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Contributions

1. We present tolerance, a control architecture for intrusion-tolerant
systems.

2. We prove properties of the optimal control strategies and design efficient
algorithms for computing them.

Two-level Feedback Control
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The TOLERANCE Architecture
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Proposition 1. tolerance provides correct service if the following holds:
(a) An attacker can not forge digital signatures.
(b) Network links are authenticated and reliable.
(c) At most k nodes recover simultaneously and at most f nodes are

compromised or crashed simultaneously.
(d) Nt ≥ 2f + 1 + k at all times t.
(e) The system is partially synchronous.

Formal Model of Intrusion Tolerance
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Structural Results of Optimal Control Strategies

Theorem 1. There exists an optimal recovery strategy π⋆
i ,t for each node i

that satisfies
π⋆

i ,t(bi ,t) = R ⇐⇒ bi ,t ≥ α⋆
i ,t ∀t, (1)

where α⋆
i ,t ∈ [0, 1] is a threshold.

Corollary 1. The thresholds satisfy α⋆
i ,t+1 ≥ α⋆

i ,t for t ∈ [k∆R, (k + 1)∆R] and
i ∈ N . As ∆R → ∞, all thresholds converge to α⋆

i , which is time-independent.
(∆R is the bounded-time-to-recovery (btr) constraint.)

Theorem 2.
There exist an optimal replication strategy π⋆ that satisfies

π⋆(st) = κπλ1(st) + (1 − κ)πλ2(st) ∀t, st ∈ SS (2)
for some probability κ ∈ [0, 1], where λ1, λ2 are Lagrange multipliers and
πλ1, πλ2 are threshold strategies.

Consequence of the structural results: the optimal control strategies can
be computed efficiently.

Comparison to State-of-the-art Intrusion-Tolerant Systems
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Statistical Intrusion Detection
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