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Abstract
With the advent of social media, our online feeds increasingly consist of short, infor-
mal, and unstructured text. This data can be analyzed for the purpose of improving
user recommendations and detecting trends. The grand volume of unstructured text
that is available makes the intersection of text processing and machine learning a
promising avenue of research. Current methods that use machine learning for text
processing are in many cases dependent on annotated training data. However, consid-
ering the heterogeneity and variability of social media, obtaining strong supervision
for social media data is in practice both difficult and expensive. In light of this
limitation, a belief that has put its marks on this thesis is that the study of text min-
ing methods that can be applied without strong supervision is of a higher practical
interest.

This thesis investigates unsupervised methods for scalable processing of text from
social media. Particularly, the thesis targets a classification and extraction task in
the fashion domain on the image-sharing platform Instagram. Instagram is one of the
largest social media platforms, containing both text and images. Still, research on
text processing in social media is to a large extent limited to Twitter data, and little
attention has been paid to text mining of Instagram data. The aim of this thesis is
to broaden the scope of state-of-the-art methods for information extraction and text
classification to the unsupervised setting, working with informal text on Instagram.
Its main contributions are (1) an empirical study of text from Instagram; (2) an
evaluation of word embeddings for Instagram text; (3) a distributed implementation
of the FastText algorithm; (4) a system for fashion attribute extraction in Instagram
using word embeddings; and (5) a multi-label clothing classifier for Instagram text,
built with deep learning techniques and minimal supervision.

The empirical study demonstrates that the text distribution on Instagram exhibits
the long-tail phenomenon, that the text is just as noisy as have been reported in stud-
ies on Twitter text, and that comment sections are multi-lingual. In experiments with
word embeddings for Instagram, the importance of hyperparameter tuning is mani-
fested and a mismatch between pre-trained embeddings and social media is observed.
Furthermore, that word embeddings are a useful asset for information extraction is
confirmed. Experimental results show that word embeddings beats a baseline that
uses Levenshtein distance on the task of extracting fashion attributes from Instagram.
The results also show that the distributed implementation of FastText reduces the
time it takes to train word embeddings with a factor that scales with the number of
machines used for training. Finally, our research demonstrates that weak supervision
can be used to train a deep classifier, achieving an F1 score of 0.61 on the task of
classifying clothes in Instagram posts based only on the associated text, which is on
par with human performance.

Keywords— Natural Language Processing, Information Extraction, Machine
Learning



Referat
I och med uppkomsten av sociala medier så består våra online-flöden till stor del av
korta och informella textmeddelanden, denna data kan analyseras med syftet att upp-
täcka trender och ge användarrekommendationer. Med tanke på den stora volymen
av ostrukturerad text som finns tillgänglig så är kombinationen av språkteknologi
och maskinlärning ett forskningsområde med stor potential. Nuvarande maskinlär-
ningsteknologier för textbearbetning är i många fall beroende av annoterad data för
träning. I praktiken så är det dock både komplicerat och dyrt att anskaffa annoterad
data av hög kvalitet, inte minst vad gäller data från sociala medier, med tanke på hur
pass föränderlig och heterogen sociala medier är som datakälla. En övertygelse som
genomsyrar denna avhandling är att textutvinnings metoder som inte kräver precis
övervakning har större potential i praktiken.

Denna avhandling undersöker oövervakade metoder för skalbar bearbetning av
text från sociala medier. Specifikt så täcker avhandlingen ett komplext klassifikations-
och extraktions- problem inom modebranschen på bilddelningsplattformen Instagram.
Instagram hör till de mest populära sociala plattformarna och innehåller både bilder
och text. Trots det så är forskning inom textutvinning från sociala medier till stor del
begränsad till data från Twitter och inte mycket uppmärksamhet har givits de stora
möjligheterna med textutvinning från Instagram. Ändamålet med avhandlingen är att
förbättra nuvarande metoder som används inom textklassificering och informations-
extraktion, samt göra dem applicerbara för oövervakad maskinlärning på informell
text från Instagram. De primära forskningsbidragen i denna avhandling är (1) en
empirisk studie av text från Instagram; (2) en utvärdering av ord-vektorer för an-
vändning med text från Instagram; (3) en distribuerad implementation av FastText
algoritmen; (4) ett system för extraktion av kläddetaljer från Instagram som använ-
der ord-vektorer; och (5) en flerkategorisk kläd-klassificerare för text från Instagram,
utvecklad med djupinlärning och minimal övervakning.

Den empiriska studien visar att textdistributionen på Instagram har en lång svans,
att texten är lika informell som tidigare rapporterats från studier på Twitter, samt att
kommentarssektionerna är flerspråkiga. Experiment med ord-vektorer för Instagram
understryker vikten av att justera parametrar före träningsprocessen, istället för att
använda förbestämda värden. Dessutom visas att ord-vektorer tränade på formell text
är missanpassade för applikationer som bearbetar informell text. Vidare så påvisas
att ord-vektorer är effektivt för informationsextraktion i sociala medier, överlägsen
ett standardvärde framtaget med informationsextraktion baserat på syntaktiskt ord-
likhet. Resultaten visar även att den distribuerade implementationen av FastText kan
minska tiden det tar att träna ord-vektorer med en faktor som beror på antalet maski-
ner som används i träningen. Slutligen, vår forskning indikerar att svag övervakning
kan användas för att träna en klassificerare med djupinlärning. Den tränade klassifice-
raren uppnår ett F1 resultat av 0.61 på uppgiften att klassificera kläddetaljer av bilder
från Instagram, baserat endast på bildtexten och tillhörande användarkommentarer,
vilket är i nivå med mänsklig förmåga.

Nyckelord— Språkteknologi, Informationsextraktion, Maskinlärning
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Chapter 1

Introduction

This thesis presents methods for accurate and scalable text mining in social media
without access to annotated training data. In this introductory chapter, I moti-
vate the research, introduce the area under study, and provide a roadmap for the
remainder of the thesis.

1.1 Motivation

Text mining is the means of extracting meaningful information and detecting pat-
terns in unstructured text, often using a synthesis of linguistics, Natural Language
Processing (NLP), and machine learning. Currently, more data are being generated
than ever before, causing a growing need for intelligent ways to process text. One
of the data types that has enlarged the most in the present time is unstructured
text, stemming from social media. While social media fosters the development of a
new type of applications, it also brings with it its own set of challenges due to the
informal language. The informal language in social media has made many estab-
lished NLP techniques obsolete. Following the increased data volumes and velocity
of its generation, as well as the informal language in social media, text processing
systems are subject to new requirements.

Despite the tremendous complexity and variety of natural language, many facets
of it can be captured by formal rules. One can say that natural language "makes
infinite use of finite means" (Humboldt 1836). However, although many aspects can
be covered by rules, it is debatable whether the natural languages we use today ever
can be described in its entirety with rules, it has at least proven to be extremely
difficult (Shieber 1987). Considering that the language used in social media is even
more complex than formal languages (Baldwin et al. 2013), this thesis investigates
a different approach. I examine data-driven methods to learn implicit knowledge
about text corpora, studying the intersection between NLP and machine learning.

A frequent machine learning model for NLP tasks is the neural network. Neural
networks are distributed processing systems where a collection of connected pro-
cessing units are trained jointly to learn some task. In this context, knowledge is

1
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Figure 1.1: An overview of the research problem.

not localized or explicit, rather it consists of the connections among the units in the
network (D. E. Rumelhart, McClelland, and PDP Research Group 1986). In this
thesis, I experiment with multiple neural network models for language understand-
ing. Such as, networks for learning word embeddings that can capture the semantics
of words using the distributional hypothesis (Harris 1954), and deep Convolutional
Neural Network (CNN)s (Lecun et al. 1998) for text classification.

Several success stories from research on the intersection of NLP and machine
learning follow the supervised learning paradigm, and require large amounts of man-
ually annotated data, a requirement which is not always satisfiable. Considering
the vast amount of unlabeled data that is accessible today, there is a profound in-
centive for studying models in the paradigms of unsupervised and weakly-supervised
learning. In this thesis, I explore the boundaries of machine learning models that
can be used for text mining without requiring annotated training data.

Instagram1 is one of the largest social media platforms and is redefining many
consumption-driven industries by constituting as a new platform for marketing, for
trends detection, and for user recommendations (Berthon et al. 2012). In our re-
search, we develop methods for extracting fashion details from text on Instagram
and classifying Instagram posts based on fashion attributes. This technology can
enable a new type of user recommendation in the fashion domain (Fig. 1.12). Exist-
ing methods are sub-optimal for our use-case by often requiring annotated training
data (Severyn and Moschitti 2015), not scaling to large data volumes (Bojanowski
et al. 2016), not being compatible with social media text (Vine et al. 2015), or not
being optimized for the Instagram domain (Ritter, Clark, et al. 2011).

The work presented in this thesis is part of a larger research project for elab-
orating the state-of-the-art in fashion recommendation (Jaradat 2017). The text
processing methods presented in this thesis are meant to be integrated with com-
puter vision models in the project.

We believe that there is a value in the text on Instagram that currently is
unutilized. We consider the text that is resident on Instagram as an opportunity
to apply text mining methods to and extract information that can be used for

1Instagram.com
2The Instagram logo is a registered trademark of Instagram.

2
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predictive modeling and analytics. The thesis’ contribution includes:

• An empirical study of Instagram text.

• An evaluation of word embeddings for Instagram text.

• A system for scalable training of word embeddings with the FastText algo-
rithm.

• A system for unsupervised extraction of fashion attributes from Instagram
text.

• A novel pipeline for multi-label clothing classification of the text associated
with Instagram posts using weak supervision and the data programming paradigm
(A. J. Ratner et al. 2016).

The empirical study provides one of the few available studies on Instagram text.
Furthermore, although I apply established algorithms for training word embed-
dings, I provide the first distributed variant of one of the algorithms, together with
benchmarks demonstrating its scalability. Moreover, by using extensive quantities
of unlabeled data, domain knowledge, and weak supervision, I propose a solution to
classification and extraction problems working with Instagram text, that does not
require hand-labeled data.

1.2 Background
Just as other consumption-driven industries, the fashion industry has been influ-
enced by the emergence of social media. Social media is progressively getting more
attention by fashion brands and retailers as a source for detecting trends, adapting
user recommendations, and for marketing purposes (Berthon et al. 2012). To give
an example, the image-sharing platform Instagram, with over 700M users (Insta-
gram 2017), has become a popular medium for fashion branding and community
engagement (Alter 2016). Consequently, fashion attribute extraction and classifi-
cation on Instagram is an important task for several modern applications working
with user recommendation and detection of fashion trends.

Although characterized as an image-sharing platform, Instagram enclose large
volumes of user generated text as well. Specifically, an Instagram post can be
associated with an image caption written by the author of the post, by comments
written by other users, and by “tags” in the image that refer to other users. Despite
being a platform rich of text, little prior work has paid attention to the promising
applications of text mining with Instagram data.

In the context of fashion recommendation, we did a case study on Instagram
posts in the fashion community. In the case study, we found that clues about
clothing attributes on an image can be found in the associated text, an example of
this is given in Fig. 1.2. We observed that the text can include both information

3
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Figure 1.2: An Instagram post from our dataset.

about obvious image attributes such as “I love that coat”, and more nuanced image
details that are harder to infer from the image alone, such as “this coat is from
H&M”.

1.3 Problem
Text in social media is unstructured and has a more informal and conversational
tone than text from conventional media outlets. The informal text reduces the
effectiveness of traditional text processing tools. In addition, Instagram as a source
of social media text is relatively unexplored. Moreover, using methods that rely on
strong supervision narrows the set of possible application domains.

This thesis addresses the problem of extracting knowledge and learning from text
in Instagram using methods that do not have the prerequisite of strong supervision.
How can we perform accurate and scalable text mining of Instagram data without
strong supervision?

1.4 Purpose
The purpose of this research is to to bridge the gap between current solutions for text
mining and domains where annotated training data are not available. Additionally,
the project aspires to advance the current NLP methods for processing informal
text in a scalable manner, both in terms of computation and data.

1.5 Goal
The goal of this thesis is to present methods for text mining in social media without
strong supervision. This includes an assessment of current solutions, explaining

4



1.6. RESEARCH METHODOLOGY

specific requirements that arise in social media, and presenting potential resolutions
that are evaluated in terms of accuracy and scalability.

1.5.1 Ethics and Sustainability
This research supports a sustainable development by enabling a new type of appli-
cations based on social media activities, which benefits several elements in society.
Text classification of users’ social media behavior can be used by recommendation
systems to enhance recommendations, which is of interest both for users and com-
panies. Moreover, applications with intelligent text processing capabilities have
promising applications to make web contents more accessible. For instance, auto-
matic text classification can improve the web experience for users with disabilities
and can remove language barriers.

This thesis is a transparent knowledge contribution of possible ways that an
organization can make use of user generated text. An ethical prerequisite for pro-
cessing user generated text is that the processing comply with privacy laws and
respects the integrity of users. The data used to produce results presented in this
thesis are non-confidential and processed solely for scientific purposes. The data
collection was external to my work and is out of scope of this thesis.

1.6 Research Methodology
The methodology is of an experimental nature. The research method consists of
quantitative evaluations and comparisons with state-of-the-art solutions. As no es-
tablished theory exists on the topic of our work, the conducted research is inductive,
with the goal of providing new theories and solutions within our field of research.

1.7 Outline
The remainder of this thesis is structured as follows. Chapter 2 describes the rel-
evant theory in the field of NLP and machine learning, as well as prior work that
is related to our research. Chapter 3 summarizes the research strategy and the
datasets that have been used. Next, my research on an end-to-end solution for
information extraction and text classification can be divided into two parts with
respective evaluations. The first part surveys information extraction and feature
learning of unlabeled data, and is presented in Chapter 4. The second part, that
is presented in Chapter 5, builds upon the methods for information extraction to
train a deep text classifier using weak supervision. Lastly, Chapter 6 contains the
author’s interpretation and conclusions from the results, as well as suggestions for
future research directions.

5



CHAPTER 1. INTRODUCTION

Replication and Open Source The code used for experiments in this thesis
is open source, and all datasets for which publication is not prohibited for privacy
reasons, are publicly available3.

3https://github.com/shatha2014/FashionRec
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Chapter 2

Natural Language Understanding in
Social Media

Considering that social media is an important medium for modern communication,
the call for methods to process text in social media is high. Text from social media
generally does not adhere to standard grammar rules, making linguistic methods
fragile. For this reason, it is common to instead turn to statistical methods for
understanding text from social media.

This chapter covers background theory and related work from the two interdis-
ciplinary fields of text processing and machine learning. In Section 2.1, I introduce
the field of NLP from our research perspective, the challenges with text in social me-
dia, and a repertoire of available methods for text processing. Moreover, an outline
of methods for learning from text is covered in Section 2.2, including foundational
techniques that our research builds upon, such as word embeddings and models for
text classification.

2.1 Natural Language Processing

When computer systems are built for processing with natural language in mind,
taking into account language specific properties, such as tokenization and capi-
talization, they are referred to as NLP systems. NLP is related to the study of
language (Section 2.1.1 and Section 2.1.4), as well as challenges faced when process-
ing text, such as text normalization (Section 2.1.2), and downstream applications,
like information extraction (Section 2.1.3). Historically, NLP has been divided into
symbolic NLP, inspired from symbolic artificial intelligence, and statistical NLP (Ju-
rafsky and Martin 2000). This thesis focuses on statistical NLP, with the goal of
exploiting massive data volumes to build intelligent text processing systems.
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CHAPTER 2. NATURAL LANGUAGE UNDERSTANDING IN SOCIAL MEDIA

2.1.1 Linguistics
The study of language can be divided into six linguistic categories: phonology, mor-
phology, syntax, lexical semantics, pragmatics, and discourse (Jurafsky and Martin
2000). Where morphology, syntax, and lexical semantics, are directly pertinent to
our processing task . For instance, tokenization and processing of individual words
is linked to morphology, that models the structure of words. As an example of mor-
phological parsing, the word “skirts” consists of the root morpheme “skirt” and the
inflectional morpheme “-s”. In the same manner, extracting meaning from text is
related to syntax and lexical semantics, that models word order and the semantics
of words.

Typically, NLP systems are composed of multiple processing stages, where the
purpose of initial processing stages is to improve the performance of downstream
tasks. Text processing methods in the early stages, such as, tokenization, lemma-
tization, syntactic annotation, and Part-Of-Speech (POS) tagging, make use of
linguistic properties of the text. For instance, POS tagging is a standardized way
to categorize words based on their role in a language, and syntactic annotation is
generally enabled by linguistic grammars. Grammars are used to express syntactic
knowledge about text, such as rules of how words are grouped together and how
valid sequences of words can be formed. Once a language is described in grammars,
it can be used to parse text to understand its structure, and to generate text that
is valid according to the grammar.

Context-free grammar is a particular formalism to express grammars and con-
sists of a four-tuple 〈N,Σ, P, S〉, where N denotes a set of non-terminal symbols,
Σ denotes a set of terminal symbols, P denotes a set of productions (rules), and
S is the start symbol (ibid.). Rules can constitute both as a lexicon to constrain
the set of valid words in a language, and as a way to define constituent structure
of phrases, such as how words can be grouped together. Some examples are given
in Eq. (2.1), where S is short for “sentence”, NP is short for “noun phrase”, V P
is short for “verb phrase”, and “|” can be read as “or”. Terminal symbols refer to
simple words, like hello in the example given in Eq. (2.1). Non-terminals refer to
generalizations or clusters of other symbols, such as NP that is a generalization for
noun phrases. A context-free rule always has a non-terminal to the left of the arrow
symbol (→) and an ordered list of one or more terminals and non terminals to the
right (ibid.).

S → NP V P

Noun→ hello | world
(2.1)

Grammar rules can be hierarchical and defined at different levels. For instance, rules
can define how valid phrases can be formed, and how sentences can be constructed
from valid phrases. Alternative grammar formalisms to context-free grammars are
dependency grammars and probabilistic context-free grammars.

Even though solutions for ubiquitous text processing tasks, such as POS-tagging,
are mature at this stage, the advent of social media has turned things around.
Traditional NLP tools are designed for newswire text and experiments demonstrate
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S︷ ︸︸ ︷
NP︷ ︸︸ ︷
NN︷ ︸︸ ︷
gorg

VP︷ ︸︸ ︷
VBZ︷ ︸︸ ︷

booties

NP︷ ︸︸ ︷
NNP︷︸︸︷
Ive

JJ︷ ︸︸ ︷
dmed

NN︷︸︸︷
u

FRAG︷ ︸︸ ︷

NP︷ ︸︸ ︷
JJ︷ ︸︸ ︷

gorgeous
NNS︷ ︸︸ ︷
boots

SBAR︷ ︸︸ ︷
S︷ ︸︸ ︷

NP︷︸︸︷
PRP︷︸︸︷
I

VP︷ ︸︸ ︷
VBP︷ ︸︸ ︷
have

VP︷ ︸︸ ︷
VBN︷ ︸︸ ︷

messaged

NP︷︸︸︷
PRP︷︸︸︷
you

Figure 2.1: Comparison between parse trees for informal and formal text using
standard NLP tools.

their inferior performance on social media text (Finin et al. 2010; Ritter, Clark, et
al. 2011). This is why recent research efforts have tried to adapt NLP tools to the
social media domain (Gimpel et al. 2011; Derczynski et al. 2013). To demonstrate
the worsened performance of many NLP tools for social media text, I applied the
Stanford parser (Klein and Christopher D Manning 2003) to a typical user comment
from Instagram and compared the detected parse tree with the parse tree for the
formal spelling of the comment. The result is shown in Fig. 2.1.1, notable is that
with the original and informal spelling, the parser erroneously detected “gorg” as a
noun (NN), “booties” as a verb (V BZ), and “dmed” as an adjective (JJ).

In addition to studying properties of text at word and phrase level, text can be
studied on the level of corpora. Perhaps the most famous result in linguistic statis-
tics is Zipf’s law (Eq. (2.2)), that stems from a study on relative word frequency in
text corpora (Zipf 1949).

f(w) ∝ 1
r(w) (2.2)

Zipf’s law describes the relationship between word frequency f(w) and word rank
r(w), where the rank of a word refers to its relative frequency compared to other
words in the corpora. The law states that the word frequency is inversely propor-
tional to the word’s rank. Although initially thought as a law for linguistics, time
has revealed that Zipf’s law is present in a plethora of domains, and belongs to a
larger family of power law probability distributions.

2.1.2 Text Normalization
Text normalization is a collective name for methods to prepare text for process-
ing. Text normalization is generally the first task in text processing systems, and
is not an objective in itself, rather its purpose is to improve the effectiveness of
downstream processing tasks. Common text normalization methods are (1) lemma-
tization, that converts words to their lemma, with the purpose of reducing morpho-
logical variation; (2) stemming, a variant of lemmatization that converts words to
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their word stem; (3) stopword removal, in large corpora, the most frequent words
can dominate the corpora statistics, reducing the meaning of statistics such as word
co-occurrence, since it may appear that every word co-occur with only stopwords;
(4) tokenization, that is the means of dividing text into tokens; (5) clustering words
and grouping similar words together, with the purpose of reducing lexical variation;
(6) spell-checking, the procedure of correcting miss-spelled words; (7) filtering and
substitution, where tokens that are of no value for later analysis are removed or
substituted, and (8) word segmentation, the task of dividing a string of composite
text into a list of words.

Text normalization should be decided based on the purpose of the downstream
task. A diverse set of text normalization strategies can be found in the literature.
When training word embeddings, it is common to omit stopwords and to exclude
all words that only occur occasional times in the corpora (Mikolov, Sutskever, et al.
2013). Although stopword removal, stemming, and lemmatization can be consid-
ered as universal techniques known to improve performance on many processing
tasks (Silva and Ribeiro 2003). Some results indicate that such text normalization
methods can remove important information and degrade the performance of certain
downstream tasks (Riloff 1995). Finally, the tokenization procedure can look dif-
ferent for various domains. In social media, online-specific tokens, like hashtags,
emojis, URLs, and user-handles can be treated as individual tokens, or as textual
noise to be removed.

One approach to text processing in social media is to adapt existing tools to the
social media domain (Gimpel et al. 2011; Derczynski et al. 2013). Another approach
is to convert the social media text into a more formal language, that is suited for
traditional NLP tools (Han and Baldwin 2011; Han, Cook, and Baldwin 2012). The
latter approach requires additional text normalization to correct ill-formed words,
such as spell correction and word substitution.

2.1.3 Information Extraction

Automatic extraction of structured information from unstructured pieces of text is
referred to as information extraction. The canonical example of information extrac-
tion is the task of extracting named entities from unstructured text. Named-Entity
Recognition (NER) can be realized by matching unstructured text to linguistic
rules, which is a form of unsupervised information extraction. A major drawback
of this method when applied to social media is that social media text often is not
grammatically correct, reducing the utility of linguistic rules. For instance, many
NER systems rely on correct capitalization, which is fragile in social media where
the capitalization is unreliable. Another approach to information extraction is to
use statistical methods. In general, the choice of method is dictated by the access
to annotated training data. When annotated data are available, statistical methods
are often preferred.

In the context of our research, the task of extracting clothing items, brands, ma-
terials, patterns, and styles from unstructured text associated with Instagram posts,
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can be formulated as an information extraction task. Prior work has reported that
information extraction systems developed for newswire text may not be effective in
the social media domain due to the informal language (Ritter, Mausam, et al. 2012;
Bhargava, Spasojevic, and G. Hu 2017; Habib and van Keulen 2014; Cherry and
Guo 2015a).

Unsupervised techniques for information extraction includes clustering (Cherry
and Guo 2015a), semantic word matching using word embeddings and cosine sim-
ilarity (ibid.), edit distance matching (Reis et al. 2004), use of distant supervision
sources such as knowledge bases and Application Programming Interface (API)s
(Tabassum, Ritter, and W. Xu 2016), using Term Frequency-Inverse Document Fre-
quency (TF-IDF) to identify the most characterizing words in a document based on
corpora statistics (Seki 2003), and ontology-based information extraction (Wimala-
suriya and Dou 2010). Moreover, supervised techniques for information extraction
include machine learning models such as the Support Vector Machine (SVM) (Li,
Bontcheva, and Cunningham 2005), and hidden Markov models (Bikel et al. 1997).

2.1.4 Natural Language in Social Media

Use of natural language in social media is different than in newswire text. Emojis,
spelling errors, multi-lingual text, emoticons, grammatical errors, abbreviations,
and hashtags are part of normal language use in social media. Furthermore, social
media text tend to be diverse in style, as compared to corpora of newswire text,
that are homogeneous in comparison. Throughout this thesis, I will refer to text
with the mentioned characteristics as noisy.

Prior research on social media text is dominated by research on Twitter data.
Although I anticipate the main research results from Twitter to be useful in my re-
search on Instagram, there are also noticeable differences between the two domains.
The most prevalent discrepancies being that Instagram is an image-sharing platform
while Twitter is a micro-blogging platform, and that Twitter has a character-limit
per tweet.

Baldwin et al. (2013) empirically compare social media text sources like Twitter,
forums, and blogs to a corpus of edited English text. In summary, the findings
reinforce the accepted notion that social media text is more noisy than other sources
of text, having more grammatical errors, and being more heterogeneous. With that
said, the authors too conclude that text normalization techniques can be effective
in reducing the noise. Similar results have been reported by (Gouws, Hovy, and
Metzler 2011) and (Baeza-Yates and Rello 2011).

One of the few quantitative studies on data from Instagram is provided by Y.
Hu, Manikonda, and Kambhampati (2014). In their study, eight dominant photo
categories were identified with the help of computer vision techniques and human
expertise. Fashion was one of the eight identified categories, among other popular
categories such as food, friends, and selfies.
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2.1.5 Challenges

Text processing and understanding is a complex endeavor. The main difficulty for
machines working with text can be ascribed to the ambiguity of natural language.
We say that a piece of text is ambiguous if it can be processed and interpreted
in multiple ways. Indeed, a substantial part of NLP is concerned with resolving
ambiguities, from syntactic to semantic ambiguity. In addition to ambiguity, nat-
ural language is compositional, meaning that the semantic of a word depends on
its context. Moreover, natural language is sparse, symbolic and discrete, referring
to the fact that an intractable amount of word combinations exists, and individual
words have meanings that cannot be traced down to their structure or statistical
properties. As evident of the difficulty, natural language understanding is believed
to be an AI-complete problem (Yampolskiy 2013). Besides the inherent challenges
with natural language, the peculiarities of social media text adds to the complexity.

To sum up this section on background theory in the field of NLP, the field in-
cludes both linguistic methods and data-driven methods. Processing of text from
social media has special needs that are not necessarily fulfilled by NLP methods that
are effective for newswire text. This has led to the development of new methods for
processing social media text. A general characteristic of these methods is a reduced
emphasis on linguistic aspects and more emphasis of statistical text properties.

2.2 Learning Mechanisms
The goal of machine learning is to use a mixture of algorithms and data to train
models capable of generalizing to new instances of some task. Although the lines
have been blurred over time, machine learning applied to NLP falls into the category
of statistical NLP, to distinguish it from symbolic NLP that deal with methods such
as grammars, logic, and formal rules.

Learned semantic representations of words can drive information extraction and
improve text classifiers (Section 2.2.1). Moreover, deep neural networks can learn
to recognize patterns in text to perform complex classifications (Sections 2.2.2 and
2.2.4). When labeled data are a shortage, weak- and semi- supervised methods
can be an alternative to supervised methods (Section 2.2.3). Finally, beyond the
positive aspects of deep learning are also practical difficulties (Section 2.2.5).

2.2.1 Word Embeddings

Using embeddings to represent words is an old idea in NLP, with a recent up-
swing in attention due to progress in algorithms for deriving the embeddings. Word
embeddings reduce common NLP tasks to mathematical vector operations. To
understand the attractive properties of word embeddings, it is relevant to consider
what is the alternative to word embeddings. The universal means of representing
words in a numerical format is the one-hot encoding. In this type of encoding, a
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word wi with index i in a vocabulary V is represented as a vector ~wi ∈ R|V |, where
all entries of ~wi are set to 0 except for the entry with index i, that is set to 1. One-
hot encoding is a local word representation in a discrete space. In one-hot encoding,
a word is represented by a single binary value in a sparse vector. The issue with
the one-hot encoded representation is that it does not convey any relation of word
similarity. Given two one-hot encoded vectors, ~wi and ~wj , it is possible to tell if
the vectors represent the same word or not, but the word representations do not
disclose any further information about the relation between the two words.

Word embeddings are distributed representations of words in a continuous space,
represented by dense vectors ~wi ∈ Rd of a fixed dimension d. A typical choice of
dimension is 300, which usually is many order of magnitude smaller than |V |. The
word embeddings are either learned by use of optimization methods, or derived with
spectral methods from word co-occurrence statistics. The idea of word embeddings
is conceptually related to the distributional hypothesis (Harris 1954), saying that the
meaning of a word is dictated by the contexts where it occurs, concisely described
as “You shall know a word by the company it keeps” (Firth 1957). By incorporating
this idea in the practice of deriving word representations, words that occur in similar
contexts will obtain similar representations (Mikolov, Sutskever, et al. 2013). Thus,
word embeddings can be used for automatic understanding of words, which is an
important task in NLP. In addition, usage of word embeddings as generic word
representations in extrinsic tasks, such as text classification, information extraction,
and machine translation, is manifold (Habibi et al. 2017; B. Hu et al. 2014; Mesnil
et al. 2013; Y. Zhang et al. 2016; Vora, Khara, and Kelkar 2017).

Several algorithms exist for computing word embeddings. The early work on
word embeddings include Latent Semantic Analysis (LSA) (Deerwester et al. 1990),
and probabilistic LSA (Hofmann 1999), that are based on matrix factorization meth-
ods for embedding words in a d-dimensional space. More recently, context window
approaches for deriving word embeddings, practiced in (Collobert and Weston 2008)
and extended by Word2vec (Mikolov, Sutskever, et al. 2013), GloVe (Pennington,
Socher, and Christopher D. Manning 2014), and FastText (Bojanowski et al. 2016),
have achieved unbeaten results on several metrics.

Neural Network Methods Lately, learning word embeddings based on predic-
tive models within local context windows, often implemented as neural networks,
has become the dominant approach to learn word embeddings. Such a model was
popularized by Bengio et al. (2003), that proposed a neural network model where
the input is a k-gram of words, and the output is a probability distribution over the
next word. This idea was further developed by Collobert and Weston (2008), and
more recently Mikolov, Chen, et al. (2013) introduced the Continuous Skip-gram
(Skip-gram) model, and the Continuous Bag-of-Words (CBOW) model, which are
the foundation for modern algorithms for learning word embeddings.

The Skip-gram model is a model for predicting the context of a word. The
number of words to predict depends on the context window size c. A typical choice
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is c = 2, meaning that the task of the model is to predict the two words in front of
the center word, wt−1, wt−2, and the two words after the center word, wt+1, wt+2.
The accuracy of the prediction is determined by the objective in Eq. (2.3), that
should be maximized, where T is the number of words in the training corpus.

1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (2.3)

The CBOW model does the reverse of Skip-gram, and predicts the center word
wt, given a set of context words wt+2, wt+1, wt−1, wt−2, intending to maximize the
objective in Eq. (2.4).

1
T

T∑
t=1

log p(wt|wt+1, wt+2, wt−1, wt−2) (2.4)

Both Skip-gram, and CBOW can be implemented as shallow neural networks that
are efficient to train with gradient optimization (Fig. 2.2). In the neural network
implementations, the objective functions are realized through the softmax function
(σ(~z)j = e~zj∑K

k=1 e
zk
). The softmax operation can be interpreted as computing the

probability of each word in the vocabulary V occurring in the context, conditioned
on the center word (or vice-verse for CBOW). However, as the vocabulary of words V
tend to be large, softmax becomes a computationally expensive operation. For this
reason, most implementations use approximations of softmax, such as hierarchical
softmax (Morin and Bengio 2005) and negative sampling (Mikolov, Sutskever, et al.
2013). During training, the parameters are updated to minimize the loss between
the predicted probabilities and the actual words in the context window.

Evaluating Word Embeddings Word embeddings are evaluated in two ways,
with extrinsic and intrinsic evaluations. Extrinsic evaluation refers to evaluation
of word embeddings with respect to the performance on a downstream task, such
as information extraction. As the downstream task generally is the end goal, this
type of evaluation is the most significant, though more costly than the intrinsic
counterpart.

Intrinsic evaluations are shallow assessments of the quality of word embeddings.
Examples of intrinsic evaluations include evaluating the embeddings capability of
inferring meaningful semantic relations between words, and word analogy solving.
Word analogy solving alludes to the task of finding the missing word in puzzles such
as “king is to man as queen is to X”. For comparable evaluations of algorithms
for learning word embeddings, there exist public datasets for intrinsic evaluation
(Hill, Reichart, and Korhonen 2015; Finkelstein et al. 2002). Besides the standard-
ized datasets for intrinsic evaluation, domain-specific datasets can be used (Tixier,
Vazirgiannis, and Hallowell 2016).
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Figure 2.2: Skip-gram (Fig. 2.2a) and CBOW (2.2b). V denotes the vocabulary,
and D denotes the embeddings’ dimension.

State-of-the-art Algorithms Word2vec (Mikolov, Sutskever, et al. 2013) is a
software package that implements both the Skip-gram model and the CBOWmodel.
It stands out from prior work for being faster to train than prior implementations,
owing to a technique called negative sampling. By using local context windows of
words, Word2vec misses certain global statistics of the corpus. This shortcoming of
Word2vec motivated the development of GloVe (Pennington, Socher, and Christo-
pher D. Manning 2014), that combines the global corpus statistics used in spectral
methods like LSA, with local context windows that are used in Word2vec.

Both Word2vec and GloVe assign distinct word embeddings to each individual
word in the training corpora. Unlike Word2vec and Glove, in the FastText algorithm
for learning word embeddings, each word is described by a bag of character n-
grams. In FastText, an embedding representation is associated with each n-gram
(Bojanowski et al. 2016). The advantage of using a more fine-grained assignment
of embeddings is that the embeddings are not as sensitive to Out-Of-Vocabulary
(OOV) words, which is particularly useful for languages that are rich on morphology.
Alternative algorithms for learning word embeddings that are less used in practice
are WordRank (Ji et al. 2015), and Eigenwords (Dhillon, Foster, and Ungar 2015).
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2.2.2 Deep Learning

Deep learning is a subset of machine learning, where the input is modeled as a deep
hierarchy of representations, hence the name. In deep learning, initial levels in the
system learn representations of the input that are suitable for more sophisticated
learning further down the hierarchy. The deep learning approach to learning has
achieved unbeaten results in domains such as computer vision and NLP.

Deep learning has had a renaissance in recent years due to an increasing amount
of data and computational power, which are important ingredients for deep learn-
ing pipelines. In addition, improvements in algorithms for training deep learning
systems have contributed to the success. The neural network is the most common
model for deep learning. Since the breakthrough in 2006 on how to circumvent
the difficulty of training deep neural networks (G. Hinton and Salakhutdinov 2006),
several success stories using deep learning have been reported.

Broadly speaking, neural networks consists of a set of connected computing
elements (neurons) and activation functions ϕ. To make a network recognize a
certain pattern, the parameters in the network are updated iteratively according
to some objective based on truth labels. This procedure can be seen as a form of
automatic programming, also called learning (Minsky and Papert 1988).

A deep neural network is a network where the computing elements are struc-
tured in several layers stacked on top of each other. Structuring the network in
a deep hierarchy have shown to increase the network’s expressive power and to
be exponentially more effective than shallow networks (Mhaskar, Liao, and Poggio
2016).

With the expressive power comes also challenges. Deep neural networks are
notoriously hard to train compared with less complex models, and often require
parameters that can only be found via experimentation and empirical research.
However, a generic trait of deep learning systems is that they work best when
trained on vast amounts of data (Sun et al. 2017).

Types of Deep Neural Networks Neural networks are distributed processing
devices that come in many shapes and forms. Two of the most frequent architectures
are the CNN (Lecun et al. 1998) and the Recurrent Neural Network (RNN).

Traditionally, CNNs have reached most success on computer vision tasks, domi-
nating the the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Rus-
sakovsky et al. 2015). CNNs have an architecture inspired from the visual cortex
in human brains, with built-in assumptions that the input has a grid-like shape,
and that the recognition should be equivariant to the input representation. The
network consists of a combination of convolutional, pooling, and fully connected
layers. The convolutional layers make use of localized feature detectors, also called
filters, that are connected to smaller regions of the input. Although computer vision
is the dominating use case of CNNs, in recent times, CNNs have been used for NLP
tasks as well. In particular, the CNN has been fruitful for text classification (Kim
2014; Conneau et al. 2016). When applied to text, CNNs achieve context awareness
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Figure 2.3: A two-layered feed-forward neural network.

through the filters that focus on n-grams of the input.
As opposed to the CNN architecture, RNNs are not common in computer vision.

RNNs excel at sequence learning and are a common tool for NLP tasks that can be
formulated as sequence prediction tasks. Such as, machine translation (Bahdanau,
Cho, and Bengio 2014) and question answering (Iyyer et al. 2014). The architecture
of RNNs have a built-in assumption that the input is in a sequence-format. In RNNs,
the prediction at one part of the input sequence depends on the previous parts of
the sequence, modeled with a loop-back connection in the neural network.

Backpropagation The dominant optimization technique for training deep neu-
ral networks is gradient descent, where the gradient is computed with a procedure
called backpropagation (D. E. Rumelhart, G. E. Hinton, and Williams 1986). When
training a neural network with gradient descent, after each iteration, the parame-
ters are updated based on the partial derivatives with respect to the loss function.
Backpropagation implements the computation of the partial derivatives in neural
networks in an efficient manner by propagating the errors backwards in the network
and caching intermediate values.

I now turn to an example to illustrate the workings of backpropagation using
computational graphs. A computational graph is an abstraction that can be used to
represent the flow of computations in neural networks. A node in the computational
graph refers to an operation, and inputs to operations are denoted with arrows.

To exemplify how neural networks are trained in a supervised manner, consider
the network in Fig. 2.3. If I assume that the network uses the logistic sigmoid
(σ(x) = 1

1+e−x ) as the activation function for both hidden and output units, and
that the network is trained to minimize the mean squared error with respect to
truth labels y (L(y, ŷ) = 1

2
∑
i(yi − ŷ)2). Then, Fig. 2.4, and Fig. 2.5 shows the

corresponding computational graphs for the neural network for forward, and back-
ward propagation, respectively, where ~x ∈ R3,W0 ∈ R3×3, b0 ∈ R3,W1 ∈ R3, ŷ ∈ R.

Let ~x be the input data and y be the truth label, then the forward propagation
of the network computes the composite function ŷ = f(~x) = σ(W T

1 σ(W T
0 ~x+~b0)+~b1),
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Figure 2.4: Computational graph for forward propagation of the network in Fig. 2.3.
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Figure 2.5: Computational graph for backward propagation of the network in Fig.
2.3.

and the backward propagation computes the gradient∇θL(y, ŷ) = ( ∂E
∂W1,1

, . . . , ∂E
∂Wn,n

),
where θ is the set of parameters in the network. The forward propagation can be
broken down into seven operations: two additions, two dot products, two sigmoid
operations (applied element-wise to vectors), and one application of the loss func-
tion. The results of these operations are in turn stored in seven variables (Eq.
(2.5)).

~z0 = W T
0 ~x ∈ R3, ~h0 = ~z0 + ~b0 ∈ R3, ~a0 = σ( ~h0) ∈ R3,

z1 = W T
1 ~a0 ∈ R, h1 = ~z1 + ~b1 ∈ R, ŷ = ~a1 = σ( ~h1) ∈ R,

E = 1
2
∑
i

(yi − ŷ)2 ∈ R
(2.5)

The backward propagation seeks to compute the gradient ∇θL(~x, y), that contains
the partial derivatives of all of the variables in the network, θ. For completeness, the
symbolic derivatives of the example network in Fig. 2.3 are given in Eq. (2.6). The
derivatives are derived by recursive application of the chain-rule from calculus to the
composite function that the forward propagation computes. The partial derivatives
of two vectors ∂ ~v1

∂ ~v2
, where ~v1 ∈ Rn, ~v2 ∈ Rm, and g(~v1) → ~v2 refers to the n ×m

Jacobian matrix of g. To see how this notation can be generalized to higher-order
tensors, I refer to (Goodfellow, Bengio, and Courville 2016).

∂E

∂~b1
= ∂E

∂ŷ

∂ŷ
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∂h1

∂ ~b1
,
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(2.6)
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In the symbolic derivatives above (Eq. (2.6)), notice that several sub-expressions
are computed repeatedly. For large neural networks, training time can be reduced
drastically by caching the computation of intermediate sub-expressions. Backprop-
agation provides a principled way for doing exactly this.

Finally, once the gradient is computed using backpropagation, gradient descent
can be used to perform “learning”. This is done by updating the parameters in the
network using the partial derivatives and a learning rate η to minimize the loss, as
demonstrated in Eq.(2.7).

∆~b1
= −η ∂E

∂~b1
, ∆W1 = −η ∂E

∂W1
,

∆~b0
= −η ∂E

∂~b0
, ∆W0 = −η ∂E

∂W0

(2.7)

2.2.3 Weak- and Semi- Supervised Learning Techniques

Supervised machine learning has enabled several success stories for machine under-
standing of text. For instance, machine translation (Bahdanau, Cho, and Bengio
2014), text classification (Kim 2014), and question answering (Iyyer et al. 2014).
However, acquisition of labeled training data is expensive and not always feasible.

Due to the scarcity of labeled training data, research on exploiting unlabeled
data for training has received attention. For certain tasks, completely unsupervised
learning is enough, such as the task of learning word embeddings. For other tasks, a
blend of supervised and unsupervised learning is appropriate. Semi-supervised and
weakly-supervised learning are two approaches to learning with limited amount of
supervision, while having access to an abundant amount of unlabeled data.

In semi-supervised learning, even though it is assumed that a smaller amount
of labeled training data are available, the goal is to combine that data with a larger
portion of unlabeled data. To train with unlabeled data, semi-supervised learning
makes use of assumptions about the data, such as the data distribution. With
the right assumptions, semi-supervised learning algorithms are able to relate the
unlabeled data with the labeled data to drive the learning process.

Weakly supervised learning methods rely on availability of weak-supervision
signals and do not assume that any labeled data are available. A weak supervision
signal can for instance be in the form of an external API, a crowdworker, or a
domain heuristic. As opposed to strong supervision, weak supervision seldom has
perfect accuracy or coverage.

The Data Programming Paradigm With the data programming paradigm
(A. J. Ratner et al. 2016), weak supervision is encoded with labeling functions. A
labeling function is any function λi : x→ y, that takes as input a training example
x, and outputs a label y. A labeling function is typically realized through some
domain heuristic and labels only a subset of the data. Naturally, labels produced
by such functions are less accurate than labels produced by human annotators.
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However, the idea of weak supervision is that weak labels can be complementary to
each other. Different weak labels can be combined with the purpose of obtaining
more accurate labels. The innovative part of data programming is the way that it
learns a generative model of the labeling process in an unsupervised fashion.

Formally, a labeling function λi has a probability β of labeling an input, and
refrain from labeling an input with probability 1− β. Similarly, a labeling function
has a probability α of labeling an input correctly. The combination of functions
can be modeled as a generative model πα,β(Λ, Y ). Where Λ is the output matrix
after applying all of the labeling functions to the unlabeled data (Λi,j = λj(xi)),
and Y is the true classes, modeled as latent variables. In Λ, an empirical probabil-
ity p̂i,j that two labeling functions λi and λj agrees can be inferred. By using the
observed probabilities of overlap, the accuracy of each labeling function can be esti-
mated using maximum likelihood estimation. Consequently, the problem of finding
the parameters α and β that best describe the observed overlaps among labeling
functions can be phrased as the optimization problem defined in Eq. (2.8), where
S denotes the training set (A. J. Ratner et al. 2016).

(α̂, β̂) = arg max
α,β

∑
x∈S

logP(Λ,Y )∼πα,β (Λ = λ(x)) (2.8)

Finally, after estimating α and β, the parameterized generative model is used to
engender probabilistic training labels p(Y |Λ) from the unlabeled data and the out-
put of the labeling functions. When producing the probabilistic labels, more weight
is given to accurate labeling functions, and the uncertainty of each label is indi-
cated by the probability. If labeling functions disagree on a training example, this
is encoded as an uncertainty by giving the corresponding label a lower probability.
Subsequently, the probabilistic training labels can be used to train a discriminative
machine learning model in a supervised manner. As the labels are probabilistic and
not binary, a noise-aware loss function is used when training a discriminative model
with such labels. A noise-aware loss function is a loss function for minimizing the
expected loss with respect to the probabilistic labels.

2.2.4 State-of-the-Art in Text Classification

Traditionally, the naive Bayes classifier, and the SVM have been popular models
for supervised text classification tasks, and are common baselines when evaluating
new models (Wang and Christopher D. Manning 2012). Presently, deep learning
models have reached state-of-the-art results on several text classification bench-
marks. In particular, variants of the CNN architecture (Kim 2014; Conneau et al.
2016; Johnson and T. Zhang 2014), and the recurrent architectures (Lai, L. Xu,
et al. 2015) have been effective. Another deep model with comparable results is
the recursive deep neural network (Socher et al. 2013). As opposed to supervised
text classification, standardized benchmarks do not exist for weakly supervised and
semi- supervised models.
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2.2.5 Challenges
Among the most prevalent challenges in machine learning is lack of labeled training
data, shortage of computational resources for training, and overfitting. If a model is
able to fit the training data and still has a high test error, the model is considered
to overfit the training data. By controlling the model’s capacity, overfitting can be
reduced. The mechanism to control the model’s capacity is called regularization.

In addition to overfitting, a challenge inherent in many domains is the curse
of dimensionality. The curse of dimensionality refers to the phenomenon that the
number of possible input configurations quickly blow up as problems get complex,
making learning intractable. The most effective machine learning systems surmount
the curse of dimensionality by relying on assumptions about the data, but it also
reduces the generality of the system.

With this I complete the presentation of learning mechanisms for textual data that
relate to our research. Below is a summarization of key concepts from this section
that have implications on the choice of methods for our purpose.

Word embeddings are learned representations of words that capture word seman-
tics based on word co-occurrence statistics. Unlike training of word embeddings, the
bulk of machine learning models for text processing requires labeled data for train-
ing, something that is not available in our domain. Machine learning paradigms that
can be applied without labeled data includes semi- and weakly- supervised learn-
ing, both of which traditionally have been less successful than supervised learning.
Finally, data programming is a recent method for learning with weak supervision,
where weak supervision is encoded with labeling functions.

2.3 Related Work
There exists a large amount of research on NLP and machine learning applied to
text from social media. A major part of this research has been made on data from
Twitter, because of their liberal data policy. This section presents the related work
that the research presented in this thesis builds upon. The section covers prior work
in the areas of scalable learning of domain-specific word embeddings, information
extraction in social media, and weakly supervised classification.

Domain-Specific Word Embeddings The practice of constructing word em-
beddings targeted to a specific domain is a new field of research. Some examples are
(Tixier, Vazirgiannis, and Hallowell 2016), where embeddings were trained for the
construction domain, and (Major, Surkis, and Aphinyanaphongs 2017; Chiu et al.
2016) that trained embeddings for the biomedical domain. In summary, the results
indicate that domain-specific embeddings can be beneficial over generic embeddings
for certain tasks, and that hyperparameter tuning is important when training new
embeddings. No prior experiments have been made with embeddings for the fashion
domain on Instagram.
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Distributed Training of Word Embeddings For scaling out the training of
word embeddings, the main inspiration comes from Ordentlich et al. (2016), that
scaled out training of Word2vec using the parameter server architecture, and the
data-parallel Word2vec implementation in Spark (Zaharia et al. 2010). My work
focuses on distributing the training of FastText, for which no distributed implemen-
tation or benchmark exists.

Unsupervised Information Extraction Ritter, Mausam, et al. (2012) devise
an approach to event extraction and categorization that uses a supervised tagger
to identify events in tweets. Next, the extracted events are categorized using latent
variable models, that can make use of unlabeled data. Results demonstrate an
improved accuracy compared with a supervised baseline. Their work resembles ours
in that they attempt to classify and extract information from noisy text, and try to
make use of unlabeled data. However, it has some important differences compared
to our setting. In event categorization, the categories are unclear a priori, which fits
well into the latent variable model approach. In contrast, our extraction problem
has a pre-defined set of classes. Moreover, in their proposed solution, they assume
access to an annotated dataset for training a tagger to recognize events in tweets,
a corresponding dataset is not available in our domain.

Numerous research efforts have been made on the line of coarse-grained classifi-
cation in social media using latent variable models (Ritter, Cherry, and Dolan 2010;
Ritter, Clark, et al. 2011). These studies differ from our work in two ways. First,
most of the work is focused on Twitter. Second, in our research, the goal is a com-
plex multi-label extraction with pre-defined classes, while the aforementioned work
typically target more general extraction tasks, often without pre-defined outputs.

Word embeddings have shown to be a great asset for information extraction. In
(Vine et al. 2015), the authors evaluate how useful word embeddings are for clinical
concept extraction and in (Cherry and Guo 2015b), the utility of word embeddings
for NER on Twitter is evaluated. Both results demonstrate improvements when
using word embeddings compared with baseline methods.

Text Classification with Weak Supervision For text classification, our re-
search builds primarily on results from supervised machine learning. The success
of this paradigm of machine learning has traditionally been coupled to large anno-
tated datasets. Notable results in supervised text classification are (Severyn and
Moschitti 2015; Kim 2014; Conneau et al. 2016), all of which differ from our research
in that they rely on large annotated text corpora for training the classifier.

More recently, weakly supervised approaches have been used for text classifi-
cation and information extraction. Specifically, the data programming paradigm
presented in (A. J. Ratner et al. 2016), has achieved promising results. Data pro-
gramming has been applied to binary and multinomial text extraction and classifi-
cation tasks (A. Ratner et al. 2017). To the best of my knowledge, it has neither
been applied to multi-label classification tasks, nor to social media text.
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Chapter 3

Approach

This chapter covers the strategy for this research. In Section 3.1, I give an overview
of how the research was framed and how it relates to the problem statement from
Section 1.3. Moreover, Section 3.2 describes the Instagram corpora that have been
used for experiments and analysis. Finally, Section 3.3 presents the methods in
more detail, how they are related to each other, and the motivation for using them.

3.1 Overview
As stated in the problem statement from Chapter 1, In this research, my goal has
been to study how we can perform accurate and scalable text mining of Instagram
data. The experiments in this thesis can be divided into four categories.

• Training of domain-specific word embeddings on an Instagram corpora.

• Distributed training of word embeddings.

• Unsupervised text mining of Instagram data using domain knowledge.

• Deep text classification of Instagram text with weak supervision.

On a holistic perspective, the experiments are designed to exercise two approaches to
the same problem. In text mining, there is a balance between knowledge engineering
(examined in Chapter 4), and training with data (covered in Chapter 5). While the
former approach has the disadvantage of being dependent on domain knowledge, it
is not limited by access to labeled training data, as the latter approach is.

3.2 Data
This section describes the Instagram corpora that have been processed to obtain
the results in this thesis. The section also describes a smaller annotated dataset
that has been used for evaluation purposes.
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3.2.1 Instagram Corpora

Experiments presented in this thesis have been conducted on a provided dataset,
consisting of Instagram posts from a community of users in the fashion domain.
The data are in the form of a corpora consisting of image captions, user comments,
and usertags associated with each post. In entirety, the corpora consists of 143
accounts, 200K posts, 9M comments, and 62M tokens, out of which 2M are unique.
The numbers were computed before any pre-processing, except applying the NLTK
(Loper and Bird 2002) TweetTokenizer and removing user-handles.

3.2.2 Ground Truth

For evaluation purposes, a dataset of 200 annotated Instagram posts was used.
Each annotated post includes an annotation for each fashion item in the associated
image. Annotations comprise of item-category, fabric, pattern, style, and brand.
The annotation was a collective work by four participants in our research group. The
average number of annotated clothing items per post is 3. Moreover, noteworthy
is that the truth labels are based on the image associated with the text. In that
sense, evaluation using this dataset is unfavorable for the text-based analysis. Since
the labels are decided by the image, certain posts can have labels that cannot be
inferred from the text alone, degrading the measured performance of the developed
text mining models.

3.3 Methods
The research was initiated by an empirical study of the Instagram corpora (Section
4.1). The purpose of the study was to better understand Instagram as a source
of text. The results of the empirical study were helpful in deciding appropriate
methods for text mining of Instagram data.

Following the results of the empirical study, I have identified word embeddings
as a key component for text mining of social media data. With word embeddings,
the semantics of words can be uncovered based on word co-occurrence statistics,
rather than relying on synonym lists or exact linguistic methods. This approach
to text understanding is robust to noise and just as applicable to informal text
as it is to newswire text. However, in the analysis of the Instagram corpora, it
was found that nearly half of the tokens in our Instagram corpora do not have an
embedding representation in the pre-trained word embeddings that are available.
This is because most of the off-the-shelf word embeddings have been trained on
formal newswire text, that has a different vocabulary than social media text. Due to
this mismatch, I have trained domain-specific word embeddings using our Instagram
corpora (Section 4.2).

Training word embeddings is time-consuming. Moreover, the majority of exist-
ing implementations for training word embeddings are not scalable. This motivated
the development of FastTextOnSpark, an implementation of FastText that can
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scale out and train word embeddings using a cluster of machines. The implemen-
tation of FastTextOnSpark is presented in Section 4.3.

Finally, using word embeddings as a central component, two systems for text
mining of Instagram data was developed. The first implementation uses word em-
beddings in combination with domain knowledge to extract fashion details from
Instagram text (Section 4.4). The second implementation uses weak supervision
from open APIs and NLP methods to label a dataset of Instagram posts. After
the labeling process, the labeled data are used to train a deep text classifier for
predicting clothing items in Instagram posts (Section 5.2).

25





Chapter 4

Unsupervised Text Mining with Word
Embeddings

This chapter describes collected results from analyzing an Instagram corpora and
experimenting with unsupervised methods for text mining. The chapter covers
data exploration to quantify the characteristic of the corpora (Section 4.1), an
assessment of word embeddings trained on Instagram text (Section 4.2), and a
presentation of a scalable system for training with the FastText algorithm (Section
4.3). Finally, the chapter describes an information extraction system (Section 4.4)
that uses the trained embeddings to extract fashion details from Instagram posts
in an unsupervised manner.

4.1 Data Analysis

Data analysis was done to better understand Instagram as a data domain of text.
In Section 4.1.1 the experimental setup of the data analysis is presented and Section
4.1.2 presents the results.

4.1.1 Experimental Setup for an Empirical Study of Instagram Text

Of special interest in the data analysis was to quantify how the corpora differs
from newswire text, as it affects the choice of processing methods. To measure the
fraction of emojis, hashtags, and user-handles, the NLTK (Loper and Bird 2002)
TweetTokenizer was used to tokenize the text, and regular expressions were applied
to extract the desirable tokens. To quantify the amount of Out-Of-Vocabulary
(OOV) words, two vocabularies were used, the Google-news vocabulary (Google
2013), and GNU aspell v0.60.71. The Google-news vocabulary was chosen to il-
luminate the mismatch between off-the-shelf word embeddings and the Instagram
corpora, and the aspell dictionary was used to enable comparison with related work.

1http://aspell.net/
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Table 4.1: Measurements of lexical noise in the corpora.

Text Statistic Fraction of corpora size Average/post St. Dev Min/post Max/post

Emojis 0.15 48.63 141.15 0 17938
Hashtags 0.03 9.14 12.48 0 1325
User-handles 0.06 18.62 232.74 0 46208
Google-OOV words 0.46 145.02 477.89 0 58832
Aspell-OOV words 0.47 147.61 486.27 0 58859

Finally, langid.py (Lui and Baldwin 2012) was used to capture the distribution of
languages in the corpora.

4.1.2 Results from the Empirical Study
In this section, results from exploratory data analysis of the Instagram corpora is
presented.

What Characterizes Instagram as a Source of Text? Table 4.1 contains
statistics that capture the distinctive properties of the Instagram corpora compared
with newswire text. Removing all online-specific tokens (hashtags, user-handles,
emojis, URLs) results in an OOV fraction of 0.30 based on the aspell dictionary,
that can be compared with the fraction 0.25 that was obtained by Baldwin et al.
(2013) on a Twitter corpora using the same pre-processing and dictionary.

How Multi-Lingual is Instagram Text? Although all Instagram posts in the
corpora are from English accounts, the comments sections are often multi-lingual.
Applying langid.py (Lui and Baldwin 2012) on the set of 9 million comments
reveals that 52% of the comments are primarily written in English. The Language
identified as the second most common was Chinese on 6.5%, followed by Japanese
on 5%, German on 3%, and Spanish on 2%. In total, 97 languages were identified
in the set of comments.

How Is the Text Distributed on Instagram? The number of comments asso-
ciated with Instagram posts is varying. Data analysis reveals that the distribution
of comments and amount of text associated with posts exhibit the long tail phe-
nomenon. The frequencies of number of comments roughly follows a power law
relationship (Fig. 4.1). Some posts have no comments at all, while others have a
few thousand comments. The mean length of captions and comments in the corpora
is 29, and 6 tokens, respectively.

4.2 Learning Domain-Specific Word Embeddings
Considering the substantial ratio of OOV words (Table 4.1), and the informal lan-
guage used in social media, in this section I survey the benefit of training new
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Figure 4.1: The text distribution in the corpora.

embeddings for the fashion domain on Instagram. Furthermore, I provide an eval-
uation of embeddings trained on our corpora of Instagram posts using Word2vec,
Glove, and FastText, with varying hyperparameters.

4.2.1 Experimental Setup for Training and Evaluating Word
Embeddings

This section outlines the setup that was used to train and evaluate word embeddings
for Instagram text.

Baselines To examine the difference between domain-specific word embeddings
and generic word embeddings, the embeddings trained on the Instagram corpora was
compared with the state-of-the-art off-the-shelf embeddings, provided by Google,
Facebook, and Stanford’s NLP group. Specifically, the baselines were: (1) FastText-
Wiki, consisting of embeddings pre-trained with the FastText algorithm on a cor-
pus of Wikipedia articles, published by Facebook (Bojanowski et al. 2016); (2)
Word2Vec-GNews, consisting of embeddings pre-trained with the Word2vec al-
gorithm on a corpus of Google news articles, published by Google (Google 2013);
(3) and (4) GloVe-Wiki, and GloVe-Twitter, consisting of embeddings pre-
trained with the GloVe algorithm respectively on a corpus of Wikipedia articles, and
tweets, published by the Stanford NLP group (Pennington, Socher, and Christopher
D. Manning 2014).

Hyperparameters To find the best algorithm and hyperparameters for training
word embeddings on the Instagram corpora, word embeddings with varying dimen-
sion and context window size were trained. Moreover, the evaluation included all
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of the state-of-the-art algorithms for training word embeddings. When training
embeddings with GloVe, the GloVe-python implementation was used2, for Fast-
Text, the official C++ implementation was used3, and for Word2vec, the gensim
implementation was used4. I have made the best performing embeddings publicly
available5. Parameters that were not tuned in the evaluation, were kept to their
default values, listed in Table 4.2.

Table 4.2: Default parameters used when training word embeddings.

Parameter Value

Iterations 15
MinCount 5
Learning rate 0.025
Learning rate update rate 100
Minimum n-gram (FastText) 3
Maximum n-gram (FastText) 6
Output layer Hierarchical softmax
Max count (GloVe) 100

Evaluation Datasets Three datasets were used to evaluate trained word em-
beddings on the word similarity task, (1) WordSim353, introduced by (Finkelstein
et al. 2002), is a dataset consisting of 353 word pairs with accompanying related-
ness scores; (2) SimLex-999, presented in (Hill, Reichart, and Korhonen 2015), is a
dataset of 999 word pairs and similarity labels; and (3) FashionSim, an open-source6

dataset consisting of 307 fashion related words and relatedness scores, collectively
annotated by our research group in cooperation with fashion experts.

Evaluation Metric The relative word rankings were measured with Spearman’s
rank correlation coefficient, ρ. The similarities on the evaluation datasets were
compared to the cosine similarity between corresponding word embeddings. Spear-
man’s rank correlation is suitable for measuring monotonic relationships between
variables, that fit well with the word similarity task, and enables comparison with
prior results.

Pre-processing Before training word embeddings, the Instagram corpora was
pre-processed by converting the text to lowercase, tokenizing the text with the
TweetTokenizer in NTLK (Loper and Bird 2002), removing user-handles, removing
all URL’s, as well as removing stopwords. The stopwords were removed based
on a custom stopword list, consisting of standard English stopwords listed in the

2https://github.com/maciejkula/glove-python
3https://github.com/facebookresearch/fastText
4https://github.com/RaRe-Technologies/gensim
5https://github.com/shatha2014/FashionRec
6https://github.com/shatha2014/FashionRec
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NLTK stopword list (ibid.), as well as domain-specific stopwords. Finally, all words
were lemmatized and lemmas that occurred fewer than 5 times in the corpora were
removed before training the word embeddings.

The TweetTokenizer was preferred as it is designed to recognize social media
text. Removal of urls, stopwords and rare words, as well as lemmatization, was
motivated by previous results reporting that it improved the usefulness of the final
embeddings (Mikolov, Sutskever, et al. 2013; Sugathadasa et al. 2017). Moreover,
user-handles were removed from the corpora based on experimentation. It was found
that user-handles occur frequently in the corpora, yet bear little, if any, predictive
power for word co-occurrence statistics.

Significance Testing Significance testing was done by applying the t-test and
calculating the two-sided p-value for the null-hypothesis that the similarities pro-
vided by a set of embeddings are uncorrelated with the ground-truth in the evalua-
tion dataset. To regard the result as a significant correlation, a p-value below 0.01
was required.

4.2.2 Results from an Intrinsic Evaluation of Word Embeddings

In this section, word embeddings trained on the Instagram corpora are examined.
The experiments include a comparison between Instagram embeddings and off-the-
shelf embeddings, as well as hyperparameter tuning of embeddings trained on In-
stagram text.

How compatible are Off-the-shelf Embeddings for Social Media? Off-the-
shelf embeddings outperform the domain-specific embeddings on general evaluation
metrics such as Simlex-999 (Hill, Reichart, and Korhonen 2015), and Wordsim353
(Finkelstein et al. 2002). However, on the FashionSim evaluation dataset the re-
versed relationship occurs (Fig. 4.2). To exemplify, the embeddings FastText-
Fashion had the lowest score on the Simlex-999 evaluation dataset and the highest
score on the FashionSim dataset.

What are Suitable Hyperparameters? It can be observed that FastText and
Word2vec are highly dependent on the hyperparameter settings, while Glove is
stable in comparison (Fig. 4.3). FastText demonstrated the best results on the
given task. With FastText, the top accuracy was achieved with Skip-gram and
context window size 2. A prevalent trend in the results is that CBOW performed
better with larger window sizes, as opposed to Skip-gram that achieved the highest
results with smaller context windows. Additionally, a substantial boost in accuracy
was observed when increasing the vector dimension from 50 to 100, and then a
less significant increase when further raising the dimension up to 300. When the
dimension is increased above 300 there is a diminishing return of increased accuracy
relative to the increased dimension.
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Figure 4.2: Intrinsic evaluation on the word similarity task (p-value < 0.001).
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Figure 4.3: Hyperparameter tuning on the FashionSim evaluation dataset (p-value
< 1.76e−5). When tuning the context-window size the dimension was 300. When
tuning the dimension the fine-tuned window sizes 2, 11, 12, 3, 13 for FastText Skip-
gram, FastText CBOW, Glove, Word2vec Skip-gram,Word2vec CBOW, was used.
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Figure 4.4: Architecture of FastTextOnSpark.

4.3 Distributed Training of Word Embeddings

Training of word embeddings is a data-driven undertaking, where the quality of the
resulting embeddings is dependent on the amount of data and length of training
(Lai, Liu, et al. 2015). Therefore, scalability is a concern. As evidence, the state-
of-the-art word embeddings are all trained on corpora consisting of several billion
words. Moreover, as the experiments in the previous section testify to, finding
appropriate embeddings involves time-consuming empirical experiments.

The official C++ implementation of FastText is multi-threaded but limited to a
single machine, making it a bottleneck in big data pipelines. With this background,
I have ported the official FastText implementation for training word embeddings to
run in a distributed setting on the Spark engine (Zaharia et al. 2010), inspired by
the Word2vec counterpart. This section describes the implementation, analyzes it
theoretically, and evaluates it with empirical experiments.

The implementation, FastTextOnSpark, is open source7, and can scale out
training of FastText word embeddings to a cluster of machines to reduce the train-
ing time. FastTextOnSpark is data-parallel and partitions the training data over
the set of available machines, denoting one machine as the driver d, and the rest
as executors E . For each training iteration, every executor gets a local copy of the
word embeddings, and updates the embeddings with gradient-based optimization
using its partition of the training set. After every iteration, each executor sends its
modified embeddings to the driver. Finally, the driver updates the global embed-
dings by adding the modified embeddings together. Once the global embeddings
have been updated, the driver broadcasts the updated embeddings to the executors,
who proceed to the next iteration. The system is illustrated in Fig. 4.4.

For sake of understanding, a formal definition of the Skip-gram model as it is
used in FastTextOnSpark is given below. I first describe the general Skip-gram
model (Section 4.3.1), and then how it is extended with subword information by the

7https://github.com/shatha2014/FashionRec
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FastText algorithm (Section 4.3.2), and finally how the computation is distributed
in FastTextOnSpark to achieve close to linear scaling (Section 4.3.3).

4.3.1 The Continuous Skip-gram Model
Let the sequence of words w1, . . . , wT denote the training corpus. Then, if we
recall the definition from Chapter 2, the Skip-gram model aspires to maximize the
objective in Eq. (4.1).

1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (4.1)

When implemented as a neural network, the computation in Skip-gram for each
word in the training corpus is as follows. The center word wt is first projected
into its embedding representation ~vwt ∈ Rd, where d is the vector dimension (as
visualized in Fig. 2.2a). Next, the predicted probability of each word wc in the
vocabulary V occurring in the context window is computed. The probabilities are
obtained with softmax. Input to softmax is the dot product between the center word
vector ~vwt and the weights between the projection layer and the hidden layer for the
context word. For example, the conditioned probability of word wc ∈ V occurring
in the context is obtained by taking the softmax of the dot product between the
center word vector ~vwt and the weight vector for word wc, denoted as ~uwc ∈ Rd (Eq.
(4.2)). To explain this computation, it is convenient to think of the dot product
as a rough similarity measure. A larger dot product indicates a higher similarity
between the two vectors, and that in turn yields a higher probability by softmax.

p(wc|wt) = e ~uwc
T ~vwt∑

wk∈V e
~uwk

T ~vwt
(4.2)

The parameters in the Skip-gram model consists of two vectors of dimension d for
each word in the vocabulary. One vector in the projection layer and one in the
weights between the projection layer and the hidden layer. The loss function is the
negative log-likelihood (Eq. (4.3)), where θ = [uw1 , vw1 , . . . , uw|V | , vw|V |] ∈ R2d|V |

denotes a concatenated vector of model parameters.

L(θ) = − 1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log e ~uwt+j
T ~vwt∑

wk∈V e
~uwk

T ~vwt
(4.3)

Having defined the loss function, parameters of the model can be optimized with
gradient-based optimization and a learning rate η. Each parameter in θ is updated
according to its partial derivative with respect to the loss, θ′ = θ − η∇θ.

4.3.2 The FastText Algorithm - Modeling Subword Information
The Skip-gram model is extended in the FastText algorithm (Bojanowski et al.
2016) by incorporating subword information in the model. In FastText, the
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projection layer includes a vector representation for each n-gram in the vocabulary.
The projected representation of a word is the sum of the vector representations of
all of its n-grams. For example, setting n = 6, the word “#londonfashion” contains
the n-grams:

#londo, london, ondonf, ndonfa, donfas, onfash, nfashi, fashio, ashion

In addition to the regular set of n-grams, FastText uses two special bound-
ary symbols that marks the beginning and end of words, < and >. With these
symbols, the model can distinguish prefixes and suffixes from other character
sequences. Moreover, a special n-gram that includes the entire word is included.
Hence, for the example with word “#londonfashion”, three additional n-grams are
added:

<#lond, shion>, <#londonfashion>

The updated Skip-gram model used in FastText is defined in Eq. (4.4),
where the set of n-grams for word wt is denoted as Gwt .

p(wc|wt) = e

∑
g∈Gwt

~uwc
T ~vwg∑

wk∈V e

∑
g∈Gwt

~uwk
T ~vg

(4.4)

The intention with the n-gram computations in FastText is that it helps the model
to learn representations that are shared across words. The subword information im-
proves word generalization for languages with a lot of morphological variation. For
instance, by using the FastText approach, the word “#londonfashion” will obtain
an embedding representation that is similar to both the word family of “london”,
and to the word family of “fashion”. Thus, even if the literal token “#londonfash-
ion” only occur occasional times in the training corpus, the model can capture its
semantics by using the learned representations of its common subwords “london”
and “fashion”.

4.3.3 FastTextOnSpark
In FastTextOnSpark, for each iteration, the training corpus is split into m par-
titions P = {pi|pi = [s(i−1)∗(T/m)+1, . . . , si∗T/m] ∧ i ∈ 1, . . . ,m}, where si denotes
the i-th sentence in the training corpus. Next, the parameters of the model, θ, are
broadcasted to every executor ei ∈ E , and the partitions are distributed evenly over
the executors. Once this data shuffling is completed, each executor independently
performs one pass of Skip-gram training and gradient optimization on its partitions
of the dataset. After completing the training, the executors upload their modified
parameters θ̂(i) to the driver d. Finally, the driver then sums the modified em-
beddings from the executors to update the global parameters θ. When this step is
completed, the system proceeds to the next iteration and the procedure is repeated
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when the driver re-broadcasts θ. This computation is defined in Eq. (4.5), where
θ̂(i) = t(ei, ~pi, θ) denotes the updated model parameters after Skip-gram training by
executor ei on its assigned partitions ~pi and parameters θ. θk denotes the global
model parameters for iteration k. Pseudocode of the algorithm is given in listings
1 and 2.

θ̂
(i)
k = t(ei, ~pi, θk−1)

θk = θk−1 +
∑
i

θ̂
(i)
k

(4.5)

Algorithm 1 FastTextOnSpark: Driver node computation
1: procedure FTOS(D) . Input training corpus D
2: S ← split(D) /* split corpus into sentences */
3: V ← vocab(D)
4: θ0 ← random(R2d|V |+dn) /* initialize parameters */
5: P ← partition(S)
6: distribute(P )
7: for i ∈ {1, . . . , itermax} do /* iterative learning */

8: ~̂
θi ← broadcast(θi−1, E) /* broadcast θ to executors */

9: θi ← θi−1 +∑
θ̂ji ∀θ̂ji ∈

~̂
θi /* update model */

10: end for
11: return θitermax . Learned embeddings
12: end procedure

Algorithm 2 FastTextOnSpark: Executor node computation
1: procedure FTOS(~pj , j) . Input partitions and executor id
2: for i ∈ {1, . . . , itermax} do
3: θi−1 ← receive(θi−1) /* receive parameters from driver*/
4: θ̂ji ← t(ej , ~pj , θi−1) /* skip-gram training*/
5: send(θ̂ji ) /* send modified embeddings to driver */
6: end for
7: end procedure

Implementation Details of FastTextOnSpark To make local training at each
executor more efficient, the implementation makes use of a handful of well known op-
timizations. Hierarchical softmax (Morin and Bengio 2005) is used to approximate
the computationally expensive softmax operation over large vocabularies. Moreover,
the implementation hashes n-grams to bound memory requirements (Bojanowski et
al. 2016), and uses efficient implementations of linear algebra operations from the
BLAS library (Blackford et al. 2002). Finally, the implementation also holds a pre-
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computed cache of exponentials in physical memory to speed up the computation
of sigmoid operations used in hierarchical softmax.

Fault-tolerance is provided by the underlying Spark platform. Spark performs
the computations in memory and models the computation as a lineage graph, with
explicit dependencies between sub-tasks. By checkpointing the lineage to disk peri-
odically, failures can be recovered quickly by re-computation, without risking incon-
sistencies and without having to rely on replication, for details see (Zaharia et al.
2010).

Scalability Analysis The implementation has two conceivable bottlenecks. The
first bottleneck scenario is lack of memory. Although the computation in FastTex-
tOnSpark can scale with the number of machines, every machine must be able to
fit all word embeddings in physical memory to achieve tolerable training times. To
exemplify, with a vocabulary of words V , a vector dimension d, model parameters
θ, and using 4-byte floating point numbers, the baseline Word2vec implementation
requires 2 · d · 4 · |V| bytes of RAM for every machine to be able to fit θ ∈ R2d|V | in
memory. Similarly, FastText requires 2 · d · 4 · |V|+ 4 · d ·n bytes to fit θ ∈ R2d|V |+dn

in memory, where n is the number of n-grams.
The second potential bottleneck of FastTextOnSpark is network band-

width. The implementation follows the Bulk Synchronous Parallel (BSP) framework
(Valiant 1990). In this framework, the computation can be divided into a series of
supersteps, one for each iteration. The BSP model makes the execution free of race
conditions and deadlocks. However, the BSP model is sensitive to stragglers and
network communication.

In the sequel, I give an asymptotic time complexity analysis of FastTextOn-
Spark. The training corpus is denoted as D, the number of iterations as k, and
the number of executors as |E|. C refers to the total context window size, n denotes
to the number of n-grams, V is the vocabulary of words, and d is the dimension of
embeddings.

Computation Time The time complexity when k >> 1 (startup complexity is
ignored) for the driver node is:

O(3D + 2d|V |+ dn)︸ ︷︷ ︸
constant time

+O(k|E|(2d|V |+ dn))︸ ︷︷ ︸
iterative

= O(k|E|(2d|V |+ dn))

Here I use the worst case analysis. Meaning that I assume that every executor
modifies all parameters in the model at every iteration, which entails that the driver
needs to sum over |E| complete parameter sets for each iteration. Similarly, the
time complexity for executors is O(k D|E|C(d+ d log2 |V |)). Where O(d+ d log2 |V |)
represents the complexity of hierarchical softmax.

Communication Cost As depicted in Fig. 4.4, the distributed training in Fast-
TextOnSpark makes use of two costly network transfers: (1) sending the modified
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parameters from every executor to the driver node; and (2) broadcasting updated
model parameters from the driver to the executors. In the worst case analysis, all
executors modify every parameter in every iteration. Thus, the communication cost
is O(k2|E|(2d|V |+ dn)).

Communication Time The communication time depends on the available band-
width. Without loss of generality, I assume that the time to send 2 ·d ·4 · |V|+4 ·d ·n
bytes between the driver and every executor takes p time. The messages from ex-
ecutors to the driver are done in parallel (assuming no stragglers) and hence the
effective communication time is in the order of O(2kp).

Proposition 4.3.1. Let |E| denote the number of executors and let p denote the
network latency. Assume that the model parameters θ ∈ R2d|V |+dn fits in memory
of each machine, and that the effect of stragglers is negligible. Then, if startup
complexity is ignored, FastTextOnSpark gives an asymptotic speedup as D →
∞∧|V | 6→ ∞ in the order of O(|E|) compared to the single machine implementation,
minus the added communication cost of O(2kp).

Proof. With the assumptions and notation used above, the complexity for the
single machine implementation is O(kDC(d + d log2 |V |), denoted as T1. Simi-
larly, the complexity of FastTextOnSpark, denoted as T|E|, is on the order of
O(k|E|(2d|V | + dn)) + O(k D|E|C(d + d log2 |V |)). As D → ∞, the leading term is
O(k D|E|C(d + d log2 |V |). Then it follows that in the limit, T1

T|E|
= |E|. Thus, the

theoretical speedup as D → ∞ is on the order of O(|E|) minus a communication
cost of O(2kp). This is essentially an example of Gustafson’s law (Gustafson 1988),
where the computation and communication time is constant and the problem size
is variable.

4.3.4 Experimental Setup for Distributed Training of Word
Embeddings Using FastTextOnSpark

This section describes the experiments with FastTextOnSpark and how the im-
plementation was deployed on a cluster of machines to evaluate its empirical scala-
bility.

Evaluation Metrics FastTextOnSpark was evaluated to measure its empiri-
cal scalability and how well it preserves the embeddings’ accuracy despite the dis-
tribution. The implementation was compared to the official C++ implementation
of FastText8. To measure the quality of the embeddings, the WordSim353 (Finkel-
stein et al. 2002) dataset was used. The empirical scalability was measured by the
runtime, the speedup (Eq. (4.6)), and the efficiency (Eq. (4.7)). Ts denotes the

8https://github.com/facebookresearch/fastText
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runtime of the original implementation that is limited to a single machine, and Tn
denotes the runtime of FastTextOnSpark with n machines.

Speedupn = Ts
Tn

(4.6)

Efficiencyn = Ts
nTn

(4.7)

Cluster Configuration All experiments with FastTextOnSpark were run on
a medium-loaded Spark cluster9. The experiments used a variable number of ex-
ecutors, where each executor was allocated 8 CPU cores and 76GB RAM. The
dataset used for training was a corpus of text from English Wikipedia that consists
of 371M tokens, with a vocabulary of size 430K. The Wikipedia corpus is publicly
available10. When training, the dataset was stored distributed in HopsFS11 (Niazi
et al. 2016) on the cluster.

For each execution, the number of partitions of the dataset was configured to
be 2× the number of total available cores for training, as this was shown to give a
desirable balance between parallelism and overhead of task management in Spark.
The official C++ implementation was tested on a local machine with 8 CPU cores
and 16GB RAM. The FastText parameters used for training with both implemen-
tations were the default parameters listed in Table 4.2, with dimension set to 300
and window size set to 8. The implementation, results, dataset, and the commands
used for training, are publicly available12.

4.3.5 Results From Evaluation of FastTextOnSpark

This section contains the results after training word embeddings using FastTex-
tOnSpark on a cluster of machines.

How Scalable is FastTextOnSpark? FastTextOnSpark scales with the
number of machines in the cluster (consistent with Proposition 4.3.1). It reduces
training time on the test corpora described in Chapter 3 from 15.5 hours using the
official C++ implementation to 4.5 hours by distributing the training procedure
on 10 machines (Fig. 4.5). However, the results also indicate that the virtue of
increased parallelism decreases as the number of executors reach above 8 for this
dataset. Moreover, even though increasing the number of machines to train Fast-
TextOnSpark on did not reduce the accuracy, FastTextOnSpark has a slower
convergence when compared with the official implementation (Fig. 4.5).

9hops.site
10https://github.com/shatha2014/FashionRec
11A fork of the Hadoop distributed file system
12https://github.com/shatha2014/FashionRec
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Figure 4.5: Evaluation of FastTextOnSpark in terms of scalability and accuracy
(Wordsim353 accuracy with p-value < 3.6e−14). The number of training iterations
and the dataset size was fixed during training. The results are the average of two
executions with each configuration.

4.4 Unsupervised Extraction of Fashion Attributes from
Instagram

This section presents the workings of a system for unsupervised extraction of fashion
attributes from Instagram posts. The system is evaluated on an annotated dataset
to measure the accuracy of its extractions.

4.4.1 Fashion Attribute Extraction Using Word Embeddings

I have developed a system for extracting fashion attributes from Instagram posts
that is publicly available13, subsequently referred to as SemCluster. Figure 4.6
illustrates the workings of the system. The extraction in SemCluster is carried
out as follows.

13https://github.com/shatha2014/FashionRec
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Table 4.3: Glossary for Eq. (4.8).

Term Meaning

O Ontology
P Set of all Instagram posts
p An Instagram post
cos( ~wi, ~oj) Cosine similarity between embeddings
lev(wi, oj) Levenshtein distance between words
tfidf(wi, p,P) TF-IDF statistic for word wi
h(oj) Probase lookup of ontology term oj
t(wi) Term-score of word wi
γ, η, α Scaling factors
V The Vocabulary of word embeddings

Text Normalization To begin with, the text of a single post is tokenized with
NLTK’s (Loper and Bird 2002) TweetTokenizer, that is designed to recognize text
from social media (a tokenizer that can handle online-specific tokens such as emojis,
emoticons, and the like). Then the text is normalized by lemmatizing and lower-
casing all tokens as well as removing stopwords. Moreover, hashtags, emojis, and
user-handles are extracted using regular expressions, and hashtags are segmented
using the segmenter presented in (Baziotis, Pelekis, and Doulkeridis 2017).

Ontology Mapping Using Word Embeddings After normalizing the text,
it is mapped to a domain ontology that includes fashion brands, items, patterns,
materials, and styles. The mapping is based on semantic similarity matching via
word embeddings and the cosine similarity metric, as well as syntactic matching
through the Levenshtein distance metric (Levenshtein 1966). Furthermore, each
word’s contribution to the rankings of the categories in the ontology is scaled by
its TF-IDF score, and its term-score. Where the term-score has a different weight
depending on if the word occurred in the caption, a usertag, a hashtag, or in a
comment. After this mapping with the ontology, the k highest ranked entities from
the ontology are extracted together with their respective scores.

Ambiguity Resolution The results are re-ranked based on a source of distant
supervision, Probase (Wu et al. 2012). Probase is an API that, for a given word,
returns an estimated probability that the word has a certain meaning. For instance,
the homonym “felt” is both a clothing fabric and a common English word, implying
that it will receive a lower rank than a less ambiguous word, like “polyester”. Hence,
Probase is used by SemCluster to resolve word ambiguities.

Linear Combination The different components in the pipeline are combined in a
final ranking ~r through a linear combination defined in Eq. (4.8) using the glossary
from Table 4.3. The scaling factors, as well as the number of results to return, k,
are hyperparameters that are best determined through experimentation.
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Happy Monday! Here is my outfit of the
day #streetstyle #me #canada #goals #chic
#denim

Caption

Zalando user1 user2
Tags

I love the bag! Is it Gucci?
#goals @username
I #want the #baaag
Wow! The #jeans You are suclh an
inspirationn, can you follow me back?

Comments

Ontology O
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Patterns

Materials

Styles

Instagram Post p ∈ P

ProBase

Word Rankings

w1,1 . . . w1,n
... . . . ...
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Word Embeddings V
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term-score t ∈
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Items: 〈(bag, 0.63), (jeans, 0.3)..〉
Brands: 〈(gucci, 0.8)..〉
Material: 〈(denim, 1.0)..〉
...

Ranked Noisy Labels ~r

Figure 4.6: SemCluster, a system for extracting fashion attributes from social
media text.

θ

coat
jacket

bag

Figure 4.7: Illustrative image of cosine similarity between word embeddings.

∀(wi, oj) w ∈ p, o ∈ O

r(wi, oj) =
{
t(wi) + γh(oj) + η(tfidf(wi, p,P)) + α(cos( ~wi, ~oj)) if wi ∈ V ∧ oj ∈ V
t(wi) + γh(oj) + η(tfidf(wi, p,P)) + α(lev(wi, oj)) else

~r = topk
sj

({(oj , sj)|oj ∈ O ∧ sj =
∑
i

r(wi, oj)})

(4.8)

Effectively, the information extraction may be seen as a form of clustering, where
clusters are seeded with terms from an ontology, and the k most salient clusters are
returned and re-ranked based on distant supervision.

4.4.2 Capturing The Semantics of Text with Word Embeddings

SemCluster uses the cosine similarity metric (Eq. (4.9)) to estimate the similarity
between words in text associated with the Instagram post (wi) and terms in the
ontology (oj). Figure 4.7 depicts an intuitive example of how the similarities of
words can be interpreted from the angle between their corresponding embeddings.
A smaller cosine of the angle (θ) indicates a higher similarity. Figure 4.7 is an
oversimplification by visualizing embeddings of only two dimensions. In practice,
two dimensions is not sufficient to capture fine-grained semantics of words. Word
embeddings are usually of dimension R300.
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Figure 4.8: The distribution of cosine similarities between a corpora of 70K Insta-
gram posts and an ontology of fashion items.

cos(θ) = ~wi ~oj
‖ ~wi‖‖~oj‖

(4.9)

In SemCluster, the word embeddings are used in a way that resembles clustering.
The cosine similarity between each word in the input and each term in the ontology
are accumulated and then the highest scoring ontology terms are returned. An-
other approach is to use a similarity threshold for the extraction. However, using a
threshold can be brittle depending on how accurate the threshold is.

Figure 4.8 visualizes the distribution of cosine similarities between words in
our corpora of Instagram posts and terms in the ontology. The distribution was
measured after taking the cosine similarity between each token in a sub-corpora
of 70K Instagram posts and terms in the ontology under the category “Clothing
items”. For each word, the highest cosine similarity out of the similarities with all
clothing items in the ontology was used. The embeddings Word2Vec-Fashion
were used for this measurement. As can be seen in Fig. 4.8, most similarities are in
the range from 0.0 to 0.6. The range [0, 0.6] is likely to represent the similarities of
stopwords and other tokens that are not directly related to the ontology. Whereas
cosine similarities in the range (0.6, 1] probably indicate words that describe some
clothing item. As an example, two cosine similarities computed with the embeddings
Word2Vec-Fashion are given in Eq. (4.10).

cos( ~w
coat

, ~w
trench

) = 0.72

cos( ~w
coat

, ~w
amazing

) = 0.37
(4.10)

To inspect the semantics of word embeddings, they can be projected to an euclidean
space for visualization purposes. Figure 4.9 contains two plots of word embeddings
from Word2Vec-Fashion projected with Principal Component Analysis (PCA).
It is inevitable that in the process of reducing the dimension, some information
about the word semantics is lost. However, as PCA preserves the most significant
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Figure 4.9: Word embeddings trained on the Instagram corpora with Word2vec
projected to an euclidean space using PCA.

dimensions of the embeddings, the projected embeddings can still be used to infer
coarse grained word semantics, as is demonstrated in Fig. 4.9.

4.4.3 Experimental Setup for Evaluating SemCluster

This section describes the setup that was used to evaluate the information extraction
system and the utility of word embeddings for information extraction of Instagram
text.

Evaluation & Ontology The system for information extraction was evaluated
by comparing its extraction with the ground truth described in Section 3.2. The
extractions of SemCluster were evaluated with the metrics precision at k (P@K),
average normalized discounted cumulative gain at k (NDGC@K), and mean aver-
age precision (MAP). The ontology used in SemCluster consists of fashion-items,
brands, clothing-attributes, styles, clothing-patterns, and clothing-fabrics. The on-
tology was constructed in collaboration with domain experts.

Extrinsic Evaluation An extrinsic evaluation of word embeddings was done with
respect to the task of information extraction. The extrinsic evaluation intended
to compare domain-specific embeddings to off-the-shelf embeddings. Seven embed-
dings were compared in this evaluation. The four off-the-shelf embeddings described
in Section 4.2.1, and FastText-Fashion, Word2Vec-Fashion, and GloVe-
Fashion. The latter set of embeddings consist of word embeddings trained on the
Instagram corpora that performed best on the intrinsic evaluation (Fig. 4.3), us-
ing FastText, Word2vec, and Glove, respectively. FastText-Fashion was trained
using Skip-gram with window size 2 and dimension 300, Word2Vec-Fashion was
trained using CBOW with window size 13 and dimension 300, and GloVe-Fashion
was trained with window size 12 and dimension 300.
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Baseline To highlight the utility of word embeddings for information extraction,
the built system, SemCluster, was evaluated against a baseline, that I refer to as
SynCluster. The baseline follows the same extraction method as SemCluster
except that it uses syntactic matching through Levenshtein distance (Levenshtein
1966), instead of the method with word embeddings used in SemCluster.

Hyperparameters In all of the experiments with SemCluster, the term-score
was set to 2, 1, 1, 3 for caption, comments, tags, and hashtags, respectively. With
the motivation that we believe that clothing descriptions provided by the author of
a post are more accurate than descriptions that occur in user comments. Moreover,
the relative weighting among semantic, syntactic, TF-IDF and Probase was kept
equal and k was set to 10.

Significance Testing When comparing two systems for information extraction, a
pairwise t-test on the recorded results was made to measure if the difference between
the results is significant. The null-hypothesis in the test was that the results were
produced by the same system, and that deviations in the results occurred by chance.
The significance testing was done against a p-value threshold of 0.05.

4.4.4 Results From Extrinsic Evaluation of Word Embeddings and
Evaluation of SemCluster

This section outlines the results from the experiments with SemCluster.

Extrinsic Evaluation: Which Set of Word Embeddings Are Best for In-
formation Extraction? The relative performance of the said embeddings is not
consistent across the different sub-tasks of extracting items, styles, patterns, mate-
rials, and brands (Table 4.4). For instance, Glove-Fashion do well on the task
of extracting styles but worse on the task of extracting patterns. In general, off-
the-shelf embeddings performed comparable to domain-specific embeddings. The
domain-specific embeddings surpassed the performance of the off-the-shelf embed-
dings on the tasks of extracting items and styles from the text, while on the tasks of
extracting patterns, materials, and brands, the off-the-shelf embeddings did better.
For example, Word2Vec-Fashion achieved a MAP score of 0.733 on extraction
of clothing items, and a MAP score of 0.373 on the task of extracting clothing
materials, while FastText-Wiki achieved a MAP score of 0.696 on extraction of
clothing items and a score of 0.441 on extraction of clothing materials. Further-
more, the highest performance overall is achieved on the task of extracting clothing
items from the text (best MAP score was 0.733). The task of extracting fashion
brands from the text was the most difficult, yielding the lowest scores (best MAP
score was 0.203).

Are Word Embeddings Better Than a Syntactic Baseline for Informa-
tion Extraction? A comparison between SemCluster and the baseline, Syn-
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Table 4.4: Extrinsic evaluation of word embeddings. Significant performance degra-
dation for off-the-shelf embeddings in comparison with the domain-specific counter-
part (same algorithm) is denoted with (−), with p-value ≤ 0.05.

Embeddings/Category NDGC@1 NDGC@3 NDGC@5 NDGC@10 P@1 P@3 P@5 P@10 MAP

FastText-Wiki/Item 0.789 0.626 0.655 0.767 0.789 0.513 0.397 0.268− 0.696−
Word2Vec-GNews/Item 0.795 0.629− 0.647− 0.748− 0.795 0.514− 0.386 0.266− 0.697−
GloVe-Wiki/Item 0.789 0.598 0.617 0.746 0.789 0.482 0.369 0.271 0.670
GloVe-Twitter/Item 0.789 0.576 0.592 0.726 0.789 0.461 0.35 0.267 0.662
FastText-Fashion/Item 0.825 0.652 0.683 0.796 0.825 0.546 0.429 0.299 0.714
Word2Vec-Fashion/Item 0.833 0.658 0.691 0.807 0.833 0.546 0.454 0.309 0.733
Glove-Fashion/Item 0.773 0.574 0.598 0.733 0.773 0.466 0.366 0.273 0.655
FastText-Wiki/Style 0.367 0.480 0.496 0.516 0.367 0.187 0.120 0.066 0.499
Word2Vec-GNews/Style 0.367 0.436 0.472 0.508 0.367 0.161− 0.114 0.068 0.484−
GloVe-Wiki/Style 0.398− 0.505− 0.515 0.529 0.398− 0.193 0.120 0.065 0.519−
GloVe-Twitter/Style 0.414 0.503− 0.509− 0.538 0.414 0.187 0.116 0.067 0.521−
FastText-Fashion/Style 0.407 0.520 0.539 0.550 0.417 0.207 0.143 0.071 0.528
Word2Vec-Fashion/Style 0.399 0.505 0.519 0.548 0.417 0.204 0.139 0.069 0.539
Glove-Fashion/Style 0.496 0.571 0.586 0.589 0.496 0.231 0.148 0.074 0.565

FastText-Wiki/Pattern 0.047 0.052 0.089− 0.300− 0.047 0.031 0.043 0.098 0.181
Word2Vec-GNews/Pattern 0.110 0.156 0.366 0.447 0.110 0.089 0.178 0.118 0.298
GloVe-Wiki/Pattern 0.094 0.135 0.242 0.421 0.094 0.081 0.109 0.118 0.268
GloVe-Twitter/Pattern 0.150 0.322 0.461 0.519 0.150 0.184 0.189 0.118 0.385
FastText-Fashion/Pattern 0.091 0.078 0.287 0.447 0.091 0.064 0.071 0.118 0.284
Word2Vec-Fashion/Pattern 0.087 0.179 0.353 0.444 0.087 0.110 0.169 0.118 0.296
Glove-Fashion/Pattern 0.094 0.100 0.313 0.422 0.094 0.060 0.157 0.118 0.265
FastText-Wiki/Material 0.477 0.397 0.403 0.456 0.477 0.339 0.245 0.181 0.441
Word2Vec-GNews/Material 0.125− 0.183− 0.204− 0.264− 0.125− 0.177− 0.148− 0.117− 0.282−
GloVe-Wiki/Material 0.203 0.237 0.284 0.350 0.203 0.214 0.202 0.147 0.343
GloVe-Twitter/Material 0.391 0.297 0.359 0.446 0.391 0.245 0.234 0.174 0.403
FastText-Fashion/Material 0.454 0.378 0.386 0.435 0.384 0.313 0.244 0.168 0.422
Word2Vec-Fashion/Material 0.296 0.286 0.324 0.393 0.286 0.264 0.233 0.165 0.373
Glove-Fashion/Material 0.163 0.222 0.286 0.382 0.163 0.233 0.186 0.169 0.347
FastText-Wiki/Brand 0.062 0.064 0.077 0.046 0.062 0.051 0.029 0.034 0.199
Word2Vec-GNews/Brand 0.078 0.094 0.096 0.079 0.078 0.078 0.038 0.049 0.203
GloVe-Wiki/Brand 0.046 0.053 0.058 0.035 0.046 0.046 0.013 0.039 0.191
GloVe-Twitter/Brand 0.030 0.051 0.083 0.035 0.030 0.046 0.019 0.019 0.188
FastText-Fashion/Brand 0.062 0.061 0.062 0.064 0.032 0.051 0.026 0.039 0.194
Word2Vec-Fashion/Brand 0.062 0.066 0.062 0.064 0.032 0.056 0.036 0.039 0.194
Glove-Fashion/Brand 0.030 0.039 0.040 0.040 0.000 0.011 0.013 0.025 0.176

Cluster, is presented in Table 4.5. The embeddings Word2Vec-Fashion, that
achieved among the best results in the extrinsic evaluation (Table 4.4), were used
in SemCluster for this experiment. SemCluster beats the baseline in four out
of the five sub-tasks when using Word2Vec-Fashion, and on all sub-tasks when
taking into account the best set of embeddings for each sub-task.

4.4.5 Error Analysis

The main cause of error in the extraction is text sparsity. Since the system relies
solely on text for information extraction, its performance degrades when the text is
insufficient. The aforementioned problem is the main reason that extracting brands
is harder than extracting clothing items, as brands are rarely mentioned in the
text. Additionally, before introducing Probase for word disambiguation, extraction
of homonym words was an issue.

The baseline, SynCluster, performs comparable with SemCluster on posts
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Table 4.5: Performance comparison between SemCluster and SynCluster. Sig-
nificant performance degradation of the baseline, SynCluster, in comparison to
SemCluster is denoted with (−), with p-value ≤ 0.05.

Method/Category NDGC@1 NDGC@3 NDGC@5 NDGC@10 P@1 P@3 P@5 P@10 MAP

SemCluster/Item 0.833 0.658 0.691 0.807 0.833 0.546 0.454 0.309 0.733
SynCluster/Item 0.781 0.581− 0.607− 0.767− 0.781 0.474− 0.370− 0.296 0.641−

SemCluster/Style 0.399 0.505 0.519 0.548 0.417 0.204 0.139 0.069 0.539
SynCluster/Style 0.367 0.415− 0.425− 0.507 0.367 0.130− 0.123 0.069 0.474−

SemCluster/Pattern 0.087 0.179 0.353 0.444 0.087 0.110 0.169 0.118 0.296
SynCluster/Pattern 0.108 0.413 0.498 0.512 0.108 0.221 0.193 0.117 0.395

SemCluster/Material 0.296 0.286 0.324 0.393 0.286 0.264 0.233 0.165 0.373
SynCluster/Material 0.113− 0.104− 0.137− 0.209− 0.113− 0.107− 0.109− 0.092− 0.227−

SemCluster/Brand 0.062 0.066 0.062 0.064 0.032 0.056 0.036 0.039 0.194
SynCluster/Brand 0.016 0.010 0.010 0.010 0.016 0.005 0.003 0.002 0.159

that contain words that have direct mappings to words in the fashion ontology.
However, for posts where the clothing details is not as obvious to infer from the
text, the performance of SynCluster degrades in comparison with SemCluster.
The intuition behind this result is that for Instagram posts where the text comprise
of “noisy” tokens that describe clothing attributes, the word embeddings are still
able to relate the text pretty well to the ontology. On the other hand, Levenshtein
distance (Levenshtein 1966) is less useful when the text has no syntactic relation
to the ontology.

In this chapter I have empirically analyzed a corpora of Instagram posts.
The chapter have also presented an evaluation that compares word embeddings
trained on text from Instagram posts with off-the-shelf embeddings trained on
newswire text. Furthermore, the chapter described a distributed implementation
of the FastText algorithm that was benchmarked against the original FastText
implementation.

To extract fashion attributes from Instagram posts I took a practical approach
and developed an unsupervised information extraction system for Instagram posts
that uses a domain ontology. The system was described and evaluated in this
chapter. In its extractions, the system accounts for the text structure on Instagram,
the semantic and syntactic meaning of noisy text, and the ambiguity of natural
language in a coherent way. The key idea to take away from this chapter is that
word embeddings in combination with domain knowledge can enable information
extraction on noisy text without supervision.
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Chapter 5

Deep Text Classification with Weak
Supervision

The information extraction system presented in Chapter 4 uses complex feature
engineering and depends on domain knowledge. This chapter explores methods to
learn from raw data. Section 5.1 introduces the classification task under study, and
Section 5.2 introduces a deep weakly supervised text classifier for Instagram posts.

5.1 The Classification Task

Although multiple classifications are of interest in our research, such as brand classi-
fication, and fabric classification, we focus initially on the clothing item classification
problem. This task is a multi-label multi-class classification problem with 13 classes.
The classes are as follows: dresses, coats, blouses & tunics, bags, accessories, skirts,
shoes, jumpers & cardigans, jeans, jackets, tights & socks, tops & t-shirts, and
trouser & shorts.

5.2 Deep Clothing Classification of Text using Data
Programming

This section presents a pipeline for weakly supervised classification that I have
applied to our corpora of Instagram posts. The pipeline includes steps devoted
to labeling a dataset with weak supervision (Section 5.2.1), combining weak labels
with data programming to produce probabilistic labels (Section 5.2.2), and training
a discriminative model using the probabilistic labels (Section 5.2.3).

5.2.1 Weak Supervision for Fashion Attributes in Instagram Posts

I used seven labeling functions to label a dataset of 30K Instagram posts with
fashion attributes. The purpose of using several functions is that I expect that the
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Figure 5.1: A pipeline for weakly supervised text classification.

combination of functions will improve the accuracy of the supervision compared to
what each function in isolation would provide. The functions are as follows.

1. λ1, a function that uses Google’s Cloud Vision API1 to classify the image
associated with the text.

2. λ2, the system for information extraction, SemCluster.

3. λ3, a function that uses the Deepomatic2 API for computer vision to classify
the image associated with the text.

4. λ4, a function that uses keyword matching to the fashion ontology with Lev-
enshtein distance (Levenshtein 1966).

5. λ5, a function that uses keyword matching to the fashion ontology with the
word embeddings Word2Vec-Fashion.

6. λ6, a function that uses the Clarifai “Apparel” model3 to classify the image
associated with the text.

7. λ7, a function that uses a pre-trained image-classifier provided by DeepDe-
tect4.

It should be clear that the kind of supervision provided by the aforementioned
labeling functions is scalable and extremely cheap in comparison with supervision
in the form of human annotations. Figure 5.15 illustrates the pipeline I have used
for training a weakly supervised text classifier using this method.

1https://cloud.google.com/vision/
2https://www.deepomatic.com/
3https://www.clarifai.com/
4https://www.deepdetect.com/
5The logos of Instagram, Google cloud platform, Deepomatic, and Clarifai are registered trade-

marks of the respective companies.
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5.2.2 Combining Weak Multi-Labels with Data Programming
In the original data programming paper, a binary classification scenario is studied
and it is assumed that labeling functions are binary (A. J. Ratner et al. 2016). The
labeling functions presented in this thesis differ from the binary model by having
several outputs, rather than a scalar output, as defined in Eq. (5.1). In the notation
used, C denotes the set of classes, −1 denotes a negative label, 0 means “no label”,
and 1 denotes a positive label.

λj(xi) = ~z ∈ R|C| ∧ zk ∈ {−1, 0, 1} (5.1)

To make use of the data programming paradigm for multi-label classification, I
model the labeling process with one generative model for each class. With this ap-
proach, the combination of generative models is able to represent separate accuracy
estimates of the labeling functions for each class.

Formally, the generative model πα,β(Λ(k), Y (k)) is trained using the observed
overlaps between the labeling functions applied to the unlabeled data for class k.
In this notation, Λ(k)

i,j = (λj(xi))k, and Y (k) is the truth labels for class k, modeled
as latent variables. Once trained, the parameters learned by the generative models
are used to produce probabilistic labels p(Y (k)|Λ(k)) ∈ Rn ∧ p(Y (k)|Λ(k))i ∈ [0, 1],
for each class k and training example i ∈ {1, . . . n}. The probabilistic labels for
each class then constitute as column vectors in a matrix of probabilistic labels
p(Y |Λ) ∈ Rn×|C|, that can be used to train a multi-label classifier (Eq. (5.2)).

p(Y |Λ) =


p(Y (1)|Λ(1))1 . . . p(Y (|C|)|Λ(|C|))1

... . . . ...
p(Y (1)|Λ(1))n . . . p(Y (|C|)|Λ(|C|))n

 (5.2)

In my experiments, I used the Snorkel6 implementation (A. Ratner et al. 2017) to
train the generative models on the unlabeled data. For completeness, the definition
of the training procedure in Snorkel is presented below.

First, the labeling functions are applied to the unlabeled data Λ(k)
i,j = (λj(xi))k.

Then the generative model is encoded by using a vector φ(k)
i (Λ(k), Y (k)) of factors for

each unlabeled data point xi and class k. The vector contains concatenated values
representing the labeling propensity (encoded with a 1 for each labeling function
that labeled xi), estimated accuracy of each labeling function (encoded with a 1 if
the function agrees with the estimated label), and pairwise correlations of labeling
functions (a 1 is added if two functions agree with each other). Using these vectors
for each data point and labeling function, as well as a vector of model parameters
w(k), the model can be defined as in Eq. (5.3) (ibid.). Where Zw(k) is a normalizing
constant, and m is the number of unlabeled data points.

pw(k)(Λ(k), Y (k)) = Z−1
w(k)exp

(
m∑
i=1

(w(k))Tφ(k)
i (Λ(k), y

(k)
i )

)
(5.3)

6https://github.com/HazyResearch/snorkel
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The parameters of the model w(k) are learned by minimizing the negative log
marginal likelihood based on Λ(k) and the latent variables Y (k):

ŵ(k) = arg min
w(k)

− log
∑
Y (k)

pw(k)(Λ(k), Y (k)) (5.4)

The implementation uses an interleaving of stochastic gradient descent and Gibbs
sampling to maximize the objective (A. Ratner et al. 2017). After training, the
predictions of the model constitute as the probabilistic labels pŵ(k)(Y (k)|Λ(k)) for
class k.

5.2.3 A Deep Neural Network for Text Classification
I have trained the CNN model for text classification presented in (Kim 2014) using
the probabilistic labels produced by the pipeline in Fig. 5.1. This model was used as
it is recognized as one of the leading text classifiers on general benchmarks (ibid.).
However, nearly any model could have been used, the only requirement is that the
loss function can be modified.

The neural network architecture in (ibid.) consists of an embedding input layer, a
convolutional layer, and a fully-connected layer of softmax or sigmoid output units.
Moreover, the architecture employs max-over-time pooling to detect keywords in
the input. The architecture is illustrated in Fig. 5.2 and defined mathematically
below.

Embedding and Convolutional Layers Let p = 〈w1 ⊕ w2,⊕ . . . ⊕ wm〉 ∈ Rm
represent an Instagram post index-encoded with respect to a vocabulary V and
padded or chopped off to a fixed lengthm. The symbol ⊕ denotes the concatenation
operator, and wi denotes the i-th word in the concatenated text of caption, usertags,
and user comments.

The first layer is the embedding layer, that serves as a lookup step, where each
word wi is encoded as its corresponding word embedding ~wi ∈ Rd, and d is the
dimension of the embeddings. The embeddings are updated as part of training
and can either be initialized randomly or with pre-trained embeddings. Let x =
[ ~w1, . . . , ~wm] ∈ Rm×d denote the output of the embedding layer E.

Next is the convolutional layer that performs two-dimensional convolutions over
the sequence of embeddings. The convolutional layer consists of n filter windows
W1 = [r1, . . . , rn] of variable sizes [k1, . . . , kn], ri ∈ Rd×ki . Each filter is slided across
the input, x, to produce new local feature representations [c1, . . . , cn], called feature
maps. During every step when traversing the input, filter ri is applied to a k-gram
of length ki. For each k-gram, the filter applies a non-linearity ϕ (such as Rectified
Linear Unit (ReLU) or tanh) to the weighted sum of the embeddings of the k-gram
and the filter weights plus a bias term b1, producing a scalar output vj .

Let xi:i+k−1 ∈ Rd×k denote a k-gram of consecutive words encoded as
their embeddings ~wi, ~wi+1, . . . ~wi+k−1. With this notation, a filter of size k
that is slided over the entire input of m words will cover the k-grams G =
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Figure 5.2: CNN for multi-label text classification.
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{x1:k, x2:k+1, . . . , xm−k+1:m} ∧ |G| = m − k + 1. Following these definitions, the
steps to compute a feature map ci ∈ R|G| with filter ri can be defined as in Eq.
(5.5).

vj = ϕ(rTi · xj:j+ki−1 + b1)
ci = [v1, . . . , v|G|]

(5.5)

Output and Loss Layer After the convolutional layer, max-over-time pooling
(Collobert, Weston, et al. 2011) is applied to the feature maps. The max-over-
time pooling yields new subsampled features [ĉ1, . . . , ĉn], one for each of the n
filters, where ĉi = max(ci). Intuitively, this operation captures the most significant
features. Finally, these features are input to a fully-connected layer of |C| softmax
or sigmoid output units, one for each class.

The original architecture in (Kim 2014) is designed for the multi-class setting
and uses a softmax output layer. I have extended the network to the multi-label
setting working with probabilistic labels by switching out the loss function with a
noise-aware loss function for multi-label classification. The loss is defined as the
cross-entropy over sigmoid outputs with respect to probabilistic labels (Eq. (5.6)).
|C| is the number of classes, p(Y (k)|Λ(k)) is the probabilistic labels for class k, σ is the
logistic sigmoid function (σ(x) = 1

1+e−x ), W2 ∈ Rn×|C| is the weights between the
max-pooled features and the output layer, b2 is a bias term for the fully connected
layer, ~z ∈ Rn is the vector of max-pooled features, ˆy(k) is the logits for class k, and
θ = 〈E,W1,W2, b1, b2〉 denotes the model parameters.

~z = [ĉ1, . . . , ĉn]
ŷ = W T

2 ~z + b2

L(θ) = 1
|C|

|C|∑
k=0
−(p(Y (k)|Λ(k)) log(σ( ˆy(k))) + ((1− p(Y (k)|Λ(k))) log(1− σ( ˆy(k)))))

(5.6)

Multi-channel Inputs The described CNN model uses one input channel. How-
ever, it can be extended to use multiple input channels. I have experimented with
a variant of the model that splits the input into two channels instead of one, as
illustrated in Fig. 5.3. Specifically, in this model, the image caption and usertags
are concatenated to one input channel p1, and the user comments are concatenated
to a second input channel p2. In this architecture, there is a separate set of fil-
ters for each input channel. By dividing the inputs into two separate channels, the
model should easier be able to distinguish between tokens from the author of the
Instagram post, and user comments, which can be helpful for the classification.

Model Analysis There are a few key concepts that characterizes the CNN ar-
chitecture for text classification. Most prevalent is the assumption that a smaller
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Figure 5.3: CNN model with two input channels.

amount of tokens in the input are decisive for classification. This assumption is ex-
pressed both with the max-over-time pooling and by using ReLU activations, that
have a sparsity effect on the network. Moreover, since all the neurons inside a sin-
gle filter share weights, each filter can be seen as a feature-learner, that looks for a
certain feature in the input. As weights are not shared across filters, increasing the
number of filters can allow the network to learn to detect more distinct features in
the input. The training procedure will cause the filters to learn different features to
minimize the loss. How many filters to use depends on the task. If too many filters
are used, some filters typically become so called “dead filters” that never activate
and always output zeros.

5.2.4 Experimental Setup for Training and Evaluating Deep Models
Using Weak Supervision

This section describes the setup I used to train and evaluate the described CNN
models.

Training Dataset When training classifiers, a dataset of 30K Instagram posts
annotated with weak labels produced by the labeling functions described in Section
5.2.1 was used. The dataset was split into a 90% train set and a 10% dev set. The
train set was used for training and the dev set was used hyperparameter tuning and
debugging.
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Evaluation Classifiers were evaluated using the annotated dataset (described in
Section 3.2) and the metrics, accuracy, precision, recall, F1, and hamming loss.
When the F1 score is averaged over all training examples it is referred to as micro-
averaged. When the F1 score is computed for each class individually and then
averaged, it is referred to as macro-averaged.

Data Programming Compared with Majority Voting To examine how ef-
fective data programming is as a method to combine weak labels, it was compared
with majority voting. When comparing data programming with majority voting,
the base CNN model from (Kim 2014) with a single input channel and randomly
initialized embeddings was trained first with probabilistic labels obtained with data
programming (CNN-DataProgramming) and then with the majority votes as the
labels (CNN-MajorityVote).

Baselines and Variants of the CNN Model As a second experiment, the
base CNN model was tweaked and compared with two baselines in the form
of the information extraction system (SemCluster), and a human benchmark
(DomainExpert). The human benchmark was obtained by taking the average
performance on the classification task of three people from our research group. Hu-
man test participants were faced with the same task as the other models, namely
to classify Instagram posts based solely on the text.

The base CNN model from Kim (ibid.) that uses randomly initialized embed-
dings and concatenates the text into a single input channel is referred to as CNN.
CNN-MultiChannel refers to the CNN model that uses two input channels.
CNN-PreTrained refers to a variant of the CNN model trained with a single
input channel and pre-trained embeddings rather than randomly initialized embed-
dings. The embeddings Word2Vec-Fashion, that achieved among the best results
in the extrinsic evaluation (Table 4.4), were used in both SemCluster and CNN-
PreTrained for this experiment. All of the models in this experiment, except
the baselines, were trained using weak supervision and probabilistic labels obtained
with data programming.

Regularization and Implementation Details The models were regularized
with dropout (G. E. Hinton et al. 2012), and weight-decay regularization using the
l2 norm of the weight matrix. For training the models, gradient descent and the
Adam optimizer (Kingma and Ba 2014) were used. As the model expects a fixed-size
input, shorter texts were padded with zeros and longer texts were chopped down to
a fixed size of m = 2000 tokens (size selected by experimentation).

Hyperparameters Limited hyperparameter tuning was done prior to the exper-
iments. We used 128 filter windows of size 3, 4, and 5, and a mini-batch size of
256. Moreover we used a vector dimension in the embedding layer of 300 with
randomly initialized embeddings updated as part of training. For regularization
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Table 5.1: Evaluation of two weakly supervised classifiers. The results are the
average of three training runs.

Model Accuracy Precision Recall Micro-F1 Macro-F1 Hamming Loss

CNN-DataProgramming 0.797± 0.01 0.566± 0.05 0.678± 0.04 0.616± 0.02 0.535± 0.01 0.195± 0.02
CNN-MajorityVote 0.739± 0.02 0.470± 0.06 0.686± 0.05 0.555± 0.03 0.465± 0.05 0.261± 0.03

we used a dropout keep probability of 0.7 and a l2 constraint of 0. Finally, ReLU
(f(z) = max(0, z)) was used as the activation function, and the padding strategy
was set to VALID and the learning rate to 0.01. The values were chosen based on
hyperparameter tuning using random-search on the dev set.

5.2.5 Results from Evaluation of Deep Models Trained with Weak
Supervision

This section outlines the results from the experiments with deep text classification of
Instagram text using weak supervision. The code used for training is open source7.

Is Data Programming a Better Way to Combine Weak Labels Than Ma-
jority Voting? Table 5.1 compares results from the base CNN model trained
with weak labels combined through majority voting, with results from the same
model trained with probabilistic labels obtained by using data programming. The
data programming approach beats the majority vote model on nearly all metrics.

How Is the Labeling Functions’ Accuracy Modeled in the Generative
Models? Figure 5.4 visualizes the relative accuracy among labeling functions that
was learned by the generative models in CNN-DataProgramming. The keyword-
functions were given the highest accuracy overall, indicating that when the keywords
are found in the text it tend to be telling for the image contents. This implies
that the keyword functions often agrees with the majority in their votes, which
in turn gives them a high estimated accuracy. In general, the relative accuracy
among labeling functions differed from class to class. The spikes in the accuracy of
Clarifai, Deepomatic, and DeepDetect on the classes of “bags” and “shoes”
indicate that the APIs’ are especially consistent in their predictions on those classes.

Which CNN Model Is Best? and How Do the CNN Models Compare
with Baselines? Table 5.2 contains the results after evaluating different vari-
ants of the CNN model and comparing the results with the two baselines. The
results demonstrate that the CNN model with a single input channel and randomly
initialized embeddings (CNN) achieved the highest F1 score, on par with the hu-
man benchmark, beating both CNN-MultiChannel and CNN-PreTrained. All

7https://github.com/shatha2014/FashionRec
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Figure 5.4: Accuracy for labeling functions learned by the generative models.

Table 5.2: Evaluation of several discriminative models for classification, compared
against two baselines, SemCluster and DomainExpert. The results of CNN mod-
els are the average of three training runs.

Model Accuracy Precision Recall Micro-F1 Macro-F1 Hamming Loss

CNN 0.797± 0.01 0.566± 0.05 0.678± 0.04 0.616± 0.02 0.535± 0.01 0.195± 0.02
CNN-MultiChannel 0.756± 0.01 0.512± 0.02 0.660± 0.03 0.574± 0.02 0.490± 0.01 0.235± 0.03
CNN-PreTrained 0.765± 0.02 0.519± 0.01 0.703± 0.03 0.594± 0.03 0.527± 0.02 0.226± 0.01
SemCluster 0.719 0.541 0.453 0.493 0.438 0.279
DomainExpert 0.807 0.704 0.529 0.604 0.534 0.184

love this dress it’s so stunning #goals
mini cute dress off-the-shoulder dresses
never go out of style! and neither does
a skyline view that takes you back to
the 1920s! i love rooms that take you
back in time and this one is always
a hit! adorable dress best outfit

+

-

Figure 5.5: Heatmap of a sample Instagram text, where a higher heat indicates a
larger logit in the trained CNN model.

CNN models outperformed the baseline SemCluster. The human benchmark had
a higher precision but a lower recall than the CNN models.

How Do the CNN Model Make Its Predictions? After training the CNN
model, the learned weights of the model can be frozen and used for inference. Figure
5.5 illustrates how the trained CNN model infers clothing items from the text.
The heatmap in Fig. 5.5 was produced by running each word in the sample text
through the trained model and recording the output scores (logits) for the output
class “dresses”. After recording the scores, they were normalized and put on a scale
and visualized.

58



5.2. DEEP CLOTHING CLASSIFICATION OF TEXT USING DATA
PROGRAMMING

0 500 1000 1500 2000 2500
Iterations

0

2

4

6

Lo
ss

Loss over training time
dev
train

0 500 1000 1500 2000 2500
Iterations

0.0

0.2

0.4

Ha
m
m
in
g 
lo
ss

Hamming loss over training time
dev
train

0 500 1000 1500 2000 2500
Iterations

0.00
0.25
0.50
0.75
1.00

M
icr

o-
F1

F1 over training time

dev
train

0 500 1000 1500 2000 2500
Iterations

0.00
0.25
0.50
0.75
1.00

Ac
cu
ra
cy

Accuracy over training time

dev
train

0 500 1000 1500 2000 2500
Iterations

0.00
0.25
0.50
0.75
1.00

Re
ca
ll

Recall over training time

dev
train

0 500 1000 1500 2000 2500
Iterations

0.00
0.25
0.50
0.75
1.00

Pr
ec
isi
on

Precision over training time

dev
train

Figure 5.6: Statistics on the dev and train set during training of the CNN model.

5.2.6 Error Analysis

As discussed in Section 4.4.5, a part of the error is attributable to the disparity
between the labels in the test set and the text. Since the ground truth is determined
based on the image contents, there is an inherent error when information is lacking
in the text. This is also evident from the relatively low human benchmark on
the task. Moreover, the performance on the dev and train set were significantly
better than on the test set for all of the trained models. This is owing to the
difference between the weak labels and the ground truth. Figure 5.6 depicts the
performance on the dev and train set per training iteration of the CNN model.
The performance on the dev and train sets were significantly higher than on the
test set. Finally, that CNN-DataProgramming trained with a noise-aware loss
function achieved a better result than CNN-MajorityVote indicates that when
taking the majority vote for training, potential signals to learn from is lost.

To summarize this chapter, in absence of strong supervision, weak supervi-
sion can be used to label large datasets in a cheap and quick manner. This chapter
have demonstrated how data programming can be used in a principled way to
integrate supervision from open APIs and NLP functions. Moreover, the chapter
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has showed how the combined supervision signal can be used to train a deep
multi-label text classifier for predicting clothing items in Instagram posts.
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Chapter 6

Summary

Recurrent traits of the results presented in this thesis are the informality of text from
Instagram, the need for scalable processing methods, and the demand for machine
learning methods that do not require strong supervision. In this chapter, I give
a summary of the research, the implications of the results, and an outlook on the
future. In Section 6.1 I provide my interpretation of the results. Sections 6.2, and
6.3 presents suggestions for applications and future research directions, and finally
Section 6.4 outlines the conclusions from this thesis.

6.1 Discussion
I have analyzed an Instagram corpora, performed an intrinsic evaluation of word
embeddings for Instagram text, scaled out FastText training, evaluated the utility
of word embeddings for information extraction, and trained a weakly supervised
model for predicting clothing items in Instagram posts based on associated text.
This section contains my interpretation of the results.

What Characterizes Instagram as a Source of Text? In comparison with
measurements on Twitter corpora (Baldwin et al. 2013), text from Instagram is just
as noisy based on my measurements (Table 4.1). In the results it can be seen that
46% of the tokens in our Instagram corpora are not included in the Google-news
vocabulary. This implies that nearly half of the tokens do not have an embedding
representation in Word2Vec-GNews. This result illustrates a mismatch between
social media text and off-the-shelf word embeddings. Furthermore, when compar-
ing with Twitter, notable is also the high diversity of languages occurring in the
comment sections on Instagram and the short length of comments (mean length
measured to be 6 tokens).

The long-tail distribution of text on Instagram can be explained with the follower
count of the post author and the preferential attachment theory (Zsuzsanna Albert
and Barabasi 2001). As an Instagram post attracts a lot of comments, it will get
a larger spread on the Instagram platform. This causes a snowball effect, where
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a post that already has many comments will be more likely to attract even more
comments.

Is Domain-Specific Word Embeddings for Instagram Useful? It was ex-
pected that the domain-specific word embeddings would outperform the off-the-shelf
embeddings on the FashionSim word similarity task. The FashionSim evaluation is
based on fashion concepts and social media tokens which are difficult to capture in
large and generic text corpora, such as the corpora that the off-the-shelf embeddings
have been trained on. When comparing the state-of-the-art algorithms for training
word embeddings, FastText embeddings yielded the most accurate semantics on the
intrinsic evaluation. FastText explicitly models the morphology of words by incor-
porating information about subwords in the embeddings, this is useful for languages
that are rich on morphology. According to my results, FastText is also suited for
noisy text, as can be found in social media. This is not surprising, as social media
language can be characterized as containing a large vocabulary, with many rare
words, where the subword embeddings can enhance generalization between words.

The obtained results are specific to our Instagram corpora, and the FashionSim
dataset for evaluation. However, similarities can be found in the literature. For
example, that CBOW worked best with larger window sizes, whereas Skip-gram
achieved the highest accuracy with smaller windows on the intrinsic evaluation is
partly in concordance with results reported by Fallgren, Segeblad, and Kuhlmann
(2016). Moreover, that all algorithms demonstrated an improved accuracy when the
dimension parameter was increased, was expected, as it has been shown in several
related results (Pennington, Socher, and Christopher D. Manning 2014; Chiu et al.
2016). Finally, the observed difference between Skip-gram and CBOW was not
convincing. With FastText, a slightly better result was obtained with Skip-gram,
while with Word2vec a slightly better result was obtained with CBOW. I anticipated
that Skip-gram would yield superior results, as it is generally known that Skip-gram
works better than CBOW on smaller corpora (Mikolov, Le, and Sutskever 2013).
However, this conclusion can not be made from my results. Finally, an unforeseen
result from the intrinsic evaluation was that GloVe performed poorly in the intrinsic
evaluation, independent of window size.

How Effective are Word Embeddings for Text Mining of Instagram Text?
For the extrinsic evaluation I can only speculate why the results turned out as they
did. That the off-the-shelf embeddings did well on the tasks of extracting patterns,
materials, and brands from the text could be due to the large vocabulary that off-
the-shelf embeddings posses. However, as the results on these extraction tasks were
so low overall, this result is not very telling and might be due to chance. That
the domain-specific embeddings did better on extracting styles and clothing items
from the text is likely because those embeddings capture the semantics of more
fine-grained fashion concepts, as evident in the intrinsic evaluation (Fig. 4.2).

Overall, the benefit of domain-specific embeddings on the information extraction
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task was lower than expected based on the intrinsic evaluation, but in line with
the results in (Tixier, Vazirgiannis, and Hallowell 2016). Furthermore, the results
do not indicate that one algorithm for training word embeddings is better than
another on this information extraction task. Rather, each algorithm achieved the
best performance on at least one sub-task. This demonstrates the empirical nature
of learning word embeddings, and that there is a lot to gain by finding the right set
of embeddings for the task. Another take-away from the extrinsic evaluation is that
it contradicts with the intrinsic evaluation, similar to what was observed in (Chiu
et al. 2016).

I believe that word embeddings are particularly useful in the social media do-
main where syntactic word similarity fails to capture the relation between many
tokens. This is manifested in the evaluation from Chapter 4 where SemCluster
outperformed the baseline, SynCluster, significantly. For instance, using word
embeddings trained on the Instagram corpora and the cosine similarity metric, the
words most similar to “bag” are “purse”, “tote”, “clutch”, “handbag”, “dustbags”,
“crossbody”, and “carryall”. This capability of capturing the meaning of words can
alleviate the need for curated synonym lists for information extraction.

How Scalable is FastTextOnSpark? The empirical scalability observed in the
experiments is consistent with Proposition 4.3.1. Moreover, the results also man-
ifest an upper bound on scalability, as stated by Amdahl’s law (Amdahl 1967).
Amdahl’s law says that the speedup is constrained by the sequential portion of
the computation, essentially describing a diminishing return in speedup as more
processors are added. In the case of FastTextOnSpark, the sequential portion
of the computation is the synchronization of model parameters between training
iterations.

Amdahl’s law assumes that the problem size is fixed. However, FastTextOn-
Spark scales with the training corpus. Although the quality of embeddings depends
on more factors than the corpus size, a common trend is that enlarging the training
corpus can improve the quality of embeddings (Lai, Liu, et al. 2015). This implies
that the scaled speedup can be arbitrary large in practice (Gustafson 1988). As
the training corpus is enlarged, the potential speedup of FastTextOnSpark with
respect to the C++ implementation is increased.

The distributed implementation has a slower convergence than the C++ imple-
mentation. This is attributable to the less frequent parameter synchronization.

Is Weak Supervision a Competitive Alternative for Doing Text Mining
on Instagram? Experimental results demonstrate that a classifier trained with
weak supervision in the form of open APIs and keyword detectors is viable. Consid-
ering that not all clothing items can be inferred from the text and that the human
benchmark on the task is 0.60, the achieved F1 score of 0.61 is promising. A sub-
stantial improvement is to be expected when integrating the text classifier with a
model analyzing the image contents.
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Combining multiple signals of weak supervision improves the accuracy compared
to the baseline system for information extraction. Additionally, when combining the
labels by using parameters learned with generative models, rather than majority
voting, an increase of six F1 points was observed. The results are concordant with
prior work using data programming (A. J. Ratner et al. 2016; A. Ratner et al. 2017).

With the experiments in this thesis, data programming has been applied to a
new domain. In (A. J. Ratner et al. 2016) it is assumed that labeling functions are
binary. I propose to extend the base model to the multi-label scenario by learning a
separate generative model for each class. Intuitively, labeling functions that produce
several labels can have a separate accuracy for each label, which is captured by the
proposed method. In my experiments, the relative accuracy of labeling functions
differed between classes, strengthening my belief that learning separate generative
models for each class is useful.

Unexpectedly, the regular CNN model outperformed both CNN-
MultiChannel and CNN-Pretrained. I anticipated the model that used
pre-trained embeddings to give a small accuracy boost since that have been
reported on similar experiments (Kim 2014). It is hard to say why the model
with randomly initialized embeddings outperformed the model with pre-trained
embeddings. Both models fine-tune the embeddings as part of training, which
might have evened out the differences between the embedding layers. The intuition
behind CNN-MultiChannel is that the model should easier be able distinguish
between user captions and user comments in the classification. However, splitting
the input into two channels was not beneficial in this case. I suspect that one
reason for this result is that captions in our corpora tend to be short in comparison
with the concatenated user comments.

6.2 Applications

The system for information extraction, SemCluster, is currently being used as
hints for human annotators that are crowdsourced via the Amazon Mechanical
Turk1 service for annotating images (Fig. 6.1). In addition, the system is not limited
to information extraction of fashion related posts. By exchanging the ontology, the
same system can be used to extract information from arbitrary Instagram posts.
Further, the weakly supervised classifier presented in Chapter 5 is composable, and
the intent is to combine it with a model for computer vision.

6.3 Future Work

The most natural direction for future work is to combine the NLP methods presented
in this thesis with a model that analyzes the image contents. Moreover, we are in
the process of collecting a larger annotated dataset for training a computer vision

1https://www.mturk.com/
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Figure 6.1: Screenshot from the web interface used for crowdworkers. The right
panel contains information extracted by SemCluster.

model. The data are collected from crowdsourcing using Amazon Mechanical Turk2.
When integrating annotations from crowdsourcing, the data programming methods
outlined in Section 2.2.3 and extended in Section 5.2.1 can be used.

The word embeddings trained as part of this research can be retrofitted to fine-
tune word semantics according to some lexicon (Faruqui et al. 2014). Moreover, in
future work we might experiment with post-level embeddings rather than learning
an embedding for each word. Specifically, I hypothesize post-level embeddings to
be useful for the task of predicting the overall clothing style of an Instagram post.

A potential direction for future work on FastTextOnSpark is to move away
from the single-driver bottleneck in FastTextOnSpark. The driver’s role can
be distributed on a cluster of parameter servers, similar to the Word2vec training
system presented by Ordentlich et al. (2016). Moreover, asynchronous updates is a
way to avoid the straggler problem in the current implementation.

Future research to extend on the system for information extraction presented in
this thesis includes to experiment with linguistic rules for doing more fine-grained
text extraction. This line of work was deprioritized in this research due to the
mismatch between standard linguistic rules and noisy text.

When experimenting with text classification models, I focused on the CNN
model from Kim (2014), as it is established as one of the best performing models. In
future work, it would be interesting to experiment with other models, particularly
the deep CNN presented in (Conneau et al. 2016), the bow-CNN model from (John-
son and T. Zhang 2014), and the FastText classifier (Joulin et al. 2016). Moreover,
the accuracy of the models used in this thesis can potentially be improved by doing
large-scale hyperparameter tuning of the models’ hyperparameters.

2https://www.mturk.com/
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6.4 Conclusion
I have quantified a corpora of Instagram posts, demonstrating that the text dis-
tribution exhibits the long-tail phenomenon, that the text is just as noisy as have
been reported in studies on Twitter text, and that comment sections often contain
a multitude of languages. Furthermore, I have presented a system for extracting
fashion attributes from social media posts, where word embeddings are a key com-
ponent in the extraction process. I evaluated word embeddings for the social media
domain on both intrinsic and extrinsic tasks, and put the results in relation with
off-the-shelf embeddings trained on generic text corpora.

The results demonstrate a mismatch between text in social media and off-the-
shelf embeddings. Despite the mismatch, the performance of off-the-shelf embed-
dings in information extraction from Instagram is remarkable, achieving comparable
results with domain-specific embeddings. In summary, the results confirm the be-
lief that word embeddings are able to capture meaningful semantic relationships
between words, outperforming a baseline based on Levenshtein distance for the
information extraction task.

Using off-the-shelf embeddings is just a glimpse of the many uses of word em-
beddings. Finding the right set of embeddings for your application is an empirical
challenge that includes many parameters to consider, where scalability becomes a
necessity. In this context, I have developed and benchmarked a system for dis-
tributed training with the FastText algorithm. The implementation scales with the
number of machines available for training and provides a significant speedup to the
the original single-machine implementation of FastText.

Building upon the system for information extraction, I trained a deep multi-
label text classifier using weak supervision in the form of open APIs and keyword
detectors. With weak supervision I was able to label a large dataset in hours,
something that would have taken months to do with human annotators. The weak
supervision signals were combined with the data programming paradigm, which
makes for a proof-of-concept of the paradigm in a new domain. Moreover, the
original model for binary classification was extended to the multi-label setting by
learning a separate generative model for each class. In all measures, combining
weak supervision signals with the proposed combination of generative models
outperformed a baseline that uses majority voting.

The statement from this thesis is that in absence of annotated data, using
large volumes of unlabeled data, domain heuristics, and clever algorithms, is an
effective approach to text mining of Instagram data. However, there is still room to
expand this area of text mining. To achieve the best results, large data quantities
are required, demanding scalable methods. Equally important is empirical research
with state-of-the-art solutions in the unsupervised and weakly supervised category,
which are unproven in comparison with supervised counterparts.
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