3.1. The classification task

Although multiple classifications are of interest in
our research, such as brand classification, and fab-
ric classification, we focus initially on the clothing
item classification problem. This task is a multi-label
multi-class classification problem with 13 classes. The
classes are as follows: dresses, coats, blouses & tu-
nics, bags, accessories, skirts, shoes, jumpers & cardi-
gans, jeans, jackets, tights & socks, tops & t-shirts, and
trouser & shorts.

3.3.2. Data programming

With the data programming paradigm [26], weak su-
pervision is encoded with labeling functions. A label-
ing function is a black-box function A; : x — y VvV 4,
that takes as input a training example x, and outputs a
label y or abstain from labeling. A labeling function is

typically realized through some domain heuristic and
only labels a subset of the data. Naturally, labels pro-
duced by such functions are less accurate than labels
produced by human annotators. However, weak labels
can be complementary to each other. Several weak la-
bels can be combined with the purpose of obtaining
more accurate labels. The innovative part of data pro-
gramming is the way that it learns a generative model
of the labeling process in an unsupervised fashion. The
parameters learned in the generative model can then
be used to combine labels in a more sophisticated way
than majority voting.

Formally, a labeling function X; has a probability S
of labeling an input, and refrain from labeling an input
with probability 1 — . Similarly, a labeling function
has a probability « of labeling an input correctly. The
combination of functions can be modeled as a genera-
tive model 7y g(A, Y). Where A is the output matrix
after applying all of the labeling functions to the unla-
beled data (A; ; = A;(x;)), and Y is the true classes,
modeled as latent variables.

In A, an empirical probability p; ; that two label-
ing functions A; and X ; agrees can be inferred. By us-
ing the observed probabilities of overlap, the accuracy
of each labeling function can be estimated using max-
imum likelihood estimation. Consequently, the prob-
lem of training the generative model and finding the
parameters o and S that best describe the observed
overlaps among labeling functions can be phrased as
the optimization problem defined in Eq. (1), where S
denotes the training set [26].

(&, B) = arg max Z 10g P, ¥)~rq s (A = A(x))
@h yes

ey

Finally, after estimating o and B, the parameter-
ized generative model is used to engender probabilis-
tic (confidence-weighted) training labels p(Y|A) from

58 K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision

the unlabeled data and the output of the labeling func-
tions. When producing the probabilistic labels, more
weight is given to accurate labeling functions, and the
uncertainty of each label is indicated by the probabil-
ity. If labeling functions disagree on a training exam-
ple, this is encoded as an uncertainty by giving the
corresponding label a lower probability. Subsequently,
the probabilistic training labels can be used to train a
discriminative machine learning model in a supervised
manner. As the labels are probabilistic and not binary,
a noise-aware loss function is used when training a dis-
criminative model with such labels. A noise-aware loss
function is a loss function for minimizing the expected
loss with respect to the probabilistic labels.

3.3.3. Weak supervision for fashion attributes in
Instagram posts

We used seven labeling functions to label a dataset
of 30K Instagram posts with fashion attributes. The
purpose of using multiple functions is that we expect
that the combination of functions will improve the ac-
curacy of the supervision compared to what each func-
tion in isolation would provide. The functions are as
follows.

1. A1, a function that uses Google’s Cloud Vision
APP to classify the image associated with the
text.

2. Az, a function using an internally developed
text mining system (SEMCLUSTER) that extracts
fashion details using clustering techniques and a
fashion ontology [15].

3. X3, a function that uses the Deepomatic6 API for
computer vision to classify the image associated
with the text.

4. A4, a function that uses keyword matching to an
ontology with fashion words, using Levenshtein
distance [20].

5. As, a function that uses keyword matching to an
ontology with fashion words, using word embed-
dings and cosine similarity.

6. X¢, a function that uses the Clarifai “Apparel”
model’ to classify the image associated with the
text.

7. A7, a function that uses a pre-trained image-
classifier provided by DeepDetect.?

5 https://cloud.google.com/vision/
6https://www.deepomaticx:om/
Thttps://www.clarifai.com/

8 https://www.deepdetect.com/

Our choice of labeling functions are a mixture of
keyword-based functions (A4, As), heuristic based (A7)
and model-based (A1, A3, Ag, A7). The selection of la-
beling functions was ultimately done based on what
type of supervision were available to us at the time.
The category of functions (keyword-based, heuristic-
based, and model-based) are similar to what is used in-
ternally at Google for training models with weak su-
pervision and the data programming paradigm [2]. It
should be clear that the kind of supervision provided
by the aforementioned labeling functions is scalable
and extremely cheap in comparison with supervision
in the form of human annotations.

3.3.4. Using data programming to combine
multi-labels

In the original data programming paper, a binary
classification scenario is studied and it is assumed that
labeling functions are binary [26]. We have extended
the data programming paradigm from binary classifi-
cation to the multi-label setting. To make use of the
data programming paradigm for multi-label classifica-
tion, we model the labeling process with one genera-
tive model for each class. With this approach, the com-
bination of generative models is able to represent sep-
arate accuracy estimates of the labeling functions for
each class.

Formally, the generative model 7, ﬁ(A(k), Y(k)) is
trained using the observed overlaps between the label-
ing functions applied to the unlabeled data for class k.
In this notation, Al(k]) = (Aj(xi)k, and Y® s the
truth labels for class k&, modeled as latent variables.
Once the generative model is trained, the parameters
learned by the model are used to produce probabilis-
tic labels p(Y O |A®) e R? A p(¥ B |AR); € [0, 1],
for each class k and training example i € {1,...n}.
The probabilistic labels for each class then constitute
as column vectors in a matrix of probabilistic labels
p(Y|A) € R™¥ICI that can be used to train a discrimi-
native model in a supervised fashion (Eq. (2)).

p(Y|A)

p(Y D ADYy, p(rUCh A UChy,

p(rIED|AUCDY,
2)

p(YD AWM,

https://cloud.google.com/vision/
https://www.deepomatic.com/
https://www.clarifai.com/
https://www.deepdetect.com/

K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision 59

In our experiments, we used the Snorkel® implemen-
tation [25] to train the generative models on the un-
labeled data. For completeness, the definition of the
training procedure in Snorkel is presented below.
First, the labeling functions are applied to the un-
labeled data Al(kj) = (A;(x;))k. Then the generative

model is encoded by using a vector qbi(k) (AP y®)y of
factors for each unlabeled data point x; and class k.
The vector contains concatenated values representing
the labeling propensity (encoded with a 1 for each la-
beling function that labeled x;), estimated accuracy of
each labeling function (encoded with a 1 if the function
agrees with the estimated label), and pairwise correla-
tions of labeling functions (a 1 is added if two func-
tions agree with each other). Using these vectors for
each data point and labeling function, as well as a vec-
tor of model parameters w® the model can be defined
as in Eq. (3) [25]. Where Z « is a normalizing con-
stant, and m is the number of unlabeled data points.

P (A(k), Y(k))

m
= Z g exp(D (™) 9" (A%)
i=1

A3)

The parameters of the model w® are learned by min-
imizing the negative log marginal likelihood based on
A® and the latent variables ¥ ®):

w® = argmin — logz P (A(k), Y(k)) 4)
wk) y®

The implementation uses an interleaving of stochas-
tic gradient descent and Gibbs sampling to maxi-
mize the objective [25]. After training, the predic-
tions of the model constitute as the probabilistic labels
Di® (Y ®©1A®) for class k.

3.3.5. Discriminative model

For the discriminative model, we have used a variant
of the Convolutional Neural Network (CNN) model
for text classification presented in [18]. This model
was chosen as it is established as one of the best per-
forming text classifiers for short texts. However, nearly
any model could have been used, the only requirement
is that the loss function can be modified to work with
probabilistic labels.

9https:// github.com/HazyResearch/snorkel

Concatenated and padded/chopped Instagram post € R™

p = new blouse and shoes, see link in bio! & so nice & the shoes!!

@
&
a

sooys
pue
asnojq

MU

Word
Embeddings

} k-grams

> 2 > Filter
Windows

Convolutional Layer
@l xjja—1 +b1)

S
[&]

Feature
Maps

o |
o

Max Pooling
¢ = max(c;)

Fully
connected
layer

S

,, }Sigmoid

layer

3
=
!

,H\,
(]

19SN01) OU «—|
sueafou +—|
sodwinf ou «—|

SALIOSSAIIL OU «—|

Fig. 4. CNN for multi-label text classification.

The neural network architecture in [18] consists of
an embedding input layer, a convolutional layer, and
a fully-connected layer of softmax or sigmoid output
units. Moreover, the architecture employs max-over-
time pooling to detect keywords in the input. The ar-
chitecture is illustrated in Fig. 4 and defined mathe-
matically below.

Embedding and convolutional layers Let p = (w1 ®
w2, ... D wy) € R™ represent an Instagram post
index-encoded with respect to a vocabulary V and
padded or chopped off to a fixed length m. The sym-
bol @ denotes the concatenation operator, and w; de-
notes the i-th word in the concatenated text of caption,
usertags, and user comments.

The first layer is the embedding layer, that serves
as a lookup step, where each word w; is encoded as
its corresponding word embedding w; € RY, and d
is the dimension of the embeddings. The embeddings
are updated as part of training and can either be ini-
tialized randomly or with pre-trained embeddings. Let
x = [Wy,..., w,] € R4 denote the output of the
embedding layer E.

https://github.com/HazyResearch/snorkel

60 K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision

Next is the convolutional layer that performs two-
dimensional convolutions over the sequence of embed-
dings. The convolutional layer consists of n filter win-

dows W = [ry, ..., ry] of variable sizes [k, ..., k,],
ri € R4*ki Each filter is slided across the input, x, to
produce new local feature representations [cy, . . ., ¢,],

called feature maps. During every step when travers-
ing the input, filter ; is applied to a k-gram of length
k;. For each k-gram, the filter applies a non-linearity
¢ (such as ReLu or tanh) to the weighted sum of the
embeddings of the k-gram and the filter weights plus a
bias term b1, producing a scalar output v;.

Let xj.j1xk—1 € R4*k denote a k-gram of consecu-
tive words encoded as their embeddings w;, wily 1, . ..
wjtk—1. With this notation, a filter of size k that is
slided over the entire input of m words will cover the
k-grams G = {X1:k, X2:k+1s - -+ » Xm—k+1m)} A |G| =
m — k + 1. Following these definitions, the steps to
compute a feature map ¢; € RIC! with filter 7; can be
defined as in Eq. (5).

vj = ¢ xjjk—1 +b1) (5)

ci =[vi, ...,y

Output and loss layer After the convolutional layer,
max-over-time pooling [8] is applied to the feature
maps. The max-over-time pooling yields new subsam-
pled features [, .. ., &,], one for each of the n filters,
where ¢; = max(c;). Intuitively, this operation cap-
tures the most significant features. Finally, these fea-
tures are input to a fully-connected layer of |C| soft-
max or sigmoid output units, one for each class.

The original architecture in [18] is designed for the
multi-class setting and uses a softmax output layer.
We have extended the network to the multi-label set-
ting working with probabilistic labels by switching
out the loss function with a noise-aware loss func-
tion for multi-label classification. The loss is defined
as the cross-entropy over sigmoid outputs with re-
spect to probabilistic labels (Eq. (6)). |C| is the num-
ber of classes, p(Y (k) |A(k)) is the probabilistic labels
for class k, o is the logistic sigmoid function (o (x) =
H%), W, € R ICl g the weights between the max-
pooled features and the output layer, b; is a bias term
for the fully connected layer, 7 € R” is the vector of
max-pooled features, y(Ak) is the logits for class &, and
0 = (E, Wy, Wy, b1, by) denotes the model parame-

ters.
Z2=1[c1, ..., 6l
y=WZ7+b
L) = 1
IC]|
IC| (6)

x> = (p(r®1a®) 1og(a(yfk>))
+((1=p(r¥1a®))

< log(1 — o (+1)))

Model analysis There are a few key concepts that
characterizes the CNN architecture for text classifica-
tion. Most prevalent is the assumption that a smaller
amount of tokens in the input are decisive for classi-
fication. This assumption is expressed both with the
max-over-time pooling and by using ReLU activa-
tions, that have a sparsity effect on the network. More-
over, since all the neurons inside a single filter share
weights, each filter can be seen as a feature-learner,
that looks for a certain feature in the input. As weights
are not shared across filters, increasing the number of
filters can allow the network to learn to detect more
distinct features in the input. The training procedure
will cause the filters to learn different features to min-
imize the loss. How many filters to use depends on the
task. If too many filters are used, some filters typically
become so called “dead filters” that never activate and
always output zeros.

4. Experimental setup

This section outlines the experimental setup that was
used to produce the results presented in the follow-
ing section (Section 5). The experiments include data
analysis of an Instagram corpora, comparing domain-
specific embeddings to pre-trained embeddings, and
training a deep text classifier for clothing classification
of Instagram posts.

4.1. Data
Experiments were conducted using textual data

from the Instagram platform, this section describes the
datasets in more detail.

K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision 61

4.1.1. Instagram corpora

The empirical study of Instagram text was con-
ducted on a provided dataset, consisting of Instagram
posts from a community of users in the fashion do-
main. The data are in the form of a corpora consist-
ing of image captions, user comments, and usertags as-
sociated with each post. In entirety, the corpora con-
sists of 143 accounts, 200K posts, 9M comments, and
62M tokens, out of which 2M are unique. The numbers
were computed before any pre-processing, except ap-
plying the NLTK [21] TweetTokenizer and removing
user-handles.

4.1.2. Training dataset

When training classifiers, a subset of the Instagram
corpora, consisting of 30K Instagram posts annotated
with weak labels produced by the labeling functions
described in Section 3.3.3 was used.

4.1.3. Evaluation dataset

For evaluation purposes, a smaller, manually anno-
tated, dataset of 200 Instagram posts was used. The
annotation was a collective work by four participants
in our research group. Noteworthy is that the truth la-
bels are based on the image associated with the text.
In that sense, the evaluation is unfavorable for the text-
based analysis. Since the labels are decided by the im-
age, certain posts can have labels that cannot be in-
ferred from the text alone, degrading the measured per-
formance of the developed text classification models.

4.2. Data analysis

The data analysis was conducted on the entire Insta-
gram corpora. To measure the fraction of emojis, hash-
tags, and user-handles, the NLTK [21] TweetTokenizer
was used to tokenize the text, and regular expressions
were applied to extract the desirable tokens. To quan-
tify the amount of OOV words, two vocabularies were
used, the Google-news vocabulary [14], and GNU as-
pell v0.60.7. Finally, langid.py [22] was used to
capture the distribution of languages in the corpora.

4.3. Word embeddings

To find out the best set of embeddings for the Insta-
gram domain we trained a large set of embeddings on
the Instagram corpora using a variety of hyperparam-
eters and algorithms. The embeddings were evaluated
using intrinsic evaluation that included a comparison
with off-the-shelf embeddings.

4.3.1. Evaluation of word embeddings

Three datasets were used to evaluate trained word
embeddings on the word similarity task, (1) Word-
Sim353, introduced by [12], is a dataset consisting of
353 word pairs with accompanying relatedness scores;
(2) SimLex-999, presented in [16], is a dataset of 999
word pairs and similarity labels; and (3) FashionSim,
an open-source'” dataset consisting of 307 fashion re-
lated words and relatedness scores, collectively anno-
tated by our research group in cooperation with fash-
ion experts.

4.4. Weakly supervised text classification

This section describes the setup used to train and
evaluate text classifiers.

4.4.1. Evaluation

Classifiers were evaluated after training by freezing
the weights of the models and comparing the models’
predictions to the annotated dataset.

4.4.2. CNN models and baselines

Two classifiers were evaluated. The CNN model de-
scribed in Section 3.3.5 was trained using the training
dataset annotated with weak labels described in Sec-
tion 4, and where labels had been combined into prob-
abilistic labels using the data programming framework
prior to training (CNN-DATAPROGRAMMING). The
same model was also trained using the same training
dataset but where the weak labels had been combined
using the majority vote rather than data programming
(CNN-MAJORITYVOTE).

The CNN models were compared against a human
benchmark (DOMAINEXPERT). The human bench-
mark represents the average performance on the clas-
sification task of three people from our research group.
Human test participants were faced with the same task
as the other models, namely to classify Instagram posts
based solely on the text.

4.4.3. Hyperparameters

Limited hyperparameter tuning was done prior to
the experiments. We used 128 filter windows of size
3, 4, and 5, and a mini-batch size of 256. Moreover
we used a vector dimension in the embedding layer of
300 with randomly initialized embeddings updated as
part of training. For regularization we used a dropout
keep probability of 0.7 and a I, constraint of 0. Finally,
ReLU (f(z) = max(0, z)) was used as the activation

10https://github.com/shathaZO14/Fashi0nRec

https://github.com/shatha2014/FashionRec

62 K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision

function, and the padding strategy was set to VALID
and the learning rate to 0.01. The values were chosen
based on hyperparameter tuning using random-search
on 10% randomly chosen examples from the training
dataset.

5. Results and discussion
In this section, we present our experimental results.

5.1. What characterizes Instagram as a source of
text?

This section presents results from exploratory data
analysis of the Instagram corpora.

5.1.1. Lexical noise measurements

Table 2 contains statistics that capture the distinc-
tive properties of the Instagram corpora compared with
newswire text. Removing all online-specific tokens
(hashtags, user-handles, emojis, URLSs) results in an
OOV fraction of 0.30 based on the aspell dictionary,
that can be compared with 0.25 that was obtained by
[3] on a Twitter corpora using the same pre-processing
and dictionary.

5.1.2. Language distribution

Although all Instagram posts in the corpora are from
English accounts, the comments sections are often
multi-lingual. Applying langid.py [22] on the set
of 9 million comments reveals that 52% of the com-
ments are primarily written in English. The Language
identified as the second most common was Chinese on
6.5%, followed by Japanese on 5%, German on 3%,
and Spanish on 2%. In total, 97 languages were identi-
fied in the set of comments.

5.1.3. Text distributions

The number of comments associated with Instagram
posts is varying. Data analysis indicate that the dis-
tribution of comments and amount of text associated
with posts exhibit the long tail phenomenon. The fre-

Table 2
Measurements of lexical noise in the corpora
Text Statistic Fraction of corpora size Average/post
Emojis 0.15 48.63
Hashtags 0.03 9.14
User-handles 0.06 18.62
Google-OOV words 0.46 145.02
Aspell-OOV words 0.47 147.61

Log-Log plot over the frequency of text per post

104 4
—+— Comments

—e— Words

TPosts with
0 comments
10% 4

4 TPosts with
0 words

—
e

Log frequency

<
L

100.

10° 10? 10? 10° 10 10°
Log count

Fig. 5. The text distribution in the corpora.

quencies of number of comments in Instagram posts
roughly follows a power law relationship (Fig. 5).
Some posts have no comments at all, while other posts
have a few thousand comments. The mean length of
captions and comments in the corpora is 29, and 6 to-
kens, respectively.

5.1.4. Discussion

In comparison with measurements on Twitter cor-
pora [3], text from Instagram is just as noisy based on
our measurements (Table 2). Notable is also the high
diversity of languages occurring in the comment sec-
tions on Instagram and the short length of comments
(mean length measured to be 6 tokens).

The long-tail distribution of text on Instagram can
be explained with the follower count of the post author
and the preferential attachment theory [31]. As an In-
stagram post attracts a lot of comments, it will get a
larger spread on the Instagram platform. This causes
a snowball effect, where a post that already has many
comments will be more likely to attract even more
comments.

5.2. Comparison of word embeddings for the
Instagram domain

In this section, word embeddings trained on the In-
stagram corpora are examined. The experiments in-
clude a comparison between Instagram embeddings
and off-the-shelf embeddings, as well as hyperparam-
eter tuning of embeddings trained on Instagram text.

5.2.1. Are domain-specific embeddings better than
pre-trained embeddings?
Off-the-shelf embeddings outperform the domain-
specific embeddings on general evaluation metrics

K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision

such as Simlex-999 [16], and Wordsim353 [12]. How-
ever, on the FashionSim evaluation dataset the reversed
relationship occurs (Fig. 6). To exemplify, the em-
beddings FASTTEXT-FASHION had the lowest score
on the Simlex-999 evaluation dataset and the highest
score on the FashionSim dataset.

5.2.2. What are suitable hyperparameters?

It can be observed that FastText and Word2vec
are highly dependent on the hyperparameter settings,
while Glove is stable in comparison (Fig. 7). FastText
demonstrated the best results on the given task. With
FastText, the top accuracy was achieved with Skip-
gram and context window size 2. A prevalent trend in
the results is that CBOW performed better with larger
window sizes, as opposed to Skip-gram that achieved
the highest results with smaller context windows. Ad-
ditionally, a substantial boost in accuracy was observed
when increasing the vector dimension from 50 to 100,
and then a less significant increase when further rais-

Intrinsic evaluation of word vectors on word similarity

1.0
[EE FashionSim
ST WordSim353
_ 08 B Simlex999
5
2
2 0.6
o
o
-
s
£ 04
3
g
2]
0.2
0.0
& & < & o
& & « e o
DN < o & &
oqp S¥ & .;,5

Q
<@

Fig. 6. Intrinsic evaluation on the word similarity task (p—
value < 0.001).

Intrinsic evaluation with different context window sizes
0.8

o
=Y
L

Spearman Correlation
=3
=
R

E3
o
L

0.0 T
2.5

5.0 7.5 10.0 12.5

Context window size

=== FastText CBOW

—— FastText Skip-gram

Spearman Correlation

63

ing the dimension up to 300. When the dimension is
increased above 300 there is a diminishing return of
increased accuracy relative to the increased dimension.

5.2.3. Discussion

When comparing the state-of-the-art algorithms
for training word embeddings, FastText embeddings
yielded the most accurate semantics on the intrinsic
evaluation. FastText explicitly models the morphology
of words by incorporating information about subwords
in the embeddings, this is useful for languages that are
rich on morphology. According to our results, FastText
is also suited for noisy text, as can be found in social
media. This is not surprising, as social media language
can be characterized as containing a large vocabulary,
with many rare words, where the subword embeddings
can enhance generalization between words.

5.3. Deep text classification with weak supervision

This section outlines the results from the experi-
ments with deep text classification of Instagram text
using weak supervision provided by the labeling func-
tions from Section 3.3.3.

5.3.1. The data programming paradigm versus
majority voting

Table 3 compares results from the CNN model
trained with weak labels combined through majority
voting with results from the same model trained with
probabilistic labels obtained with data programming.
The data programming approach achieves the best Fj
result, on level with the human benchmark, beating
CNN-MAJORITY VOTE. The human benchmark had a
higher precision but a lower recall than the CNN mod-
els.

Intrinsic evaluation with different vector dimensions
S -

o
=
L

0.4 1

o
o
L

0.0 T T T T
200 300 400 500

Vector Dimension

100

— = Word2vec Skip-gram Word2vec CBOW]

Fig. 7. Hyperparameter tuning on the FashionSim evaluation dataset (p-value < 1.76e—5). When tuning the context-window size the dimension
was 300. When tuning the dimension the fine-tuned window sizes 2, 11, 12, 3, 13 for FastText skip-gram, FastText CBOW, glove, Word2vec

skip-gram,Word2vec CBOW, was used.

64 K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision

Table 3
The average performance from three training runs
Model Accuracy Precision Recall Micro-F Macro-F) Hamming Loss
CNN-DATAPROGRAMMING 0.797 + 0.01 0.566 + 0.05 0.678 £ 0.04 0.616 = 0.02 0.535 +0.01 0.195 +0.02
CNN-MAJORITYVOTE 0.739 £ 0.02 0.470 £ 0.06 0.686 + 0.05 0.555 £0.03 0.465 £ 0.05 0.261 £0.03
DOMAINEXPERT 0.807 0.704 0.529 0.604 0.534 0.184
Predicted accuracy in generative model
1.0 4
CLARIFAI

0.8 1

Accuracy

j=3
=3
1

0.4 1

DEEPOMATIC
DEEPDETECT

GOOGLE CLOUD VISION
SEMCLUSTER
KEYWORDSYNTACTIC
KEYWORDSEMANTIC

Classes

Fig. 8. Accuracy of labeling functions in generative models.

5.3.2. Generative models of the labeling functions

Fig. 8 visualizes the relative accuracy between label-
ing functions that was learned by the generative mod-
els in CNN-DATAPROGRAMMING. The keyword-
functions were given the highest accuracy overall, in-
dicating that when the keywords are found in the text
it tend to be telling for the image contents. This im-
plies that the keyword functions often agrees with the
majority in their votes, which in turn gives them a
high estimated accuracy. In general, the relative accu-
racy among labeling functions differed from class to
class. The spikes in the accuracy of CLARIFAIL, DEEP-
OMATIC, and DEEPDETECT on the classes of “bags”
and “shoes” indicate that the APIs are especially con-
sistent in their predictions on those classes.

5.3.3. Error analysis

A part of the error is attributable to the disparity
between the labels in the test set and the text. As the
ground truth is determined based on the image con-
tents of the Instagram post, there is an inherent er-
ror when information is lacking in the text. This is
also evident from the relatively low human benchmark
on the task (0.60 F1). Moreover, the performance on
the dev and train set were significantly better than on
the test set for all of the trained models. This is ow-
ing to the difference between the weak labels and the
ground truth. Figure 9 depicts the performance on the
dev and train set per training iteration of the CNN-
DATAPROGRAMMING model. The performance on the

dev and train sets were significantly higher than on the
test set.

5.3.4. How Do the CNN-DATAPROGRAMMING
Model Make Its Predictions?

After training the CNN-DATAPROGRAMMING
model, the learned weights of the model can be frozen
and used for inference. Figure 10 illustrates how
the trained CNN-DATAPROGRAMMING model infers
clothing items from the text. The heatmap in Fig. 10
was produced by running each word in the sample
text through the trained model and recording the out-
put scores (logits) for the output class “dresses”. After
recording the scores, they were normalized and put on
a scale and visualized.

5.3.5. Discussion

Considering that not all clothing items can be in-
ferred from the text and that the human benchmark
on the task is 0.60, the achieved F; score of 0.61
is promising. A substantial improvement is to be ex-
pected when integrating the text classifier with a model
analyzing the image contents.

When combining the labels by using generative
models, rather than majority voting, an increase of six
F1 points was observed. This indicates that when tak-
ing the majority vote for training, potential signals to
learn from is lost. The results are concordant with prior
work using data programming [2,25,26]. This result
indicates that when combining labels using majority
voting, potential signals to learn from is lost.

K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision

Loss over training time

65

Hamming loss over training time

%0491 -—- dev
° 1)
o T L L train
£ 1
€029 1
£ '
© v,
T s incosuh oty
0.0 ~— T T T T
0 500 1000 1500 2000 2500
Iterations
Accuracy over training time
1.00 A AR ACA LS NN LRULAAR
>0.754 !
9 I
® 1
5 0.50
g —-—- dev
0251 L train
0.00 T T T T T
0 500 1000 1500 2000 2500
Iterations
Precision over training time
1.00
r .
c 0754 |
k) H
0
‘o 0.50 ;
g | -=- dev
& 02544+ train
0.00 ~— T T T T T
0 500 1000 1500 2000 2500
Iterations

Fig. 9. Statistics on the dev and train set during training of the CNN-DATAPROGRAMMING model.

i -—- dev
1)
0 4 : ----- train
o0
211
|
04 S=m=omoooo T R
0 500 1000 1500 2000 2500
Iterations
F1 over training time
1.00 PRSP ALNR S Y P LNR LY S SRARNNPAT ML PSS
— 0754 |7
s ¢
80.50 :
L | -== dev
=]
R L ppe train
0.00 -— T T T T T
0 500 1000 1500 2000 2500
Iterations
100 Recall over training time
' et e e A T L
_ 0759 1.
© F
2 0507 |
o ll -== dev
R T ppo train
0.00 +— T T T T T
0 500 1000 1500 2000 2500
Iterations
+
love this Hiess n‘ it’s so stunning #goals
mini cute [FEEE &% off-the-shoulder dresses
never g0 out of style! and neither does
a skyline view that takes YOU back to
the 1920s! i love rooms that take YOU
back in tme and this one is always
a hit! adorable @EEE8 best outfit \{

Fig. 10. Heatmap of a sample Instagram text, where a higher heat
indicates a larger logit in the trained CNN-DATAPROGRAMMING
model.

In [26] it is assumed that labeling functions are bi-
nary. We propose to extend the base model to the
multi-label scenario by learning a separate generative
model for each class. In our experiments, the rela-
tive accuracy of labeling functions differed between
classes, strengthening our belief that learning separate
generative models for each class is useful.

6. Conclusion and future work
In this paper we presented the first empirical study

of Instagram text that we are aware of. Moreover, we
evaluated domain-specific embeddings trained on In-

stagram text and presented a novel pipeline that uti-
lizes weak supervision to train a deep classifier to rec-
ognize fashion clothing based on text from Instagram
posts.

With weak supervision, we were able to label a
large dataset in hours, something that would have taken
months to do with human annotators. The weak super-
vision signals were combined with the data program-
ming paradigm, which makes for a proof-of-concept
of the paradigm in a new domain. Moreover, the orig-
inal model for binary classification was extended to
the multi-label setting by learning a separate genera-
tive model for each class.

The results demonstrate that the text on Instagram is
just as noisy as have been reported in studies on Twitter
text, that the text distribution has a long tail, and that
the comment sections on Instagram are multi-lingual.
Our experiments also indicate that there is a mismatch
between text in social media and off-the-shelf embed-
dings trained on newswire text. We also confirmed
that weak supervision is a viable approach for training
deep models with unlabeled data, achieving human-
level performance on the classification task. In all mea-
sures, combining weak supervision signals with the
proposed combination of generative models outper-
formed a baseline that uses majority voting.

66

K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision

In future work we plan to combine the text mining
methods presented in this paper with a model that an-
alyzes the image contents associated with the text in
Instagram posts.

References

(1]

[2]

3

[t}

[4

=

[5

—_

[6

[t

[7

—

[8

—

[9

—

[10]

[11]

[12]

[13]

N. Alter, Four ways Instagram is redefining the fashion indus-
try, 2016, Accessed: 2018-04-09.

S.H. Bach, D. Rodriguez, Y. Liu, C. Luo, H. Shao, C. Xia,
S. Sen, A. Ratner, B. Hancock, H. Alborzi, R. Kuchhal, C. Ré
and R. Malkin, Snorkel DryBell: A case study in deploying
weak supervision at industrial scale, CoRR, 2018, http://arxiv.
org/abs/1812.00417, abs/1812.00417.

T. Baldwin, P. Cook, M. Lui, A. MacKinlay and L. Wang, How
noisy social media text, how diffrnt social media sources? in:
IJCNLP, Asian Federation of Natural Language Processing /
ACL, 2013, pp. 356-364.

PR. Berthon, L.F. Pitt, K. Plangger and D. Shapiro,
Marketing meets web 2.0, social media, and creative
consumers: Implications for international marketing strat-
egy, Business Horizons 55(3) (2012), 261-271, SPE-
CIAL ISSUE: STRATEGIC MARKETING IN A CHANG-
ING WORLD, http://www.sciencedirect.com/science/article/
pii/S0007681312000080. doi:10.1016/j.bushor.2012.01.007.
P. Bojanowski, E. Grave, A. Joulin and T. Mikolov, Enriching
word vectors with subword information, CoRR, 2016. http://
arxiv.org/abs/1607.04606.

F. Bravo-Marquez, E. Frank and B. Pfahringer, Transferring
sentiment knowledge between words and tweets, Web Intel-
ligence 16(4) (2018), 203-220, https://content.iospress.com/
articles/web-intelligence/web389. doi:10.3233/WEB- 180389.
B. Chiu, G.K.O. Crichton, A. Korhonen and S. Pyysalo,
How to train good word embeddings for biomedical NLP,
in: BioNLP@ACL, Association for Computational Linguistics,
2016, pp. 166-174.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu
and P. Kuksa, Natural language processing (almost) from
scratch, J. Mach. Learn. Res. 12 (2011), 2493-2537, http://dl.
acm.org/citation.cfm?id=1953048.2078186.

A. Conneau, H. Schwenk, L. Barrault and Y. LeCun, Very
deep convolutional networks for natural language processing,
CoRR, 2016.

B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl and W.W. Co-
hen, Tweet2Vec: Character-based distributed representations
for social media, CoRR, 2016.

B. Eisner, T. Rocktidschel, I. Augenstein, M. Bosnjak
and S. Riedel, emoji2vec: Learning emoji representations
from their description, CoRR, 2016, http://arxiv.org/abs/1609.
08359, abs/1609.08359.

L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan,
G. Wolfman and E. Ruppin, Placing search in context: The con-
cept revisited, ACM Trans. Inf. Syst. 20(1) (2002), 116-131.
doi:10.1145/503104.503110.

K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills,
J. Eisenstein, M. Heilman, D. Yogatama, J. Flanigan and
N.A. Smith, Part-of-speech tagging for Twitter: Annotation,
features, and experiments, in: Proceedings of the 49th An-

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

nual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies: Short Papers — Volume 2,
HLT 11, Association for Computational Linguistics, Strouds-
burg, PA, USA, 2011, pp. 42-47, http://dl.acm.org/citation.
¢fm?id=2002736.2002747. ISBN 978-1-932432-88-6.
Google, word2vec, 2013. https://code.google.com/archive/p/
word2vec/.

K. Hammar, S. Jaradat, N. Dokoohaki and M. Matskin, Deep
text mining of Instagram data without strong supervision, in:
2018 IEEE/WIC/ACM International Conference on Web Intel-
ligence (WI), 2018, pp. 158-165. doi:10.1109/W1.2018.00-94.
F. Hill, R. Reichart and A. Korhonen, Simlex-999: Evaluating
semantic models with genuine similarity estimation, Comput.
Linguist. 41(4) (2015), 665-695. doi:10.1162/COLI_a_00237.
S. Jaradat, Deep cross-domain fashion recommendation,
in: Proceedings of the Eleventh ACM Conference on
Recommender Systems, RecSys ’17, ACM, New York,
NY, USA, 2017, pp. 407-410, http://doi.acm.org/10.1145/
3109859.3109861. ISBN 978-1-4503-4652-8. doi:10.1145/
3109859.3109861.

Y. Kim, Convolutional neural networks for sentence classifica-
tion, in: EMNLP, ACL, 2014, pp. 1746-1751.

K. Lee, D. Palsetia, R. Narayanan, M.M.A. Patwary,
A. Agrawal and A. Choudhary, Twitter trending topic classi-
fication, in: Proceedings of the 2011 IEEE 11th International
Conference on Data Mining Workshops, ICDMW 11, IEEE
Computer Society, Washington, DC, USA, 2011, pp. 251-258.
ISBN 978-0-7695-4409-0. doi:10.1109/ICDMW.2011.171.
V.I. Levenshtein, Binary codes capable of correcting deletions,
insertions and reversals, Soviet Physics Doklady 10(8) (1966),
707-710, Doklady Akademii Nauk SSSR, V163 No4 845-848
1965.

E. Loper and S. Bird, NLTK: The natural language toolkit, in:
Proceedings of the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language Processing and
Computational Linguistics — Volume 1, ETMTNLP ’02, Asso-
ciation for Computational Linguistics, Stroudsburg, PA, USA,
2002, pp. 63-70. doi:10.3115/1118108.1118117.

M. Lui and T. Baldwin, Langid.Py: An off-the-shelf language
identification tool, in: Proceedings of the ACL 2012 System
Demonstrations, ACL 12, Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 2012, pp. 25-30, http://dl.
acm.org/citation.cfm?id=2390470.2390475.

V. Major, A. Surkis and Y. Aphinyanaphongs, Utility of gen-
eral and specific word embeddings for classifying transla-
tional stages of research, CoRR, 2017, http://arxiv.org/abs/
1705.06262 abs/1705.06262.

J. Pennington, R. Socher and C.D. Manning, Glove: Global
vectors for word representation, in: EMNLP, ACL, 2014,
pp. 1532-1543.

A. Ratner, S.H. Bach, H.R. Ehrenberg, J.A. Fries, S. Wu and
C. Ré, Snorkel: Rapid training data creation with weak super-
vision, CoRR, 2017, http://arxiv.org/abs/1711.10160.

A.J. Ratner, CM. De Sa, S. Wu, D. Selsam and C. Ré,
Data programming: Creating large training sets, quickly,
in: Advances in Neural Information Processing Systems 29,
D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon and R. Gar-
nett, eds, Curran Associates, Inc., 2016, pp. 3567-3575.

A. Ritter, C. Cherry and B. Dolan, Unsupervised modeling of
Twitter conversations, in: Human Language Technologies: The

http://arxiv.org/abs/1812.00417
http://arxiv.org/abs/1812.00417
http://arxiv.org/abs/abs/1812.00417
http://www.sciencedirect.com/science/article/pii/S0007681312000080
http://www.sciencedirect.com/science/article/pii/S0007681312000080
https://doi.org/10.1016/j.bushor.2012.01.007
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://content.iospress.com/articles/web-intelligence/web389
https://content.iospress.com/articles/web-intelligence/web389
https://doi.org/10.3233/WEB-180389
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://arxiv.org/abs/1609.08359
http://arxiv.org/abs/1609.08359
http://arxiv.org/abs/abs/1609.08359
https://doi.org/10.1145/503104.503110
http://dl.acm.org/citation.cfm?id=2002736.2002747
http://dl.acm.org/citation.cfm?id=2002736.2002747
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://doi.org/10.1109/WI.2018.00-94
https://doi.org/10.1162/COLI_a_00237
http://doi.acm.org/10.1145/3109859.3109861
http://doi.acm.org/10.1145/3109859.3109861
https://doi.org/10.1145/3109859.3109861
https://doi.org/10.1145/3109859.3109861
https://doi.org/10.1109/ICDMW.2011.171
https://doi.org/10.3115/1118108.1118117
http://dl.acm.org/citation.cfm?id=2390470.2390475
http://dl.acm.org/citation.cfm?id=2390470.2390475
http://arxiv.org/abs/1705.06262
http://arxiv.org/abs/1705.06262
http://arxiv.org/abs/abs/1705.06262
http://arxiv.org/abs/1711.10160

[28]

K. Hammar et al. / Deep text classification of Instagram data using word embeddings and weak supervision 67

2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, HLT ’10, Associ-
ation for Computational Linguistics, Stroudsburg, PA, USA,
2010, pp. 172-180. ISBN 1-932432-65-5.

A. Ritter, S. Clark, Mausam and O. Etzioni, Named entity
recognition in tweets: An experimental study, in: Proceedings
of the Conference on Empirical Methods in Natural Language
Processing, EMNLP ’11, Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 2011, pp. 1524-1534, http://
dl.acm.org/citation.cfm?id=2145432.2145595. ISBN 978-1-
937284-11-4.

[29]

[30]

[31]

A. Ritter, Mausam, O. Etzioni and S. Clark, Open domain
event extraction from Twitter, in: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 12, ACM, New York, NY, USA,
2012, pp. 1104-1112. ISBN 978-1-4503-1462-6. doi:10.1145/
2339530.2339704.

A.J. Tixier, M. Vazirgiannis and M.R. Hallowell, Word embed-
dings for the construction domain, CoRR, 2016, http://arxiv.
org/abs/1610.09333, abs/1610.09333.

R. Zsuzsanna Albert and A.-L. Barabasi, Statistical mechanics
of complex networks 74 (2001).

http://dl.acm.org/citation.cfm?id=2145432.2145595
http://dl.acm.org/citation.cfm?id=2145432.2145595
https://doi.org/10.1145/2339530.2339704
https://doi.org/10.1145/2339530.2339704
http://arxiv.org/abs/1610.09333
http://arxiv.org/abs/1610.09333
http://arxiv.org/abs/abs/1610.09333

	Introduction
	Related work
	Learning domain specific word embeddings
	Text classification without strong supervision
	Semi-supervised learning
	Weakly-supervised learning

	Methodology
	Empirical study of Instagram text
	Learning domain-specific word embeddings
	Clothing classification of Instagram posts
	The classification task
	Data programming
	Weak supervision for fashion attributes in Instagram posts
	Using data programming to combine multi-labels
	Discriminative model

	Experimental setup
	Data
	Instagram corpora
	Training dataset
	Evaluation dataset

	Data analysis
	Word embeddings
	Evaluation of word embeddings

	Weakly supervised text classification
	Evaluation
	CNN models and baselines
	Hyperparameters

	Results and discussion
	What characterizes Instagram as a source of text?
	Lexical noise measurements
	Language distribution
	Text distributions
	Discussion

	Comparison of word embeddings for the Instagram domain
	Are domain-specific embeddings better than pre-trained embeddings?
	What are suitable hyperparameters?
	Discussion

	Deep text classification with weak supervision
	The data programming paradigm versus majority voting
	Generative models of the labeling functions
	Error analysis
	How Do the CNN-DataProgramming Model Make Its Predictions?
	Discussion

	Conclusion and future work
	References

