KTH ROYAL INSTITUTE
OF TECHNOLOGY
===
o T
FKTHY
é&? VETENSKAP %’

28 OCH KONST 2%

Yoy ensh

Degree Project in Computer Science

Second cycle, 30 credits

Automated Profiling of Cyber Attacks
Based on MITRE ATT&CK

BENGTH PAPPILA

Stockholm, Sweden, 2024

Automated Profiling of Cyber Attacks
Based on MITRE ATT&CK

BENGTH PAPPILA

Master's Programme, Computer Science, 120 credits
Date: September 6, 2024

Supervisor: Kim Hammar
Examiner: Prof. Rolf Stadler
School of Electrical Engineering and Computer Science
Swedish title: Automatiserad Profilering av Cyberattacker Baserat pa MITRE
ATT&CK

© 2024 Bength Pappila

Abstract |i

Abstract

This Master thesis presents a framework for automated profiling of cyber
attacks based on MITRE ATT&cK®. The framework includes two components:
(1) a component for automated mapping of sequences of attacker actions to the
corresponding tactics and techniques in MITRE ATT&cK®; and (2) a component
for probabilistic profiling of attacker actions based on testbed measurements.
The latter component models the relation between attacker actions and testbed
measurements using a hidden Markov model, which allows to estimate the
most likely attack sequence using probabilistic inference. The experimental
part of this thesis includes extensive profiling of emulated attacks in the Cyber
Security Learning Environment (csLg), which is a platform for emulating
attacks and defenses in virtualized IT environments. Our experimental results
show that our framework is able to automatically map attacker actions in cSLE
to MITRE ATT&cK® and that it can accurately estimate the start time of an attack
based on testbed measurements.

Keywords

Attack emulation, Attack profiling, Autonomous network security, Cyber
security, Hidden Markov Model, Mitre Att&ck, The Cyber Security Learning
Environment (CSLE)

ii | Abstract

Sammanfattning | iii

Sammanfattning

Denna masteruppsats presenterar ett ramverk for automatisk profilering av
cyberattacker baserat pA MITRE ATT&cKk®. Ramverket inkluderar tva kompo-
nenter: (1) en komponent for automatisk kartldggning av attacksekvenser till
motsvarande taktiker i MITRE ATT&CcK®; och (2) en komponent for probabi-
listisk profilering av attackaktioner baserat pd mitdata fran en testbidd. Den
senare komponenten modellerar relationen mellan attackaktioner och métdata
frén testbadden genom dolda Markovmodeller, vilket mojliggor estimering av
den mest sannolika attacksekvensen med hjilp av probabilistisk inferens. Den
experimentella delen av den hir uppsatsen inkluderar omfattande profilering
av emulerade cyberattacker i “the Cyber Security Learning Environment
(csLe)", vilket dr en plattform for att emulera cyberangrepp och forsvar
i en virtuell IT-miljo. Resultaten visar att vart ramverk automatiskt kan
kartligga attackaktioner i cSLE baserat pA MITRE ATT&ck® och att den kan
estimera starttiden for en attack med hog traffsikerhet baserat pd métdata fran
testbiadden.

Nyckelord

Attack emulering, Attack profilering, Autonom nétverkssikerhet, Cybersa-
kerhet, Dold Markovmodell, Mitre Att&ck, The Cyber Security Learning
Environment (CSLE)

iv | Sammanfattning

Acknowledgments | v

Acknowledgments

I would like to express gratitude to my supervisor, Kim Hammar, for
his mentorship and guidance throughout this thesis. His expertise and
constructive feedback have been fundamental in shaping the content and
direction of my work.

Stockholm, September 2024
Bength Pappila

vi | Acknowledgments

Contents | vii

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

2.1

2.2
2.3
24

3.1
32
33

4.1
4.2
4.3

4.4

Backgroundo o
Problem
Approach
Delimitations
Structure of the thesis

Background

MITRE ATT&CK® for Enterprise
2.1.1 Tactics
2.1.2 Techniques and Sub-techniques
Kullback-Leibler divergence
Hidden Markov Model HMM)
Relatedwork
2.4.1 Attack Emulation
242 Attack Profiling

Methodology

Testbed Lo
Datacollection
Goal of experiments

Attack profiler

Profiling a single attack
Profiling attacker sequences
Probabilistic profiling of attacker sequences
4.3.1 Empirical distributions of infrastructure metrics
4.3.2 Attack profiling through hidden Markov models

4.3.2.1 Evaluation of HMM profiling
Implementation, .

11
12
12
12

viii | Contents

5 Results and discussion
5.1 Results. e
52 Discussion e

6 Conclusions and Future work
References

A Implementation details

29
29
39

41

43

47

List of Figures | ix

List of Figures

3.1

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

The CSLE testbed used for data collection.

Boxplot of the Kullback-Leibler divergence values D1, (P||Q)
for the metrics with more than 10 unique values. P is the
probability distribution of a metric given the executed network
command, and Q is the probability distribution of a metric
given no executed network command.
Boxplot of the Kullback-Leibler divergence values D1, (Q|| P)
for the metrics with more than 10 unique values. P is the
probability distribution of a metric given the executed network
command, and Q is the probability distribution of a metric
given no executed network command. Note in Fig. 4.1 we
compute D (P||Q). . o o v v v o i
Probability distribution of collected data, given the executed
network command Sambacry Exploit, and no intrusion for the
MELriC NUM_PTrOCESSES. « v v v v v e e e et e e e e e
Probability distribution of collected data, given the executed
network command Sambacry Exploit, and no intrusion for the
metricpids. e
Probability distribution of collected data, given the executed
network command Ping scan, and no intrusion for the metric
priority_3_alerts. oo

Attack graph for sequence 1 in Tab. 5.1. The tactic and the
associated network command(s) are shown in the nodes.
Attack graph for sequence 2 in Tab. 5.1. The tactic and the
associated network command(s) are shown in the nodes.
Attack graph for sequence 3 in Tab. 5.1. The tactic and the
associated network command(s) are shown in the nodes.

23

31

31

32

x | List of Figures

54

5.5

5.6

5.7

5.8

59

Comparison of the three sequences in Tab. 5.1 using
Algorithm 1 and the naive approach where each network
command is profiled independently without an attack graph

The fraction of correct profiled single actions (accyction) for
different intrusion lengths. Using Sequences 1, 2, and 3 (see

Tab.5.1) o

The fraction of correct detecting intrusion starts (accstq¢) for
different intrusion lengths. Using Sequences 1, 2, and 3 (see

Tab.5.1)

The fraction of correct profiled single actions (acc,ction) for
different intrusion lengths. Using Sequences 2 and 3 (see

Tab.5.1)o

The fraction of correct detecting intrusion starts (accsq,¢) for
different intrusion lengths. Using Sequences 2 and 3 (see

Tab.5.1) o

The fraction of correct detecting intrusion starts (accgq,) for
different intrusion lengths. Using Sequences 2 and 3 (see

Tab. 5.1). The state No INTRUSION is not in the model.

List of Tables | xi

List of Tables

4.1
4.2

5.1
5.2
5.3
54

Network commands and corresponding techniques 17
Kullback-Leibler divergence (KLD) Statistics 24
Attack sequences 1,2,and 3. 30
Transition Matrix for Sequence 1, 2, and 3 (see Tab. 5.1) . . . 33
Transition matrix for Sequences2and3. 35

Transition matrix for sequences 1, 2, and 3 (see Tab. 5.1),
excluding the state NO INTRUSION. 37

xii | List of Tables

List of acronyms and abbreviations | xiii

List of acronyms and abbreviations

CAPEC Common Attack Pattern Enumeration and Classification
CSLE The Cyber Security Learning Environment

HMM Hidden Markov Model

IDS Intrusion Detection System

KLD Kullback-Leibler divergence

TTP Tactics, techniques and procedure

xiv | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

The ubiquity of cyber attacks has never been more apparent, and their far-
reaching impacts on society demonstrate the critical need for automated
security solutions. For example, Tietoevry data centers were recently attacked
by Akira ransomware, which affected Swedish government agencies. Many
institutions rely on manual configurations and domain experts to respond to
incidents. While this approach can provide basic security for an organization’s
IT infrastructure, large IT infrastructures possess many attack vectors that
are difficult and expensive for domain experts to analyze. Consequently, the
demand for automated security solutions is increasing.

This thesis addresses the need described above and presents a novel
framework for automated profiling of cyber attacks. With attack profiling,
we mean the process of identifying and categorizing the characteristics and
patterns of cyber-attacks.

Our framework for attack profiling involves two components. The first
component is dedicated to classifying attack actions (i.e., network commands
executed by an attacker) using MITRE ATT&cK®*, which is a comprehensive
knowledge base that describes attacker behavior. The second component
focuses on probabilistic inference of attack actions using a hidden Markov
model. Both components are evaluated experimentally based on attacks
emulated using The Cyber Security Learning Environment (CSLE) [1].

1.1 Background

The work presented in this thesis is part of a larger research project for
automated security, whereby the problem of finding effective security policies

*https://attack.mitre.org

2| Introduction

for an IT infrastructure is formulated as an optimization problem [2][3][4]. A
key part of this research is the development of CSLE, a platform that emulates
large-scale IT infrastructures and cyber attacks. (With emulation, we mean the
creation of a software or hardware environment that behaves like the original
system.) Through such emulation, we can collect data and compute effective
security policies. The attack profiling methods presented in this thesis are
integrated into CSLE to enable automated profiling of cyber attacks.

1.2 Problem

In this thesis, we study how to profile attacks in CSLE based on the MITRE
att&ck knowledge base. Here, with "attack," we mean a sequence of network
commands (actions) executed by an attacker in CSLE.

The following questions are examined:

* How can we model different types of attacks?

* How can we automatically profile a given sequence of network
commands (attacker actions) using the model?

* How can we automatically profile an attack when the sequence of
the attacker’s network commands is unknown, and the only available
information is a sequence of system measurements (e.g., log files and
alerts)?

1.3 Approach

We model an attack in CSLE as a sequence of attack actions, i.e., a sequence of
network commands executed by an attacker. To profile an attack, we map each
command to data from MITRE ATT&CK (e.g., attack tactics and techniques).
To automate this profiling, we leverage open-source Apis to map network
commands in CSLE to data from MITRE ATT&cK. A challenge with this
approach is that a network command in CSLE often maps to a lot of irrelevant
data from MITRE ATT&cCK. To address this issue, we design an algorithm that
takes as input an attack graph that encodes the structure of an attack based
on domain knowledge and then uses that structure to prune the data from
MITRE ATT&CK. We show that this pruning leads to more meaningful attacker
profiling. Finally, to profile attacks when the attacker’s network commands
are unavailable, we use a hidden Markov model to estimate the most likely

Introduction | 3

sequence of network commands based on system measurements (e.g., log files
and alerts).

1.4 Delimitations

This thesis focuses on specific types of attacks in CSLE. As a consequence,
the thesis is delimited to the subset of attack techniques and tactics from MITRE
ATT&ck® that are appropriate for the attacks that are studied. Furthermore,
the project is using the specific framework *MITRE ATT&CK® for Enterprise’
and does not consider other parts of MITRE ATT&CK, €.Z., MITRE ATT&CK for
industrial control systems.

1.5 Structure of the thesis

The remainder of this thesis is structured as follows. Chapter 2 presents
relevant background information and related works. Chapter 3 presents
the methodology. Chapter 4 presents our model and solution framework.
Chapter 5 presents the results of the implemented framework, followed by a
discussion of the results. Lastly, Chapter 6 presents this thesis’s conclusion
and suggestions for future work.

4 | Introduction

Background |5

Chapter 2

Background

This chapter provides background information about MITRE ATT&CK®,
Kullback-Leibler divergence, and Hidden Markov Models. The chapter also
discusses related work.

2.1 MITRE ATT&CK® for Enterprise

MITRE ATT&CK® is a knowledge base and model of attacker behavior. It
consists of three matrices, each functioning as a framework to organize
and present various aspects of attack behaviors. The three matrices are
organized based on domains where attacks might occur: Enterprise, Mobile,
and Industrial Control System (ICS). Each matrix has three core components:
tactics, techniques, and sub-techniques.

2.1.1 Tactics

Tactics represent an attacker’s reason for performing an action. A tactic is a
contextual category for individual techniques. It contains information on what
an attacker does during a specific phase of the attack. The Enterprise Matrix
contains 14 tactics; we describe some of them below.

* Reconnaissance. The objective of this tactic is to gather
information to be used to plan future operations. It contains techniques
to actively or passively gather information about the victim organization,
infrastructure, or staff. For example, Active Scanning is a technique
within the "Reconnaissance" tactic that models an attacker that examines
the victims’ infrastructure via network traffic.

6 | Background

* Resource Development. The objective of this tactic is for the

attacker to establish resources to support further operations. For
example, the Compromise Accounts technique within the "Resource
Development" tactic represents an adversary that compromises existing
accounts — such as email accounts — to support phishing attacks as a part
of gaining initial access.

Initial Access. This tactic aims to get an initial foothold within
the network. The initial foothold could be gained by using Content
Injection, a technique within the "Initial Access" tactic by injecting
malicious content through online network traffic where the attacker can
manipulate the traffic and inject their content.

Execution. The objective of the attacker in this tactic is to run
malicious code after gaining initial access to the target system. For
example, Command and Scripting Interpreter is a technique within the
"Execution" tactic where the attacker abuses command interpreters to
execute commands, scripts, or binaries.

2.1.2 Techniques and Sub-techniques

Techniques and sub-techniques in MITRE ATT&ck® represent how the attacker
achieves the objectives of attack tactics. Sub-techniques are specific methods
an attacker may use to implement a particular technique. One example
technique is Command and Scripting Interpreter, which contains sub-
techniques such as Python and Powershell.

A technique includes several attributes, e.g.,

Tactics. The tactics under which the technique is categorized.
Plat form. The platforms on which the technique is used.
Sub-techniques. The sub-techniques that belong to a technique.

Mitigations. Configurations, tools, or processes that prevent the
(sub-)technique from working.

Data Source. Source of information collected by a sensor or logging
system. It can be utilized to identify the attacker action being performed.

In total, MITRE ATT&cK® for Enterprise contains 201 techniques and 424 sub-
techniques.

Background |7

2.2 Kullback-Leibler divergence

In this thesis, we use Kullback-Leibler divergence (KLD) for feature selection.
In particular, we use it to quantify the difference between probability
distributions of infrastructure metrics during an attack and normal operation,
which in turn allows to identify the features (metrics) that provides the
most information for detecting an attack. Let P = {pi,p2,...,p,} and
Q = {q, q, ..., ¢, } represent two discrete distributions. Then, the Kullback-
Leibler divergence is defined as follows:

Dk = sz‘ -log, (%) .

(2

The KLD is not symmetric i.e., D (P||Q) # Drr(Q||P). In case the
i" element is missing in either distribution, the p; or ¢, is evaluated as 0, which
makes the value of the equation undefined. The constant back-off smoothing
algorithm can be applied to overcome this issue [5].

2.3 Hidden Markov Model (HMM)

A Hidden Markov Model (HMM) is a statistical model based on hidden
states and observations describing a Markov process. The model captures the
relationship between the observations and the hidden states. The model A is
described as follows:

A= (A, B,) HMM model (2.1a)
re{l,...,N} States (2.1b)
ke{l,...,K} Observations (2.1¢)
A={A;1<i,7 <N} State-transition matrix ~ (2.1d)
Aij = Py = jlay—y = 1) Transition probability (2.1e)
B={Bi|1<i<N,1<k<K} Observation matrix (2.1f)
Bi, = P(o = k|zy = 1) Observation probability (2.1g)
T={m|1<i<N} Initial state distribution ~ (2.1h)
m = P(xy =1) Initial state probability (2.11)

Here, A and B are row stochastic matrices, meaning that all rows sum up

8| Background

to 1. Similarly, 7 is a probability distribution, i.e., the entries of 7 sum up to
1. It follows from the first-order Markov assumption that:

P(Xt = j|Xt_1 - Z) - AU

This assumption implies that the probability of transitioning to state j at time
t depends only on the state at time ¢ — 1. Similarly, the observation probability
P(O; = j|X; = 1) is determined by the current state i.

Training a model A involves estimating the parameters in (2.1). In this
thesis, we estimate these parameters with empirical probability distributions
computed based on measurements from our testbed (see §4.3.1).

2.4 Related work

In the following subsections, we describe prior work on emulating cyber
attacks and automated attack profiling.

2.4.1 Attack Emulation

There is a lot of research on attack emulation in the cybersecurity domain.
Applebaum et al. [6] propose a framework for automated red team emulation.
They focus on a red team’s activities after gaining access to a system. In
particular, they developed caLDERA, an attacker emulation tool that uses an
automated planner to predict future actions of the attacker based on MITRE
ATT&ck®. In a follow-up work, the same authors develop a simulation
testbed and compare different attack strategies. They find that using an
automated planner leads to better attack modeling performance than not using
an automated planner.

In a separate line of work, NASimEmu is a research project by Janisch et
al. [7] that aims to develop a framework that trains an attacker in simulation
using the Network Attack Simulator (NASim)[8] and an associated emulator.
Similar to NASimEmu, Standen er al. [9] introduce CyBORG, a platform
for simulating cyber attacks, which is specifically designed to enable the
training of autonomous defense agents. Other environments with similar
characteristics as NASimEmu and CyBORG include: PenGym [10], ASAP
Chowdhary et al. [11], CLAP Yang and Liu [12], and Cygil Li et al. [13].

Background |9

2.4.2 Attack Profiling

Automated attack profiling is an active area of research that studies how to
leverage measurement data to categorize cyber attacks automatically. Like
this thesis, Rodriguez et al. [14] analyze runtime events from systems to
profile malicious behavior according to the tactics in MITRE ATT&ck®. Their
work shows promising results of using raw data and process mining tools
to identify the characteristics of an attacker. In a similar line of work, Wu
et al. [15] present GroupTracer, a framework aimed at extracting Tactics,
techniques and procedures (TTPs) profiles from log data collected on 10T
devices. Lastly, the work by Wang and Stadler [16] and Holgado ef al. [17] use
statistical learning methods, e.g., HMMs to predict attacks. [16] uses the same
testbed (CSLE) used in this thesis for their research. Other frameworks for
automated attack profiling include MAMBA[18], Holmes [19], and RapSheet
[20]. These frameworks use execution traces and log files to automatically
classify cyber attacks and map them to MITRE ATT&cK®. Lastly, Miehling et
al. [21] introduce a formal model for real time network protection. Their work
demonstrates how Bayesian attack graphs can model attacker behavior and be
used for defense strategies in real time.

Among the references listed above, the most similar to this thesis are
the works described in Rodriguez et al. [14], Wang and Stadler [16], and
Applebaum et al. [6]. This thesis differs from these works in the following
ways. First, the difference between Rodriguez et al. [14] and this thesis is that
we use collected metrics to train a model and then probabilistically identify
malicious activity, whereas Rodriguez et al. [14] assumes that malicious
events are already labeled. Second, Wang and Stadler [16] pre-process the
observation space and do not consider the MITRE ATT&ck knowledge base. By
contrast, we do not perform such preprocessing, and our method is centered
around MITRE ATT&CK. Lastly, CALDERA by [6] maps a single technique
to an attacker action — by contrast, our approach allows us to map multiple
techniques to an attacker action.

10 | Background

Methodology | 11

Chapter 3

Methodology

The research method consists of the following steps:

Step 1 Create a model of an attacker action based on MITRE ATT&cK® for
Enterprise.

Step 2 Define and implement an attack profiler that maps network commands
in CSLE to the model.

Step 3 Define and implement an attack profiler that maps sequences of
network commands in CSLE to the model.

Step 4 Define and implement an attack profiler that estimates the most
likely sequences of network commands in CSLE based on system
measurements.

Step 5 Evaluate the implemented attack profilers based on cyber attacks
emulated in CSLE.

Step 1 involves theoretical modeling, which is needed for understanding
the structure of the components in MITRE ATT&ck® that are relevant to the
CSLE platform. In Step 2, the model developed in Step 1 is utilized to map
network commands in CSLE to miTRE ATT&cK®, this provides a systematic
way to profile actions. In Step 3, the framework is extended by incorporating
temporal aspects. It explores how a sequence of actions can be mapped to the
model. Step 4 investigates how probabilistic methods can be used to assess
the likelihood of specific attack actions being executed based on data from the
system. Lastly, in Step 5, we evaluate the implemented attack profilers based
on data from the CSLE testbed, described below.

12 | Methodology

3.1 Testbed

The testbed consists of machines that run the CSLE emulation system. The
emulation system runs a virtualization layer provided by Docker containers
and virtual links. The system implements network isolation and traffic
shaping using network namespaces and the netem module in the Linux kernel.
Resource allocation to containers, e.g., CPU and memory, are enforced using
cgroups.

The network topology of the emulated infrastructure is shown in Fig. 3.1.
The emulation system includes the clients, the attacker, the defender, network
connectivity, and 31 devices of the target infrastructure (e.g., application
servers and the gateway). The software functions on the emulation system
replicate important components of the target infrastructure, such as web
servers, databases, and the Snort IDS, which is deployed using Snort’s
community ruleset v2.9.17.1.

Connections between servers are emulated as full-duplex lossless connec-
tions of 1 Gbit/s capacity in both directions. Connections between the gateway
and the external client population are emulated as full-duplex connections of
100 Mbit/s capacity and 0.1% packet loss with random bursts of 1% packet
loss. (These numbers are based on measurements on enterprise and wide-area
networks.)

3.2 Data collection

The data used for the experimental part of this thesis is collected from the
CSLE testbed. We collect 25, 000 measurements of the number of intrusion
detection alerts generated by Snort both during normal operation and during
intrusions.

3.3 Goal of experiments

The goal of the experiments is to evaluate the implemented attack profilers.
The implementations are evaluated and assessed based on generality and
efficiency. The generality is evaluated based on the ability to handle different
types of attacks on the CSLE testbed. The efficiency of the implementations
is measured based on their computational performance and scalability.

Methodology | 13

Attacker Clients
v E | L |
| 2 |)
| [
 alerts
55.9.1.0/24 o
55.9.2.0/24 EE IDS

RN

f

SR S r‘

N e =
N .

55.9.0.0/24 E ! 55.9.5.0/24

55.9.6.0/24
g .-..

R

===

Defender

< 55980 24 N
(= !E P
-
=
=
-

55 9.7.0/24

Figure 3.1: The CSLE testbed used for data collection.

14 | Methodology

Attack profiler| 15

Chapter 4

Attack profiler

In this chapter, we present our framework for attacker profiling, which
comprises two main components. The first component maps network
commands in CSLE to data from arr&ck ENTERPRISE, while the second
component estimates network commands in CSLE based on measurement
data. By an attacker action we mean an network command issued by
an emulated attacker in the CSLE platform, e.g a TcP sYN scaN. By
"attack profiler", we mean a tool designed to estimate sequences of network
commands in CSLE from measurement data and map them to data from
ATT&CK ENTERPRISE. We use C to denote the set of network commands
implemented in CSLE.

The aTtT&ck ENTERPRISE framework provides several sets of data: attack
tactics 7, attack techniques T, sub-techniques S, attack mitigations M, and
data sources D. These sets are related through specific correspondences:

fre: T — 27 technique to tactics 4.1
frs: T — 28 technique to sub-techniques 4.2)
frm: T — oM technique to mitigations 4.3)
fra: T — 2P technique to data sources. 4.4)

These correspondences are implemented in open-source Apis that can be
invoked from our attack profiler.

Based on the data available in ATT&CK ENTERPRISE, we define a
profiled network command (attacker action) to consist of the associated
tactics, techniques, sub-techniques, mitigations, and data sources in ATT&ck
ENTERPRISE, as defined below.

16 | Attack profiler

Definition 1 (Profiled attacker action). A profiled attacker action a is a tuple

a= {t,7,s,m,d), 4.5)

where
TCT techniques (4.6)
tCT Vietdrer te fri(r) tactics 4.7
sCS VsesdrerT:se f.s(r) sub-techniques (4.8)
mCM Vmem3IrerT:me fq7) mitigations 4.9)
dCD VdeddrerT:de fs(7) data sources. (4.10)

Equations (4.6)—(4.10) are constraints that ensure that the components of
the tuple in (4.5) are consistent, e.g., that each tactic is consistent with at least
one technique, etc. More specifically, Eq. (4.6) states that the set of techniques
is a subset of the set of techniques provided by ATT&CK ENTERPRISE; (4.7)—
(4.10) state two things: a) that the sets of tactics, sub-techniques, mitigations,
and data sources belong to ATT&CK ENTERPRISE, and b) that each tactic, sub-
technique, mitigation, and data source is related to a technique. We provide
an example of a profiled attacker action below.

Example 1. Consider a network command associated with the technique
AcTIVE SCcANNING. By using the correspondences in (4.1)—(4.4), we can
automatically associate the network command with the tactic RECONNAIs-
SANCE, the sub-technique VULNERABILITY SCANNING, the mitigation PRE—
ComproMISE, and the data source NETWORK TRAFFIC.

4.1 Profiling a single attack

Given the definition of a profiled attacker action, the task of the attack profiler
is to map a network command c to a tuple a that satisfies Def. 1. More
specifically, the attack profiling problem can be defined as follows.

Problem 1 (Attack profiling). Implement the mapping
p:C— A, (4.11)

where C is the set of network commands that should be profiled and A is the
set of actions that satisfy Def. 1.

Attack profiler|17

Network command Techniques

TCP SYN SCAN ACTIVE SCANNING

GATHER VICTIM HOST INFORMATION
NETWORK SERVICE DISCOVERY

SSH BACKDOOR COMPROMISE CLIENT SOFTWARE BINARY
CREATE ACCOUNT
SAMBACRY EXPLOIT EXPLOIT PUBLIC FACING APPLICATION

REMOTE SERVICES

EXPLOITATION OF REMOTE SERVICE
NATIVE API

CVE 2015-1427 EXPLOIT | EXPLOIT PUBLIC FACING APPLICATION
EXPLOITATION OF REMOTE SERVICE
COMMAND AND SCRIPTING INTERPRETER
FALLBACK CHANNELS

Table 4.1: Network commands and corresponding techniques

We implement the mapping of Prob. 1 by manually labeling network
commands with attack techniques in ATT&ck ENTERPRISE. Examples of
network commands and the associated techniques are listed in Tab. 4.1.
Based on this manual labeling, we can then automatically associate network
commands with tactics, sub-techniques, mitigations, and data sources by
invoking the correspondences in (4.1)—(4.4). The following example
illustrates these steps. (Further details of our implementation can be found
in Sec. 4.4.)

Example 2. Consider the network command Tcp syN scan in CSLE. Based
on domain knowledge, we have manually mapped this command to three
techniques: AcTIVE SCANNING, GATHERING VicTiM Host INFORMATION, and
NETwWORK SERVICE Discovery. Using the correspondences (4.1)—(4.4)
provided by ATT&CK ENTERPRISE, we can infer that the network command is
associated with the DiscoveEry and RECONNAISSANCE tactics, as well as three
mitigations and four data sources.

4.2 Profiling attacker sequences

Problem 1 captures the task of profiling an individual attack command based
on ATT&CK ENTERPRISE. However, it does not capture the task of profiling
sequences of attack commands. We formulate this task as follows.

18 | Attack profiler

Problem 2 (Attack profiling a sequence of commands). Given a set of network
commands C and a maximum sequence length N, implement the mapping

9:CN — AV, (4.12)

where C is the set of network commands that should be profiled and A is the
set of actions that satisfy Def. 1.

One naive implementation of the mapping in Prob. 2 is to apply a
profiler that solves Prob 1 for each network command in the sequence.
This implementation associates all possible techniques and tactics with each
command, even though some techniques and tactics may be irrelevant due to
the temporal structure of the sequence of commands. To address this problem,
we propose using an attack graph incorporating domain knowledge about the
attacker. This graph encodes the attack’s temporal structure, allowing us to
prune irrelevant tactics and techniques.

Example 3. Consider the sequence of network commands TCP SYN SCAN
—> SSH DICTIONARY ATTACK — NETWORK SERVICE LOGIN. These commands
are associated with seven techniques and eight tactics in total. Tcp syN
scaN is mapped to the tactics ’RECONNAISSANCE’ and 'DISCOVERY’. SSH
DICTIONARY ATTACK is mapped to "CREDENTIAL AcCESS’, 'DEFENSE EvasioN’,
"PERSISTENCE’, 'PRIVILEGE EscALATION’, and ’INITIAL ACCESS’. SERVICE
LoGIN is mapped to ’INiTiaL Access’ and 'LATERAL MoveMENT'. The
commands are also mapped to mitigations, data sources, and sub-techniques
as defined in Def. 1.

We can deduce from the temporal structure of the command sequence in
Ex. 3 that the first tactic must be 'REconaissance’. This follows because the
technique "DiscoveRry’ is a tactic used by an attacker post-compromise, and
hence, it cannot be the first tactic in the sequence. ’LATERAL MOVEMENT’, is
also a post-compromise tactic and can be deduced from the third command. As
a consequence, the naive attack profiler that repeatedly profiles each command
without taking into account the temporal structure of the sequence is not
precise as it associates both "'Reconnaissance’ and *Discovery’ with the first
command in the sequence, and "INtTiAL Access’ and 'LATERAL MOVEMENT’
with the third command.

To make the profiling of sequences of network commands more precise,
we construct and leverage an attack graph based on domain knowledge to
represent the temporal structure of a typical attack. We define a node in
the graph to be a tactic in MITRE ATT&cK® and we define edges to represent

Attack profiler| 19

possible sequences of tactics that the attacker may follow. Since the attacker
may reuse the same tactic several times throughout an attack sequence, a tactic
may be associated with several nodes in the graph. Each node has a unique
identifier to distinguish between nodes. Formally,

Definition 2 (Attack graph). Given the set of attack tactics ‘T an attack graph
G is a directed graph G = (V, E), where each node corresponds to a tactic
in T and each edge represent a possible change of attacker tactic during an
attack sequence.

To solve Prob. 2 we introduce an algorithm utilizing the attack graph
to prune tactics and techniques from a naively profiled sequence. The
pseudocode of the algorithm is listed below.

20 | Attack profiler

Algorithm 1 Attack profiling sequence of commands
Input: attack graph G Def. 2, naive profiled attack sequence Ac
Output: pruned profiled attack sequence Ac

Ac[l].tactics = Ac[l].tactics N G.root

1:
2: s = G.root
3: for iin 1, ..., len(Ac) do
4 s=G.ch(j)
JES
5. Acli].tactics = Acli].tactics N s
6: if |Ac[i].tactics| == 1 then
7: s = Acli].tactics
8: endif
9: end for

10: return Ac

Algorithm 1 prunes the input sequence of attack actions (Def. 1) using an
attack graph G (Def. 2). It starts by initializing the state to the root node of
G. It then iterates through the attack sequence. Each action in the sequence
updates the state to be the set of child nodes (tactics) of the current state (set of
tactics). After updating the state, the algorithm prunes the set of tactics of the
current attack action by removing all tactics that are not included in the current
state. If the set of tactics of the current attack action is a singleton set, the state
is updated to that node. The same procedure continues until each action in the
input sequence has been processed.

Since the number of child nodes of each node is upper bounded by |77 (Def.
4.7), it follows that the time complexity of Algorithm 1 is O(N|T]), where
N is the length of the attack sequence. The number of tactics that are pruned
by Algorithm 1 depends on the attack graph G (Def. 2) as well as the input
sequence of attack actions.

Attack profiler| 21

4.3 Probabilistic profiling of attacker sequences

Both of the attack profiling problems defined above (Probs. 1-2) require that
the commands of the attacker are known. While the attacker’s commands may
be available after an attack has been discovered, the commands are generally
not available during the attack, which means that profilers that solve Probs.
1-2 can not be used in real time. To address this limitation, we formulate a
generalization of Prob. 2 where the attack commands are unknown and the
only information available is system metrics that can be measured in real time
(e.g., INTRUsION DETECTION SYSTEM (IDS) alerts and log files).

Problem 3 (Probabilistic profiling of an attack sequence). Given a sequence
of infrastructure metric observations o01,0s,...,0yn, and a probability
distribution P(o | ¢), where o € O is an infrastructure metric observation,
and c € C is a network command of the attacker. Implement the mapping

A ON 5 AN, (4.13)

where A is the set of actions that satisfy Def. 1.

4.3.1 Empirical distributions of infrastructure metrics

Before presenting our solution to Prob. 3 we analyze the metrics 0y, 0, . . ., On.
88 unique metrics are collected at periodic intervals from our testbed (see
Section 3.1). We restrict our attention to metrics that have more than 10 unique
values. We analyze the metric distributions under conditions of both intrusion
(i.e., when the attacker executes a command) and non-intrusion.

We use the KLLD to quantify the difference between the distributions. We
compute the KLD values using a back-off smoothing algorithm, presented
in Appendix A.6. To gain insight into the distributions of the metrics, we
use quantiles. We can understand the spread of the different distributions
by looking at the quantiles. For example, a metric could have high KLD
values for distributions associated with certain network commands. We use the
KLD for feature selection to find the most relevant metrics that contribute to
distinguishing between an intrusion and non-intrusion. We use KLD because
it is a measurement sensitive to differences between distributions, and we can
effectively find a divergence between intrusion and non-intrusion events.

Figures 4.1-4.2 show the KLD of the distributions under the conditions of
intrusion and non-intrusion for different metrics based on measurements from

22 | Attack profiler

our testbed. Figures 4.3—4.5 show the empirical probability distributions of
three selected metrics.

= = =
s ¥ =

Kullback-Leibler divergence
o @

+

Nl =

&

N

St

1t
-
|
(=

+

Figure 4.1: Boxplot of the Kullback-Leibler divergence values Dy (P||Q) for
the metrics with more than 10 unique values. P is the probability distribution
of a metric given the executed network command, and Q is the probability
distribution of a metric given no executed network command.

ot
10 e
Y 8
ﬂE/ (o]
d
g
2
T 6
X
2
E o
= 'Y
3 'y A 'Y
< [}
*] é
o
e Q
o . e o e el e = *
& 3 & e & & o o o e o o o o o e e
& & &J & & FEE &
& 3 & ¢
FN8 & QF S LN LA S Y §
b‘?{ &’ é\‘? @"/@ (t,é‘ ,9? & 6‘? & @ \;, & 1,““\0 & <
& & oS EA S A s
I & o
& e @ & & &
& & < & &
&
£ o <~

Figure 4.2: Boxplot of the Kullback-Leibler divergence values Dy (Q||P) for
the metrics with more than 10 unique values. P is the probability distribution
of a metric given the executed network command, and Q is the probability
distribution of a metric given no executed network command. Note in Fig. 4.1
we compute Dy (P||Q).

We observe in Figs. 4.1-4.2 that the KLD between the distributions under
the conditions of intrusion and no intrusion for the metrics cpu_percent,

Attack profiler| 23

num_clients, num_open_connections, and num_processes is
negligible. This indicates that these metrics provide little information for
profiling network commands. Conversely, metrics with high KLD offer better
potential for profiling network commands. Table 4.2 displays the median,
the 90th percentile, and the 75th percentile for each metric and D (P||Q)
and Dy (Q||P). Here P represents the probability distribution for an
executed network command, and () represents the probability distribution for
no executed command. The KLD values for each executed network command
in CSLE are aggregated, and the summary statistics are presented (median,
90th percentile, and 75th percentile).

Kullback-Leibler divergence: KLD(P||Q)=0.0518, KLD(Q||P)=0.0817

- P(num_processes | A:Sambacry Explolit)

0.025 + Q(num_processes | no intrusion)

0.020

ity

£0.015

Probabil

0.010

0.005

0.000

Value

Figure 4.3: Probability distribution of collected data, given the executed
network command Sambacry Exploit, and no intrusion for the metric
num_processes.

24 | Attack profiler

Metric Median P90 P75
Dk (P||Q) (all metric) 0.57325 7.12564 2.40907
Dy 1(Q||P) (all metrics) 0.18455 4.50843 0.76055
Dk (P||Q) (alerts_weighted_by_priority) 1.4665 8.10138 7.6498
Dkr(Q||P) (alerts_weighted_by_priority) 1.0403 8.56346 8.5554
Dk (P||Q) (cpu_percent) 0.0163 0.02468 0.02
Dk (Q||P) (cpu_percent) 0.0116 0.01626 0.015
D1 (P]|Q) (default-login-attempt_alerts) 0.9638 5.3642 1.9815
D (Q||P) (default-login-attempt_alerts) 0.1973 1.7501 0.4112
D (P||Q) (mem_current) 1.094 3.57804 2.403
D (Q]|P) (mem_current) 0.267 0.94012 0.5888
Dk (P||Q) (net_rx) 1.5314 470584 3.0647
Dkr(Q||P) (net_rx) 0.3677 1.1806 0.7614
Di1(P||Q) (net_tx) 2508 7.05184 5.0856
Dy1(Q||P) (net_tx) 05377 2.69686 1.4292
Dk (P||Q) (num_clients) 0.0185 0.03826 0.0225
Dk (Q||P) (num_clients) 0.0167 0.03376 0.0212
Dy 1(P||Q) (num_failed_login_attempts) 0.1161 0.91444 0.4787
Dk (Q||P) (num_failed_login_attempts) 0.1487 1.10658 0.4403
Dy (P||Q) (num_open_connections) 0.0349 0.05124 0.0428
D (Q]|P) (num_open_connections) 0.0727 0.0959 0.0785
Dk (P]|Q) (num_processes) 0.0276 0.04412 0.0313
Dk (Q||P) (num_processes) 0.0384 0.07052 0.0473
Dx1(P||Q) (pids) 10486 32118 23179
Dy (Q||P) (pids) 0.1979 0.7668 0.4363
Dx1(P||Q) (priority_3_alerts) 0.9635 10.25746 9.2065
D (Q||P) (priority_3_alerts) 0.1968 11.02596 10.8614
Dk (P||Q) (priority_4_alerts) 1.3253 9.15206 8.2429
D (Q||P) (priority_4_alerts) 0.326 9.95748 9.9077
Dk (Pl|Q) (successful-user_alerts) 1.3253 9.15206 8.2429
Dk (Q||P) (successful-user_alerts) 0.326 9.95748 9.9077
Dy1(P||Q) (total_alerts) 0.5874 4.1155 3.7074
Dy 1(Q||P) (total_alerts) 0.1887 4.49898 4.4922
D (P||Q) (warning_alerts) 0.5874 4.1155 3.7074
Dk (Q||P) (warning_alerts) 0.1887 4.49898 4.4922
Dk (P||Q) (rate) 6.3404 99754 8.1125
Dx1(Q||P) (rate) 18725 28199 2.1121
Dk (Pl|Q) (suspicious-login_alerts) 159015 159015 15.9015
Drr(Q]|P) (suspicious-login_alerts) 7.4204 8.6843 8.1022
Dx1(P||Q) (blk_write) 2.8404 2.8404 2.8404
D (Q]|P) (blk_write) 0.9904 0.9904 0.9904

Table 4.2: KLD Statistics

Attack profiler |25

Kullback-Leibler divergence: KLD(P||Q)=3.2511, KLD(Q||P)=0.78

. .+ P(pids | A:Sambacry Explolit)
0.030 - + Q(pids | no intrusion)

0.025

0.020

0.015

Probability

0.010

0.005

0.000

Value

Figure 4.4: Probability distribution of collected data, given the executed
network command Sambacry Exploit, and no intrusion for the metric pids.

Kullback-Leibler divergence: KLD(P||Q)=10.2685, KLD(Q||P)=11.0595

0.005
+ P(priority_3_alerts | A:Ping Scan)

+ Q(priority_3_alerts | no intrusion)

0.004

0.003

Probability

0.002

0.001

0.000 st
200 400 600 800 1000 1200 1400

Value

Figure 4.5: Probability distribution of collected data, given the executed
network command Ping scan, and no intrusion for the metric prior—
ity _3_alerts.

Figures 4.3—4.5 display the probability distributions of collected data for a
network command and no intrusion with a KLLD value in the 90th percentile.
Figure 4.3 shows the distributions for the metric num_processes, the KLD
value is 0.0518 and 0.0817 for Dy, (P||Q) and Dk (Q||P), respectively. We
visually see that the distributions are similar, proven by the low KLD values.

A higher KLD value is observed for the metric pids using the same
network command, seen in Fig. 4.4. Having KLD values of 3.2511 and 0.75
for Dk (P||Q) and Dy (Q||P). Noticeably, we can see how Fig. 4.4 is more

26 | Attack profiler

scattered compared to Fig. 4.3, indicating that the scattered plot could contain
useful data for profiling Sambacry Exploit.

Lastly, Fig. 4.5 shows two distributions that differ significantly. Specif-
ically, the KLD values for Dy (P||Q) and Dy (Q||P) are 10.2685 and
11.0595, respectively. Again, we can visually note a significant difference in
the two distributions.

Our investigation of the metrics suggests that some metrics contain
useful information to enable accurate profiling based on system measure-
ments. The metrics that appear to be most significant for profiling are
alerts_weighted_by_priority, priority_3_alerts, pri-
ority_4_alerts, successful-user_alerts, total_alerts,
and warning_alerts. We treat a large discrepancy between the median
value and the 90th and 75th percentile to indicate that a metric contains
valuable information for profiling.

4.3.2 Attack profiling through hidden Markov models

We formulate Prob. 3 as the problem of finding the most likely state sequence
in a HMM [22], and we refer to our solution as the HMM profiler. Let the
set of A (Def. 1) represent the hidden states, and let the set of infrastructure
metrics O represent the observation space. The estimation problem can then
be stated as

(a,...,ay) = argmai(P(al, .an o, on) 0, €0, (4.14)
a; €

where P(a|a) can be defined based on domain knowledge about possible
sequences of attack commands. We define the state No INTRUSION as the
absence of an intrusion activity. This is included in the hidden states A. The
model adapts to this by adding it to the state-transition probabilities P(a’|a),
and by calculating the P(o|la = ~No INTRUsION) and adding it to the discrete
output probabilities P(o|a) in our model.

We use an HMM for the probabilistic profiler because it allows profiling
based on only system metrics, which is essential for real time attacker profiling.
Another reason why the HMM is well-suited to the task of attacker profiling
is that it can model probabilistic transitions, which allows to capture the
uncertainty of an attacker’s actions. Alternative methods to the HMM exist,
for example deep learning. We choose HMM for its simplicity and good
experimental results. The algorithm used is very well-established, providing
reliability for our solution. Moreover, an HMM typically requires less

Attack profiler |27

computational resources than a deep learning model, making it more suitable
for real time analysis.

We solve (4.14) using the Viterbi algorithm [22], which is given in
Appendix A.7. The complexity of the Viterbi algorithm is O(NT?), where
N is the number of hidden states and 7’ is the length of the observed sequence.
Using this approach, we address the challenge posed by Prob. 3, where the
attacker’s actions are unknown and only system metrics are available.

4.3.2.1 Evaluation of HMM profiling

The HMM profiler is evaluated with generated sample sequences of attacker
actions (states) and observations. Every generated sample state sequence

Ssample = {a1,...,ax} begins in the initial state No INTRUSION, and we
define p as being the probability of remaining in the state NO INTRUSION.
The transitions to an intrusion state are based on the domain knowledge from
possible sequences of attack commands in CSLE. The expected value E of
staying in the state No INTRUSION is calculated using the geometric distribution
with the parameter p in (0, 1).

When we generate a sample sequence Sygmpie = {a1,...,an}, We also
generate a belonging observation sequence Oggmpie = {01, - . ., 0n }, based on
the probabilities from our observation distribution P(o|a). Given the sample
observation sequence, Oggmpre, We want to find the most likely sequence
S* = {aj,...,ay} using our model \. The intrusion start time is defined as
the time when the HMM transitions from the initial state, NO INTRUSION, to any
other state in the state space. We want to identify the start time of an intrusion
by comparing the sampled state sequence with the sequence predicted by the
model. The evaluation of the model is based on the fraction of correctly
profiled actions and correctly identifying the start of an intrusion. Let [define
the number of sample sequences. We can then define the following accuracy
metrics [16].

QCCqction: the fraction of correctly profiled single actions.

zl:zT:]l —at

=1 t=1

ACCqction =

~| =

accgiare: the fraction of correctly detected intrusion starts. Let ag,,+ define the
start of an intrusion.
1<
ACCstart = 7 Z]l<a5t0«"‘t = a:tart)’

i=1

28 | Attack profiler

The testbed metrics used to define the observation in the HMM are the
same metrics presented in 4.3.1. We use the Laplace smoothing technique
[23] to make sure that the observation distribution P(o | s) does not have any
events with zero probability.

4.4 Implementation

We implement an attack profiler that solves Prob. 1-3 in Python. The code is
available in appendices A.l1 and A.2. Our implementation uses the library
MitreAttackData* to implement the correspondences in (4.1-4.4). In
CSLE, each network command is uniquely identified by an ID, such as
TCP_SYN_STEALTH_SCAN_HOST. The IDs serve as references that are linked
to the technique correspondences. To facilitate the mapping process, we use
Common Attack Pattern Enumeration and Classification (CAPEC)™T to map
network commands to techniques. The mappings of the network commands
are available in Appendix A.3. The implementation of the attack graph is
available in Appendix A.4, and the implementation of Algorithm 1 is available
in Appendix A.5. The implementation of the HMM profiler, solving Prob. 3,
is available in Appendix A.8—A.12. The HMM profiler is tested using sample
sequences, based on the model, the implementation of the generation of
sample sequences is available in appendices A.13. The implementations are
also available in https://github.com/Limmen/csle/tree/le24
7c7705cee0c38ea44595308c6bad9dd49cbdb/simulation—-sys
tem/libs/csle—-attack-profiler

*https://github.com/mitre—attack/mitreattack—-python
Thttps://capec.mitre.org

https://github.com/Limmen/csle/tree/1e247c7705cee0c38ea44595308c6ba9dd49cbd6/simulation-system/libs/csle-attack-profiler
https://github.com/Limmen/csle/tree/1e247c7705cee0c38ea44595308c6ba9dd49cbd6/simulation-system/libs/csle-attack-profiler
https://github.com/Limmen/csle/tree/1e247c7705cee0c38ea44595308c6ba9dd49cbd6/simulation-system/libs/csle-attack-profiler
https://github.com/mitre-attack/mitreattack-python

Results and discussion | 29

Chapter 5

Results and discussion

In this chapter, we evaluate the attack profilers described in Chapter 4. We
also discuss the implications of our results.

5.1 Results

We evaluate Algorithm 1 by pruning tactics from three attack sequences in
CSLE. The sequences are shown in Tab. 5.1 with corresponding attack graphs
in Figs. 5.1-5.3. The evaluation results are shown in Fig. 5.4.

30 | Results and discussion

sequence 1 sequence 2 sequence 3
1. TCP SYN SCAN 1. PING scaN 1. PING SCAN
2. SSH DICTIONARY ATTACK 2. SAMBACRY EXPLOIT 2. SAMBACRY EXPLOIT
3. TELNET DICTIONARY ATTACK | 3. NETWORK SERVICE LOGIN | 3. NETWORK SERVICE LOGIN
4. FTP DICTIONARY ATTACK 4. INSTALL TOOLS 4. INSTALL TOOLS
5. NETWORK SERVICE LOGIN 5. PING SCAN 5. PING SCAN
6. INSTALL TOOLS 6. DVWA SQL INJECTION 6. SSH DICTIONARY ATTACK
7. SSH BACKDOOR 7. NETWORK SERVICE LOGIN | 7. NETWORK SERVICE LOGIN
8. TCP SYN SCAN 8. INSTALL TOOLS 8. CVE 2010 0426
9. SHELLSHOCK EXPLOIT 9. PING SCAN 9. PING SCAN
10. NETWORK SERVICE LOGIN 10. cvE 2015 1427 ExpLOIT | 10. DVWA SQL INJECTION
11. INSTALL TOOLS 11. NETWORK SERVICE LOGIN | 11. NETWORK SERVICE LOGIN
12. SSH DICTIONARY ATTACK 12. INSTALL TOOLS 12. INSTALL TOOLS
13. NETWORK SERVICE LOGIN 13. PING SCAN 13. PING SCAN
14. cvE 2010 0426 14. SAMBACRY EXPLOIT 14. cvE 2015 1427
15. TCP SYN SCAN 15. NETWORK SERVICE LOGIN | 15. NETWORK SERVICE LOGIN
16. INSTALL TOOLS 16. INSTALL TOOLS
17. PING scaN 17. PING SCAN

Table 5.1: Attack sequences 1, 2, and 3.

Results and discussion | 31

Reconnaissance
TCP_SYN_STEALTH_SCAN

Initial Access
ELNET/SS! }-h'l——I'PCée.»:‘l\ﬂe EU?.IIE?E‘:S;ASS DICTIONARY) SERVICE_LOGIN
- - - - ELNET/SSH/FTP_SAME_USER_PASS_DICTIONARY)|

Command and Control Persistance
INSTALL_TOOLS SSH_BACKDOOR

SHELLSHOCK_EXPLOIT

—

Lateral Movement

Discovery
TCP_SYN_STEALTH_SCAN
SERVICE_LOGIN

\ |
Execution
SHELLSHOCK_EXPLOIT
CVE_2010_0426_PRIV_ESC

Figure 5.1: Attack graph for sequence 1 in Tab. 5.1. The tactic and the
associated network command(s) are shown in the nodes.

L—

Privilege Escalation
CVE_2010_0426_PRIV_ESC

L

Reconnaissance
PING_SCAN

Tnifial Access Command and Control
SAMBACRY_EXPLOIT INSTALL_TOOLS
SERVICE LOGIN CVE_2015_1427_EXPLOIT
4
Discovery
PING_SCAN

) Y Lateral Movement

Credential Access SERVICE_LOGIN
DVWA_SQL_INJECTION CVE_2015_1427_EXPLOIT
SAMBACRY_EXPLOIT

Execution
CVE _2015_1427_EXPLOIT
SAMBACRY_EXPLOIT

~

Figure 5.2: Attack graph for sequence 2 in Tab. 5.1. The tactic and the
associated network command(s) are shown in the nodes.

32| Results and discussion

Tnitial ACCEss
SAMBACRY_EXPLOIT
SERVICE LOGIN

‘Command and Control

Reconnaissance
PING_SCAN
INSTALL_TOOLS

CVE_2015_1427_EXPLOIT

I8

CVE_2015_1427_EXPLOIT
SAMBACRY_EXPLOIT

Discovery
PING_SCAN
Credential Access Lateral Movement
S5H_SAME_USER_PASS_DICTIONARY SERVICE_LOGIN
DVWA_SQL_INJEGTION CVE_2015_1427_EXPLOIT
Execution Privilege Escalation
CVE_2010_0426_PRIV_ESC CVE_2010_0426_PRIV_ESC

AN

Figure 5.3: Attack graph for sequence 3 in Tab. 5.1. The tactic and the

associated network command(s) are shown in the nodes.

50

(W)
@)
T
|

%)
.-
= yrs
Q 2 277
I vos 257
2 %5
= 257
224014

DO
o
N
NN
NS

vz 7 777

27 227 277

vz 777 777l

[P72 227 277 |

vz 777 777

27 777 277

vz 777 277

Vo7 777 277

vz 277 277

vz 777 777

27 227 277

vz 777 777

27 227 277

vz 777 777l

() 27 2227 227

Sequence Number

79 Algorithm 1!/l Naive

Figure 5.4: Comparison of the three sequences in Tab. 5.1 using Algorithm
1 and the naive approach where each network command is profiled

independently without an attack graph (Def. 2).

Results and discussion | 33

We observe in Fig. 5.4 that Algorithm 1 produces more precise profiling
than the naive profiler on all three sequences. On sequence 1 (Tab. 5.1) it
reduces the total number of tactics from 36 to 26; on sequence 2 (Tab. 5.1) it
reduces the number of tactics from 43 to 23; and on sequence 3 (Tab. 5.1) it
reduces the number of tactics from 46 to 25.

We evaluate the HMM profiler, solving Prob. 3, using statistics from the
testbed (see Section 3.1). The transition matrix is derived from sequences 1,
2, and 3 (Tab. 5.1) and is presented in Tab. 5.2. The observation matrices
for the different metrics are too large to present — how these are calculated
can be found in Appendix A.10. No metric data for the attacker action ssH
BACKDOOR is available, therefore the observation distribution probabilities for
this attacker action are calculated using the Laplace smoothing technique as
mentioned in Section 4.3.2.1.

We use p = 0.1 in our experiments (recall that 1 — p is the probability
of remaining in the state No INTRUSION). The intrusion sequence /., length
varies from 1 to 10. Thus, each episode starts at time ¢, and the intrusion starts
at a random time drawn from the geometric distribution Ge(p). The intrusion
starts a sequence of length /,.,. From Tab. 5.1, we can see that the intrusion
sequence starts in either the state PING SCAN or TCP SYN scaN. We evaluate
using 1000 generated sample sequences, including the sampled observation
sequences for each I,.,. The results are shown in Figs. 5.5-5.6.

)
o

NO INTRUSION

TCP SYN SCAN

SSH DICTIONARY ATTACK
TELNET DICTIONARY ATTACK
FTP DICTIONARY ATTACK
NETWORK SERVICE LOGIN
INSTALL TOOLS

SSH BACKDOOR
SHELLSHOCK EXPLOIT
CVE 2010 0426

PING SCAN

SAMBACRY EXPLOIT
DVWA SQL INJECTION
CVE 2015 1427 EXPLOIT

COO0ODDODDODODDODDODOO OO O
SOOI O RO OO OO O5w
OO OO O OO O O Ovik O
COO0OO0ODODO0ODO0OOCO O oULD O
COoO000CO0OO00COoOOoO—~,O0OO
NN oNeleleleNoln SNollelollele)

COO0OO0OO0CODOOCO O oD
cNoNoNoNoNoNoNolnellolN ool
OO OO OVNO OO O OS5

—_—— = O O = OO O = Own O
O OO OO OO OO OO

(]

Table 5.2: Transition Matrix for Sequence 1, 2, and 3 (see Tab. 5.1)

O O OO O OO OO OO oo

S OORIFO OO OO OO0

S O ORIHPRO O OO OO OO oo

34 | Results and discussion

1.0
"‘-—-____.)____.___—o o— .
 — : . @ °

0.8 1
0.6 4 _’___,..-"" —"
g — " ™
g o/ ./ ./ ./;;3
7] ./ _ '/.;9‘%23% s
. — — i
S T -
— - = = N_—
:/.%%ﬁz_/_j%’ﬁ3h./ o

Intrusion Length

HA
.
.
5

Metric
alerts_weighted_by_priority
cpu_percent
default-login-attempt_alerts
mem_current
net_rx
net_tx
num_clients
num_failed_login_attempts
num_open_connections
nNUM_processes
pids
priority_3_alerts
priority_4_alerts
successful-user_alerts
total_alerts
warning_alerts
rate
suspicious-login_alerts
blk_write

Figure 5.5: The fraction of correct profiled single actions (accyetion) for
different intrusion lengths. Using Sequences 1, 2, and 3 (see Tab. 5.1)

1.0 1
¢
a .
:—-—":‘; ._éo“—-_____ﬁﬁ-___af—'—-—.—-_—-:'____-—oi.
0.8
0.6
=
o
c
=1
=
£
0.4
/ * —_ T ————
.
0.2 1
S : T ————
s
. * -— T -— —
0.0
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10

Intrusion Length

Metric
alerts_weighted_by_priority
cpu_percent
default-login-attempt_alerts
mem_current
net_rx
net_tx
num_clients
num_failed_login_attempts
num_open_connections
num_processes
pids
priority_3 alerts
priority_4 alerts
successful-user_alerts
total_alerts
warning_alerts
rate
suspicious-login_alerts
blk_write

Figure 5.6: The fraction of correct detecting intrusion starts (accsyer¢) for
different intrusion lengths. Using Sequences 1, 2, and 3 (see Tab. 5.1)

Results and discussion | 35

In Fig. 5.5, we observe a high accuracy for the three metrics ALERTS
WEIGHTED BY PRIORITY, PRIORITY 4 ALERTS, and SUCCESSFUL USER ALERTS.
Similarly, in Fig. 5.6 we observe a high accuracy of detecting the intrusion start
time for the same three metrics. Furthermore, we can observe an increasing
ACCqction fOr most metrics when I, increases. This can be explained by
some metrics’ difficulties in identifying Tcp sYN scaN and PING scaN from
observations. The same phenomenon is also shown in Fig. 5.6, where we
observe a constant low accg,,+ for some metrics and can see an increasing
ACCqetion in Fig. 5.5 for those metrics. While some metrics are poor at
profiling the actions initiating an intrusion sequence, they are more effective
at identifying subsequent actions.

Similarly, we test the HMM profiler using sequences 2, and 3 (see Tab.
5.1). Table 5.3 shows the corresponding transition matrix. The same
conditions as for the previous test are set. Note that an intrusion sequence
only starts in the state pING scaN. We have 1000 generated sample sequences,
including the sampled observation sequences. The results are shown in Figs.
5.7-5.8.

NO INTRUSION
SSH DICTIONARY ATTACK
NETWORK SERVICE LOGIN
INSTALL TOOLS

CVE 2010 0426

PING SCAN

SAMBACRY EXPLOIT
DVWA SQL INJECTION
CVE 2015 1427

cNoNoNoNoNolNoNel~
DO OO OO OO
—_——_—_= 0 OO O = O
OO0 O OUID O
el eNoNoNololoNollo
OO OO~ = OSo

0
0
0
0
0
3
8
0
0
0

S O OO O O O O
S O OO OO OO

Table 5.3: Transition matrix for Sequences 2 and 3.

36 | Results and discussion

1.0 4 .%. . 3_;____—‘—g
0.8
0.6 4
§ —0 s
E /:—:‘G:?—— ‘jo“—’r—. [
0.4 4 - L) _—
-74¢ . _— . " .
.r_,ﬁ./ : ,/:;°/ =,
. _— "///'/ /'///’:-—.———-"SZ:”z
0-21 . . — f'_'fQ . —
.4-?%%32’2&52/53;%*%;
Ha— = S S)
===
2 3 2 5 6 7 8 5 10

Intrusion Length

Metric
alerts_weighted_by_priority
cpu_percent
default-login-attempt_alerts
mem_current
net_rx
net_tx
num_clients
num_failed_login_attempts
num_open_connections
num_processes
pids
priority_3_alerts
priority_4_alerts
successful-user_alerts
total_alerts
warning_alerts
rate
suspicious-login_alerts
blk_write

Figure 5.7: The fraction of correct profiled single actions (accyction) for
different intrusion lengths. Using Sequences 2 and 3 (see Tab. 5.1)

1.0+ . —_—————— ¢
- 'Y
. — s =
/o‘___./——’"——___. —— o —__
.
0.8 4
0.6
>
o
i
S
o
2
0.4 1
0.2 4 P s ———— "
. 3 .
:}{35—4.?‘4‘/
0.0 — " -—, — e —
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10

Intrusion Length

Metric
alerts_weighted_by_priority
cpu_percent
default-login-attempt_alerts
mem_current
net_rx
net_tx
num_clients
num_failed_login_attempts
num_open_connections
num_processes
pids
priority_3_alerts
priority_4_alerts
successful-user_alerts
total_alerts
warning_alerts
rate
suspicious-login_alerts
blk_write

Figure 5.8: The fraction of correct detecting intrusion starts (accsyq¢) for
different intrusion lengths. Using Sequences 2 and 3 (see Tab. 5.1)

In Figs. 5.7-5.8 we observe similar results to those shown in Figs. 5.5-
5.6, with slightly better performance among all metrics generally. This is the
expected result due to a simpler model with fewer hidden states. One can note

Results and discussion | 37

that using the metric PRIORITY 3 ALERTS as observation in the HMM leads
to significantly higher accuracy than the previous test. We conclude that the
metric PRIORITY 3 ALERTS is better capable of detecting the start of an intrusion
when PING scaN is executed rather than Tcp sYN scaN, indicated in Fig. 5.8
with high accge,+ for metric PRIORITY 3 ALERTS. Again, note that Tcp syN
SCAN is not a state in this test setup (see Tab. 5.3).

Lastly, we evaluate the fraction of correctly profiled single actions
(accqetion), omitting the state No INTRUSION. Hence, this context makes the
accgqre irrelevant. The transition matrix derived from Sequences 1, 2, and 3
(Tab. 5.1) is presented in Tab. 5.4. Again, no metric data for the attacker
action SsH BACKDOOR is available. The observation distribution probabilities
are calculated using the Laplace smoothing technique. The intrusion sequence
I5cq varies from 1 to 10 and the initial states are TCP SYN SCAN, and PING SCAN
with probabilities 5 and Z, respectively. We evaluate using 1000 generated
sample sequences for each /.

TCP SYN SCAN
SSH DICTIONARY ATTACK
TELNET DICTIONARY ATTACK
FTP DICTIONARY ATTACK
NETWORK SERVICE LOGIN
INSTALL TOOLS

SSH BACKDOOR
SHELLSHOCK EXPLOIT

CVE 2010 0426

PING SCAN

SAMBACRY EXPLOIT

DVWA SQL INJECTION

CVE 2015 1427 EXPLOIT

OCoOOCoOoONFO R OO0 OO0
O OO O OO O O Ol
DO O O QD
OO0 —~OO
I, R, R, OO~ OO0~ Ownd
N oNoNolollelieNoln -Nolelelle)
OO0 00RO O OO O

OO0 OO Ou-
N oNeNeoNlolelieoNolntEelolelle)
OO O OO CONO OO OO

OO OO0 O
cCooCR~rO O OO0 OCOO

(=)
()

Table 5.4: Transition matrix for sequences 1, 2, and 3 (see Tab. 5.1), excluding
the state NO INTRUSION.

SO ORIFO OO OO OO0

38 | Results and discussion

107 Metric
alerts_weighted_by_priority
—— - — —— cpu_percent

default-login-attempt_alerts
0.8 < / mem_current
net_rx
net_tx
—e— pum_clients
—e— num_failed_login_attempts
0.6 4 / —e— num_open_connections
/' 5 —e— nuUM_processes

—e— pids

kc —e— priority_3_alerts
L
~

\\

Accuracy

—e— priority_4_alerts
0.4

Figure 5.9: The fraction of correct detecting intrusion starts (accsyq¢) for
different intrusion lengths. Using Sequences 2 and 3 (see Tab. 5.1). The state
NO INTRUSION is not in the model.

successful-user_alerts
total_alerts

e warning_alerts

. rate
suspicious-login_alerts
blk_write

T T T T T T
4 5 6 7 8 9 10
Intrusion Length

Omitting the state No INTRUSION in our model gives a better profiling
accuracy among several metrics. In Fig. 5.9, we can observe six metrics
that lead to high accuracy for all /,.,. Notably, SUSPICIOUS LOGIN ALERTS
and NET TX have high accuracy compared to previous tests. We conclude that
the observations of these metrics for NO INTRUSION are similar to PING SCAN
and Tcp sYN scaN, therefore leading to poor accuracy of both accyetion, and
ACCintrusion-

In summary, the HMM profiler can be used for online profiling to detect
the start of intrusion and to profile attacker actions. The results show high
accuracy for accyerion and accgq,s among some metrics, as shown in Figs. 5.5—
5.8. For most metrics, accy.tion, increases for an increasing intrusion length.
We believe this is because some metrics are better at profiling certain attacks
than others. In this case, most metrics have difficulties detecting the start of
intrusion, which starts with either the action TCP SYN SCAN or PING SCAN. If
the intrusion is detected, observations in other metrics could be valuable to
correctly profile an ongoing attack, which Fig. 5.9 highlights.

Notably, the metrics with high Kullback-Leibler divergence are those that
perform well in the HMM profiler. This is expected since the high KLD
means greater difference in the distributions. Conversely, the metrics with low
KLD values perform poorly. This implies that when these metrics are used,

Results and discussion | 39

it is difficult for the HMM to distinguish the difference between the state No
INTRUSION and the intrusion states.

Compared with the results presented by Wang and Stadler [16], we do
not perform preprocessing of the infrastructure metrics before training the
HMM profiler. By contrast, using clustering techniques, Wang and Stadler
[16] pre-process the observation space by mapping the observations to six
possible values. In comparison, the size of the observation space in our
experiments varies between 16 (BLK WRITE) and 53117 (NET TX). Another
difference between our experimental setup and the setup used in [16] is that
we use p = 0.1 whereas [16] uses p = 0.2. Finally, another difference is that
we evaluated the HMM profiler using sample sequences based on the model.
In contrast, in [16], the data is divided uniformly at random, 70% for training
and 30% for evaluation.

5.2 Discussion
The key findings from the evaluation are summarized as follows.

(i) The profiler solving Prob. 1 and Prob. 2 can achieve more accurate
profiling of an attacker action (Def. 1) than the naive profiler. The main
enabler of the improved accuracy is the pruning of attack techniques
based on the attack graph (Def. 2).

(ii) The analyzed metrics with high KLD correlate with the metrics showing
high accuracy for profiling a single action and detecting the start of an
intrusion.

(iii) The accuracy, accyeion iS increasing for longer intrusion lengths for
metrics with low accgigre.

We answer the research questions posed in §1.3 as follows.
* How can we model different types of attacks in a general framework?

— We model an attacker action in CSLE using Def. 1) and we model
an attack as a sequence of attacker actions.

* How can we automatically profile attacks using the model?

— The attacker actions are profiled automatically using Alg. 1 and the
offline profiler that solves Prob. 1 and Prob. 2.

40 | Results and discussion

* How can we automatically profile attacks using only system measure-
ments?

— The HMM profiler, solving Prob. 3, shows how system measure-
ments can be used to profile attacker actions online.

Limitations While the results show that the attack graph (Def. 2) can allow
for more accurate profiling of attacks, it is important to acknowledge that
it relies on domain knowledge about the attacker. If such knowledge is
not available, the attack graph provides little value. Another limitation of
our framework for attacker profiling is that each attacker action in CSLE is
manually labeled with the corresponding techniques in MITRE ATT& K ®before
our experiments. This labeling is not trivial, requiring knowledge about
attacker actions. We utilize the knowledge base CAPEC™ to aid us in this
work. Finally, another limitation of our framework is that the HMM profiler
requires a dataset of attack traces to train, which may not always be available
in practice.

Conclusions and Future work | 41

Chapter 6

Conclusions and Future work

In this thesis, we present a framework for automated profiling of cyber attacks
based on MITRE ATT&cK. The framework includes two components: (1) a
component for automated mapping of sequences of attacker actions to the
corresponding tactics and techniques in MITRE ATT&CK; and (2) a component
for probabilistic profiling of attacker actions based on testbed measurements.

The first component allows for offline (forensic) attacker profiling. It
takes as input a sequence of attacker actions and outputs a corresponding
sequence of attack techniques and tactics in MITRE ATT&CK. A key challenge
when developing this profiler is that a single attacker action often maps to
many techniques and tactics in MITRE ATT&cCK, which limits the value of the
profiling. To make the profiling more precise, we introduce a novel algorithm
that leverages an attack graph to contextualize the attack sequence. This
contextualization allows us to profile the attacker sequence more accurately
and provides a natural way to encode domain expertise into the attack profiler.

The second component allows for online (real-time) attacker profiling. It
takes as input a sequence of infrastructure metrics (e.g., log files and alerts)
and outputs the most likely sequence of attack techniques and tactics. To
find the most effective infrastructure metrics for profiling, we analyze many
possible metrics and select the metrics that provide the most information for
distinguishing between different attack stages, which we quantify using the
Kullback-Leibler divergence. We then model the relation between attacker
actions and values of the chosen metric using a hidden Markov model, which
allows us to compute the most likely attacker action sequence using Viterbi’s
algorithm.

The experimental part of this thesis includes extensive profiling of
emulated attacks in the Cyber Security Learning Environment (CSLE), which

42 | Conclusions and Future work

is a platform for emulating attacks and defenses in virtualized IT environments.
From the results of running the first profiler (i.e., the offline profiler), we see
that the attack graph leads to accurate profiling of sequences by allowing the
pruning of the sets of attack techniques and tactics. When evaluating the
second profiler (i.e., the HMM profiler), we find that the performance depends
heavily on the choice of infrastructure metrics, where metrics based on alerts
from an intrusion detection system tend to be the most useful for the types of
attacks that we study.

In conclusion, this work demonstrates how we can automate the profiling
of cyber attacks, thereby reducing the need for domain experts to conduct
forensic analysis. From a sustainability perspective, the primary implication
of this research is the potential for cost reduction and improved cybersecurity.

Future work The implementation of the offline profiler relies on domain
knowledge to label the network commands in CSLE with the corresponding
techniques in MITRE ATT&cK®. Investigating how to automatically map the
commands to MITRE ATT&cK® based on Open Source Intelligence (OSINT) is
a promising direction for future research. This would reduce the effort to label
new network commands added to the platform.

The next step for the HMM profiler is to extend the profiler to consider
more attack sequences. In this work, we focused on three possible attack
sequences, which led to a relatively simple transition matrix. Extending the
HMM profiler to consider more attack sequences would allow us to investigate
the usefulness of the HMM profiler when the uncertainty about the attacker is
high.

References |43

References

[6]

K. Hammar. “The cybersecurity learning environment”. Accessed 19-
01-2024. (), [Online]. Available: https://limmen.dev/csle/.

K. Hammar and R. Stadler, “Digital twins for security automation”,
in NOMS 2023-2023 IEEE/IFIP Network Operations and Management
Symposium, 2023, pp. 1-6. por: 10.1109/NOMS56928.2023.10
154288.

K. Hammar and R. Stadler, “Learning near-optimal intrusion responses
against dynamic attackers”, IEEE Transactions on Network and Service
Management, vol. 21, no. 1, pp. 1158-1177,2024. por: 10.1109/TN
SM.2023.3293413.

K. Hammar and R. Stadler, “Learning intrusion prevention policies
through optimal stopping”, in 2021 17th International Conference on
Network and Service Management (CNSM), 2021, pp. 509-517. por:
10.23919/CNSM52442.2021.9615542.

H. Shahriar, S. North, Y. Lee, and R. Hu, “Server-side code injection
attack detection based on kullback-leibler distance”, International
Journal of Internet Technology and Secured Transactions, vol. 5, p. 240,
Jan. 2014. por: 10.1504/IJITST.2014.065184.

A. Applebaum, D. Miller, B. Strom, C. Korban, and R. Wolf,
“Intelligent, automated red team emulation”, in Proceedings of the 32nd
Annual Conference on Computer Security Applications, ser. ACSAC
16, Los Angeles, California, USA: Association for Computing
Machinery, 2016, pp. 363-373, 1sBN: 9781450347716. por: 10 . 11
45/2991079.2991111. [Online]. Available: https://doi.or
g/10.1145/2991079.2991111.

J. Janisch, T. Pevny, and V. Lisy, “Nasimemu: network attack simulator
& emulator for training agents generalizing to novel scenarios”,
in Computer Security. ESORICS 2023 International Workshops, S.

https://limmen.dev/csle/
https://doi.org/10.1109/NOMS56928.2023.10154288
https://doi.org/10.1109/NOMS56928.2023.10154288
https://doi.org/10.1109/TNSM.2023.3293413
https://doi.org/10.1109/TNSM.2023.3293413
https://doi.org/10.23919/CNSM52442.2021.9615542
https://doi.org/10.1504/IJITST.2014.065184
https://doi.org/10.1145/2991079.2991111
https://doi.org/10.1145/2991079.2991111
https://doi.org/10.1145/2991079.2991111
https://doi.org/10.1145/2991079.2991111

44 | References

(8]

[10]

[11]

[12]

[13]

[14]

[15]

Katsikas et al., Eds., Cham: Springer Nature Switzerland, 2024,
pp- 589—-608, 1sBN: 978-3-031-54129-2.

J. Schwartz and H. Kurniawatti, Nasim: network attack simulator, ht tp
s://networkattacksimulator.readthedocs.io/, 2019.

M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim, and D.
Marriott, Cyborg: a gym for the development of autonomous cyber
agents, 2021. arXiv: 2108.09118 [cs.CR].

T. Nguyen, Z. Chen, K. Hasegawa, K. Fukushima, and R. Beuran,
“Pengym: pentesting training framework for reinforcement learning
agents”, in Proceedings of the 10th International Conference on Infor-
mation Systems Security and Privacy (ICISSP 2024), SCITEPRESS —
Science and Technology Publications, Lda., 2024, pp. 498-509, 1sBN:
978-989-758-683-5. po1: 10.5220/0012367300003648.

A. Chowdhary, D. Huang, J. S. Mahendran, D. Romo, Y. Deng, and A.
Sabur, “Autonomous security analysis and penetration testing”, in 2020
16th International Conference on Mobility, Sensing and Networking
(MSN), 2020, pp. 508-515. por: 10.1109/MSN50589.2020.0
008e6.

Y. Yang and X. Liu, Behaviour-diverse automatic penetration testing: a
curiosity-driven multi-objective deep reinforcement learning approach,
2022. arXiv: 2202 .10630 [cs.LG].

L. Li, R. Fayad, and A. Taylor, “Cygil: A cyber gym for train-
ing autonomous agents over emulated network systems”, CoRR,
vol. abs/2109.03331, 2021. arXiv: 2109.03331. [Online]. Available:
https://arxiv.org/abs/2109.03331.

M. Rodriguez, G. Betarte, and D. Galegari, “Discovering attacker
profiles using process mining and the mitre attck taxonomy”, in
Proceedings of the 12th Latin-American Symposium on Dependable
and Secure Computing, ser. LADC 23, , La Paz, Bolivia, Association
for Computing Machinery, 2023, pp. 146-155, 1sBN: 9798400708442.
pol: 10.1145/3615366.3615372. [Online]. Available: https:
//doi-org.focus.lib.kth.se/10.1145/3615366.361
5372.

Y. Wu, C. Huang, X. Zhang, and H. Zhou, “Grouptracer: automatic
attacker ttp profile extraction and group cluster in internet of things”,
Security and Communication Networks, vol. 2020, Article ID 8842539,
2020.por: 10.1155/2020/88425309.

https://networkattacksimulator.readthedocs.io/
https://networkattacksimulator.readthedocs.io/
https://arxiv.org/abs/2108.09118
https://doi.org/10.5220/0012367300003648
https://doi.org/10.1109/MSN50589.2020.00086
https://doi.org/10.1109/MSN50589.2020.00086
https://arxiv.org/abs/2202.10630
https://arxiv.org/abs/2109.03331
https://arxiv.org/abs/2109.03331
https://doi.org/10.1145/3615366.3615372
https://doi-org.focus.lib.kth.se/10.1145/3615366.3615372
https://doi-org.focus.lib.kth.se/10.1145/3615366.3615372
https://doi-org.focus.lib.kth.se/10.1145/3615366.3615372
https://doi.org/10.1155/2020/8842539

[22]

References |45

X. Wang and R. Stadler, It intrusion detection using statistical learning
and testbed measurements, 2024. arXiv: 2402 .13081 [cs.LG].

P. Holgado, V. A. Villagra, and L. Vazquez, “Real-time multistep attack
prediction based on hidden markov models”, IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 1, pp. 134-147, 2020.
por: 10.1109/TDSC.2017.2751478.

Y.-T. Huang, C. Y. Lin, Y.-R. Guo, K.-C. Lo, Y. S. Sun, and M. C.
Chen, “Open source intelligence for malicious behavior discovery
and interpretation”, IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 2, pp. 776-789, 2022. por: 10.1109/TDS
C.2021.3119008.

S. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan,
“Holmes: real-time apt detection through correlation of suspicious
information flows”, May 2019, pp. 1137-1152. po1: 10.1109/5P .2
019.00026.

W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis
for endpoint detection and response systems”, in 2020 IEEE Symposium
on Security and Privacy (SP), 2020, pp. 1172-1189. por: 10 . 1109
/SP40000.2020.00096.

E. Miehling, M. Rasouli, and D. Teneketzis, “Optimal defense policies
for partially observable spreading processes on bayesian attack graphs”,
in Proceedings of the Second ACM Workshop on Moving Target
Defense, ser. MTD 15, Denver, Colorado, USA: Association for
Computing Machinery, 2015, pp. 67-76, 1sBn: 9781450338233. por:
10.1145/2808475.2808482. [Online]. Available: https://d
0i.org/10.1145/2808475.2808482.

A. M. Fraser, Hidden Markov Models and Dynamical Systems.
USA: Society for Industrial and Applied Mathematics, 2008, 1SBN:
0898716659.

M. Kikuchi, M. Yoshida, M. Okabe, and K. Umemura, “Confidence
interval of probability estimator of laplace smoothing”, in 2015 2nd
International Conference on Advanced Informatics: Concepts, Theory
and Applications (ICAICTA), 2015, pp. 1-6.por: 10.1109/ICAICT
A.2015.7335387.

https://arxiv.org/abs/2402.13081
https://doi.org/10.1109/TDSC.2017.2751478
https://doi.org/10.1109/TDSC.2021.3119008
https://doi.org/10.1109/TDSC.2021.3119008
https://doi.org/10.1109/SP.2019.00026
https://doi.org/10.1109/SP.2019.00026
https://doi.org/10.1109/SP40000.2020.00096
https://doi.org/10.1109/SP40000.2020.00096
https://doi.org/10.1145/2808475.2808482
https://doi.org/10.1145/2808475.2808482
https://doi.org/10.1145/2808475.2808482
https://doi.org/10.1109/ICAICTA.2015.7335387
https://doi.org/10.1109/ICAICTA.2015.7335387

46 | References

Appendix A: Implementation details | 47

Appendix A

Implementation details

1 class AttackProfiler () :
3 Class represting the attack profile based on the MITRE
ATT&CK framework for Enterprise.

"o

6 def __init__(self, techniques_tactics: Dict[str ,List[str
11, mitigations: Dict[str, List[str]], data_sources: Dict[
str, List[str]], subtechniques: Dict[str, List[str]],
action_id: EmulationAttackerActionld):

9 self.techniques_tactics = techniques_tactics
10 self . mitigations = mitigations

" self.data_sources = data_sources

12 self.subtechniques = subtechniques

13 self.action_id = action_id

Listing A.1: Constructor for the attack profiler object

def get_attack_profile (attacker_action:
EmulationAttackerAction):

Returns the attack profile of the actions
mitre_attack_data = MitreAttackData("./src/
csle_attack_profiler/enterprise —attack.json")

7 attacker_id = attacker_action.id
8 attack_mapping = EmulationAttackerMapping.
get_attack_info (attacker_id)

35

43

44

48 | Appendix A: Implementation details

if attack_mapping == {None} or attack_mapping is None
return AttackProfiler({}, {}, {}, {}, None)

attack_techniques_vals = [technique.value for
technique in attack_mapping['techniques ']]

attacker action_id attacker_action . id

techniques_tactics = {}
mitigations = {}
data_sources = {}
sub_techniques = {}
for technique_name in attack_techniques_vals:

try :

obj = mitre_attack_data.get_objects_by_name (
technique_name , "attack —pattern")
except:

raise RuntimeError("Error in fetching the
technique from the MitreAttackData")
technique = obj[0]

stix_id = technique.id
tactics = [phase['phase_name '] for phase in
technique . kill_chain_phases|]
techniques_tactics [technique_name] = tactics
if hasattr(technique, 'x_mitre_data_sources '):
data_sources[technique_name] = technique.
X_mitre_data_sources
try:
mitigations_object = mitre_attack_data.
get_mitigations_mitigating_technique (stix_id)
mitigations_list = [mitig['object ']['name ']

for mitig in mitigations_object]
mitigations [technique_name] =
mitigations_list
except:
raise RuntimeError("Error in fetching the
mitigations from the MitreAttackData")

if 'subtechniques' in attack_mapping:
sub_techniques_mapping = [sub_technique.value for
sub_technique in attack_mapping['subtechniques ']]
for st in sub_techniques_mapping:
try :
sub_technique_obj = mitre_attack_data.

46

Appendix A: Implementation details | 49

get_objects_by_name (st, "attack-pattern")

parent_technique_obj = mitre_attack_data.
get_parent_technique_of_subtechnique (sub_technique_obj[0].
id)

sub_techniques[parent_technique_obj [0]["'
object '].name] = st

except:

raise RuntimeError("Error in fetching the

sub—techniques from the MitreAttackData")

return AttackProfiler(techniques_tactics , mitigations
, data_sources , sub_techniques , attacker_action_id)

Listing A.2: Implementation of the attack profiler. Profiling a network
command

class EmulationAttackerMapping () :

"o

o

5

Maps EmulationAttackerActionld 's to tactics and
techniques

@staticmethod

def get_attack_info(id: EmulationAttackerActionld):

Maps id 's to tactics and techniques

mapping = {
EmulationAttackerActionld.
TCP_SYN_STEALTH_SCAN_HOST: ({
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
1%
EmulationAttackerActionld .
TCP_SYN_STEALTH_SCAN_ALL: {
"techniques": {Techniques .ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
b o
EmulationAttackerActionld .PING_SCAN_HOST: {
"techniques": {Techniques.ACTIVE_SCANNING,

40

41

44

45

54

50 | Appendix A: Implementation details

Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
o
EmulationAttackerActionld .PING_SCAN_ALL: ({
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
Jo
EmulationAttackerActionld .UDP_PORT_SCAN_HOST: {
"techniques": {Techniques .ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
b o
EmulationAttackerActionId .UDP_PORT _SCAN_ALL: {
"techniques": {Techniques .ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
Jo
EmulationAttackerActionld.
TCP_CON_NON_STEALTH_SCAN_HOST: {
"techniques": {Techniques .ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
he
EmulationAttackerActionld .
TCP_CON_NON_STEALTH_SCAN_ALL: {
"techniques": {Techniques .ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
b o
EmulationAttackerActionld . TCP_FIN_SCAN_HOST: {
"techniques": {Techniques .ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .

56

59

60

61

66

68

69

80

86

Appendix A: Implementation details | 51

NETWORK_SERVICE_DISCOVERY }
¥ o
EmulationAttackerActionId . TCP_FIN_SCAN_ALL: {
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
i o
EmulationAttackerActionId . TCP_NULL_SCAN_HOST: {
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
to
EmulationAttackerActionld .TCP_NULL_SCAN_ALL: {
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }

}7
EmulationAttackerActionld .TCP_XMAS_TREE SCAN_HOST

"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }

}’
EmulationAttackerActionld .TCP_XMAS_TREE_SCAN_ALL:

"techniques": {Techniques .ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }

}’
EmulationAttackerActionld .OS_DETECTION_SCAN _ HOST:

"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION,
Techniques .
NETWORK_SERVICE_DISCOVERY }
}s

52 | Appendix A: Implementation details

87 EmulationAttackerActionld . OS_DETECTION_SCAN_ALL:
{

88 "techniques": {Techniques.ACTIVE_SCANNING,

89 Techniques .
GATHER_VICTIM_HOST_INFORMATION,

90 Techniques .

NETWORK_SERVICE_DISCOVERY }
91 } b

94 EmulationAttackerActionld . VULSCAN_HOST: {

95 "techniques": { Techniques.
GATHER_VICTIM_HOST_INFORMATION,

9 Techniques . SOFTWARE_DISCOVERY

}’
97 "subtechniques": {SubTechniques.SOFTWARE}

% }s

9 EmulationAttackerActionld . VULSCAN_ALL: {

100 "techniques": {Techniques.
GATHER_VICTIM_HOST_INFORMATION,

101 Techniques . SOFTWARE_DISCOVERY

}’
102 "subtechniques": {SubTechniques.SOFTWARE}

103 },

104 EmulationAttackerActionld .NMAP_VULNERS_HOST: ({

105 "techniques": {Techniques.
GATHER_VICTIM_HOST_INFORMATION,

106 Techniques . SOFTWARE_DISCOVERY

}’
107 "subtechniques": {SubTechniques.SOFTWARE}

108 1,

109 EmulationAttackerActionld .NMAP_VULNERS_ALL: {

10 "techniques": {Techniques.
GATHER_VICTIM_HOST_INFORMATION,

i Techniques .SSOFTWARE_DISCOVERY

}7
12 "subtechniques": {SubTechniques.SOFTWARE}

13 },

116 EmulationAttackerActionld.
TELNET_SAME_USER_PASS_DICTIONARY_HOST: {

117 "techniques": {Techniques.BRUTE_FORCE,

18 Techniques . VALID_ACCOUNTS } ,

19 "subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,

120 SubTechniques .

144

148

149

150

Appendix A: Implementation details | 53

DEFAULT_ACCOUNTS }
},
EmulationAttackerActionld.
TELNET_SAME_USER_PASS_DICTIONARY_ALL: {
"techniques": {Techniques.BRUTE FORCE,
Techniques . VALID_ACCOUNTS } ,
"subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,
SubTechniques .
DEFAULT_ACCOUNTS }
b,
EmulationAttackerActionld.
SSH_SAME_USER_PASS_DICTIONARY_HOST: {
"techniques": {Techniques.BRUTE_FORCE,
Techniques . VALID_ACCOUNTS } ,
"subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,
SubTechniques .
DEFAULT_ACCOUNTS}
}.
EmulationAttackerActionld.
SSH_SAME_USER_PASS_DICTIONARY_ALL: {
"techniques": {Techniques.BRUTE_FORCE,
Techniques . VALID_ACCOUNTS } ,
"subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,
SubTechniques .
DEFAULT _ACCOUNTS }
),
EmulationAttackerActionld.
FTP_SAME_USER_PASS_DICTIONARY_HOST: {
"techniques": {Techniques.BRUTE FORCE,
Techniques . VALID_ACCOUNTS } ,
"subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,
SubTechniques .
DEFAULT_ACCOUNTS }
},
EmulationAttackerActionld.
FTP_SAME_USER_PASS_DICTIONARY_ALL: {
"techniques": {Techniques.BRUTE FORCE,
Techniques . VALID_ACCOUNTS } ,
"subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,
SubTechniques .
DEFAULT_ACCOUNTS }

b

54 | Appendix A: Implementation details

152 EmulationAttackerActionld.
SMTP_SAME_USER_PASS_DICTIONARY_HOST: {

153 "techniques": {Techniques.BRUTE_FORCE,

154 Techniques . VALID_ACCOUNTS } ,

155 "subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,

156 SubTechniques .

DEFAULT_ACCOUNTS }
157 },

158 EmulationAttackerActionld .
SMTP_SAME_USER_PASS_DICTIONARY_ALL: {
159 "techniques": {Techniques.BRUTE _FORCE,

160 Techniques . VALID_ACCOUNTS } ,

161 "subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,

162 SubTechniques .
DEFAULT_ACCOUNTS }

163 },

164 #TODO: For database attacks , maybe not Initial
Access: Valid Accounts: Default Accounts?

165 EmulationAttackerActionld .
CASSANDRA_SAME_USER_PASS_DICTIONARY_HOST: {

166 "techniques": {Techniques.BRUTE_FORCE,

167 Techniques . VALID_ACCOUNTS } ,

168 "subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,

160 SubTechniques .
DEFAULT_ACCOUNTS}

170 },

171 EmulationAttackerActionld .
CASSANDRA_SAME_USER_PASS_DICTIONARY_ALL: {

172 "techniques": {Techniques.BRUTE_FORCE,

173 Techniques . VALID_ACCOUNTS } ,

174 "subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,

175 SubTechniques .

DEFAULT _ACCOUNTS}

176 } 0

177 EmulationAttackerActionld .
IRC_SAME_USER_PASS_DICTIONARY_HOST: {

178 "techniques": {Techniques.BRUTE FORCE,

179 Techniques . VALID_ACCOUNTS } ,

180 "subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,

181 SubTechniques .

DEFAULT _ACCOUNTS },
182 1,

184

186

188

189

190

191

193

194

195

196

197

198

199

205

Appendix A: Implementation details | 55

EmulationAttackerActionld.
IRC_SAME_USER_PASS_DICTIONARY_ALL: {
"techniques": {Techniques.BRUTE_FORCE,
Techniques . VALID_ACCOUNTS } ,
"subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,
SubTechniques .
DEFAULT_ACCOUNTS},
),
EmulationAttackerActionld.
MYSQL_SAME_USER_PASS_DICTIONARY_HOST: {
"techniques": {Techniques.BRUTE FORCE,
Techniques . VALID_ACCOUNTS } ,
"subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,
SubTechniques .
DEFAULT_ACCOUNTS }
},
EmulationAttackerActionld.
MYSQL_SAME_USER_PASS_DICTIONARY_ALL: {
"techniques": {Techniques.BRUTE FORCE,
Techniques . VALID_ACCOUNTS } ,
"subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,
SubTechniques .
DEFAULT_ACCOUNTS}
}.
EmulationAttackerActionld .
POSTGRES_SAME_USER_PASS_DICTIONARY_HOST: {
"techniques": {Techniques.BRUTE_FORCE,
Techniques . VALID_ACCOUNTS } ,
"subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,
SubTechniques .
DEFAULT_ACCOUNTS}
).
EmulationAttackerActionld.
POSTGRES_SAME_USER_PASS_DICTIONARY_ALL: {
"techniques": {Techniques.BRUTE_FORCE,
Techniques . VALID_ACCOUNTS } ,
"subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,
SubTechniques .
DEFAULT_ACCOUNTS }
),
EmulationAttackerActionld.
MONGO_SAME_USER_PASS_DICTIONARY_HOST: {

56 | Appendix A: Implementation details

214 "techniques": {Techniques.BRUTE_FORCE,

215 Techniques . VALID_ACCOUNTS } ,

216 "subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,

217 SubTechniques .
DEFAULT_ACCOUNTS}

218 },

219 EmulationAttackerActionld.
MONGO_SAME_USER_PASS_DICTIONARY_ALL: {

220 "techniques": {Techniques.BRUTE_FORCE,

221 Techniques . VALID_ACCOUNTS } ,

222 "subtechniques": {SubTechniques.
CREDENTIAL_STUFFING,

223 SubTechniques .
DEFAULT_ACCOUNTS }

224 }’
226 EmulationAttackerActionld . NETWORK_SERVICE_LOGIN :

227 "techniques": {Techniques.VALID_ACCOUNTS,

228 Techniques . REMOTE_SERVICES,

229 Techniques .
EXTERNAL_REMOTE_SERVICES }

230 },

231 EmulationAttackerActionld .FIND_FLAG: {

232 "techniques": {Techniques.
DATA_FROM_LOCAL_SYSTEM }

234 EmulationAttackerActionlId .NIKTO_WEB_HOST _SCAN: {
235 "techniques": {Techniques.ACTIVE_SCANNING,
236 Techniques .

GATHER_VICTIM_HOST_INFORMATION }

237 } El

238 EmulationAttackerActionld .MASSCAN_HOST SCAN: {

239 "techniques": {Techniques.ACTIVE_SCANNING,

240 Techniques .
GATHER_VICTIM_HOST_INFORMATION,

241 Techniques .
NETWORK_SERVICE_DISCOVERY }

242 } ’

243 EmulationAttackerActionId .MASSCAN_ALL_SCAN: ({

244 "techniques": {Techniques.ACTIVE_SCANNING,

245 Techniques .
GATHER_VICTIM_HOST_INFORMATION,

246 Techniques .

NETWORK_SERVICE_DISCOVERY }
247 } s

248

249

250

Appendix A: Implementation details | 57

EmulationAttackerActionld .FIREWALK_HOST: ({
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_NETWORK_INFORMATION }
I o
EmulationAttackerActionld .FIREWALK_ALL: {
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_NETWORK_INFORMATION }
i
EmulationAttackerActionld .HTTP_ ENUM_HOST: {
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_NETWORK_INFORMATION }
¥ o
EmulationAttackerActionId .HTTP_ENUM_ALL: ({
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_NETWORK_INFORMATION }
to
EmulationAttackerActionld . HTTP_GREP_HOST: {
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_IDENTITY_INFORMATION }
¥ o
EmulationAttackerActionId .HTTP_GREP_ALL: ({
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_IDENTITY_INFORMATION }
to
EmulationAttackerActionld . FINGER_HOST: {
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION }
i o
EmulationAttackerActionld . FINGER_ALL: {
"techniques": {Techniques.ACTIVE_SCANNING,
Techniques .
GATHER_VICTIM_HOST_INFORMATION }
T
EmulationAttackerActionlId .INSTALL_TOOLS: ({
"techniques": {Techniques.
INGRESS_TOOL_TRANSFER }
be
EmulationAttackerActionld .SSH_BACKDOOR: {
"techniques": {Techniques.
COMPROMISE_CLIENT_SOFTWARE_BINARY,

58 | Appendix A: Implementation details

285 Techniques . CREATE_ACCOUNT}

286 },

287 EmulationAttackerActionId .SAMBACRY_EXPLOIT: {

288 "techniques": {Techniques.
EXPLOIT_PUBLIC_FACING_APPLICATION,

289 Techniques . REMOTE_SERVICES,

290 Techniques .

EXPLOITATION_OF_REMOTE_SERVICES,

291 Techniques . NATIVE_API}

292 },

293 EmulationAttackerActionld .SHELLSHOCK_EXPLOIT: {

204 "techniques": {Techniques.
EXPLOIT_PUBLIC_FACING_APPLICATION,

295 Techniques .
EXPLOITATION_OF_REMOTE_SERVICES,

296 Techniques .
COMMAND_AND_SCRIPTING_INTERPRETER }

297 }s

298 EmulationAttackerActionld .DVWA_SQL_INJECTION: {

299 "techniques": {Techniques.
EXPLOIT_PUBLIC_FACING_APPLICATION,

300 Techniques .
EXPLOITATION_FOR_CREDENTIAL_ACCESS,

301 Techniques .
CREDENTIALS_FROM_PASSWORD_STORES }

303 EmulationAttackerActionld .CVE_2015_3306_EXPLOIT :
{

304 "techniques": {Techniques.
EXPLOIT_PUBLIC_FACING_APPLICATION,

305 Techniques . VALID_ACCOUNTS,

306 Techniques .FALLBACK CHANNELS,

307 Techniques .REMOTE_SERVICES } ,

308 },

309 EmulationAttackerActionld .CVE_2015_1427_EXPLOIT:
{

310 "techniques": {Techniques.
EXPLOIT_PUBLIC_FACING_APPLICATION,

311 Techniques .
EXPLOITATION_OF_REMOTE_SERVICES,

312 Techniques .
COMMAND_AND_SCRIPTING_INTERPRETER,

313 Techniques . FALLBACK_CHANNELS, }

314 1,

315 EmulationAttackerActionld .CVE_2016_10033_EXPLOIT:

316 "techniques": {Techniques.

el
o

Appendix A: Implementation details | 59

EXPLOIT_PUBLIC_FACING_APPLICATION ,

Techniques .
COMMAND_AND_SCRIPTING_INTERPRETER,

Techniques .
ABUSE_ELEVATION_CONTROL_MECHANISM,

Techniques . VALID_ACCOUNTS,

Techniques . FALLBACK_CHANNELS }

}’
EmulationAttackerActionld .CVE_2010_0426_PRIV_ESC:

{
"techniques": {Techniques.
ABUSE_ELEVATION_CONTROL_MECHANISM,
Techniques .
COMMAND_AND_SCRIPTING_INTERPRETER,
Techniques .
EXPLOITATION_FOR_PRIVILEGE_ESCALATION } ,
"subtechniques": {SubTechniques.UNIX_ SHELL}

}’
EmulationAttackerActionld .CVE_2015_5602_PRIV_ESC:

{
"techniques": {Techniques.
ABUSE_ELEVATION_CONTROL_MECHANISM,
Techniques .
EXPLOITATION_FOR_PRIVILEGE_ESCALATION } ,
"subtechniques": {SubTechniques.
SUDO_AND_SUDO_CACHING}
}.
EmulationAttackerActionld .CONTINUE: {
None
}.
EmulationAttackerActionld .STOP: ({
None

b
}

return mapping.get(id, None)

Listing A.3: Technique mapping to network commands.

ChildNode = Tuple[Tactics, int]

3 class AttackGraph () :

"o

Class representing the attack graph

nuon

34

36

39

40

43

44

60 | Appendix A: Implementation details

def __init__(self):

Class contructor
The graph is represented as a list of tuples. Each

tuple contains the node name, the children of the node and

the node id.

self.graph = []

def add_node(self, node_name: Tactics, children: List][
ChildNode] = None, node_id: int = None):

Add a node to the graph
if node_id is None:
node_id = len(self.graph) + 1
if children is None:
children = []
self.graph.append ((node_name, children, node_id))

def add_edge(self, parent_node_name: Tactics,
parent_node_id: int, child_node_name: Tactics,
child_node_id: int):

Add an edge to the graph by defining the parent node

and the children
for i, (node_name, children, node_id) in enumerate (
self .graph):
if node_name == parent_node_name and node_id ==
parent_node_id:

if any(child[0] == child_node_name for child

in children):
raise RuntimeError("Child node already
exists in the parent node")
else:

self.graph[i][l].append((child_node_name ,

child_node_id))

break

def get_node(self, node_name: Tactics, node_id: int):

Get the node from the graph

45

46

48

49

50

55

56

58

59

60

Appendix A: Implementation details | 61

for node in self.graph:
if node_name == node[0] and node[2] == node_id:
return node

def get_root_node(self):

Get the root node of the graph

return self.graph[0]

def get_children (self, node_name: Tactics, node_id: int):

Get the children of the node

for node in self.graph:
if node_name == node[0] and node[2] == node_id:
return node[1]

Listing A.4: Implementation of the attack graph.

def get_attack_profile_sequence (attacker_actions: List][

EmulationAttackerAction], attack_graph: AttackGraph):
Returns the attack profile of the actions in a
sequence

attack_profiles = []
for action in attacker_actions:
attack_profiles.append(AttackProfiler.
get_attack_profile (action))

node = attack_graph.get_root_node ()
for profile in attack_profiles:

techniques_tactics profile .techniques_tactics
techniques_to_keep = []
children = attack_graph.get_children (node[O0],
node[2])
possible_nodes = []
for technique in techniques_tactics:
if node[0].value in techniques_tactics|
technique]:
techniques_to_keep .append(technique)
if node not in possible_nodes:

44

45

62 | Appendix A: Implementation details

possible_nodes .append(node)

for child in children:
for technique in techniques_tactics:
if child[0].value in techniques_tactics[
technique]:

techniques_to_keep.append(technique)
if attack_graph.get_node(child[O0],
child[1]) not in possible_nodes:
possible_nodes .append(
attack_graph.get_node(child [0], child[1]))

if len(possible_nodes) == 1:
node = possible_nodes[0]
if not techniques_to_keep:
continue
techniques_to_remove = set(profile.
techniques_tactics .keys()) — set(techniques_to_keep)
for technique in techniques_to_remove:
try :
del profile.techniques_tactics |
technique]
del profile.mitigations[technique]
del profile.data_sources[technique]
del profile.subtechniques[technique]
except:
raise RuntimeError("Error in removing
techniques from the attack profile")

Listing A.5: Implementation of the attack profiler. Pruning a sequence of
network commands using the attack graph.

KLD Backoff smoothing

P=X

Q = X_no_intrusion

CP = len (P)

CQ = len(Q)

SU = list(set(X + X_no_intrusion))
CU = len(SU)

epsilon = 0.0000001
SU_disjoint_P = len(list(set(SU) — set(P)))
SU_disjoint_Q = len(list(set(SU) — set(Q)))

pc (sum(Y) + epsilon*x(SU_disjoint_P) - 1) /

CP

qc (sum(Y_no_intrusion) + epsilon k(

S}

Appendix A: Implementation details | 63

SU_disjoint_Q) - 1) / CQ
p_prime = []
q_prime = []

for val in SU:
if val in P:
p_prime . append ((Y[X.index (val)] - pc)

)
else:
p_prime . append(epsilon)
if val in X_no_intrusion:
q_prime.append ((Y_no_intrusion [
X_no_intrusion .index(val)] - qc))
else:
g_prime . append(epsilon)
p_prime_np = np.array (p_prime) / np.sum(
p_prime)
q_prime_np = np.array(q_prime) / np.sum(
g_prime)

KLD_PQ = np.around(np.sum(p_prime_np * np.log
(p_prime_np / q_prime_np)), 4)

KLD_QP = np.around(np.sum(q_prime_np * np.log
(q_prime_np / p_prime_np)), 4)

Listing A.6: Implementation of the back-off smoothing algorithm to calculate
the KLD values

@staticmethod
def viterbi(hidden_states: List[EmulationAttackerActionld
], init_probs: List[float],

trans_matrix: List[List[float]],
emission_matrix: List[List[float]],

obs: List[int], emissions_list: List[int]) —->
List[float]:

Viterbi algorithm for Hidden Markov Models (HVM) .

:param hidden_states: The hidden states

:param init_probs: The initial probabilities of the
hidden states

:param trans_matrix: The transition matrix

:param emission_matrix: The emission matrix

:param obs: The observation sequence

:param emissions_list: The list of possible

43

44

46

47

48

49

50

64 | Appendix A: Implementation details

observations

:return: The most likely sequence of hidden states

Convert the emissions list to a numpy array, to use
the where function

emissions_list_typed: np.ndarray[int, Any] = np.array
(emissions_list)

Check that the sum equals |
for i in range(len(emission_matrix)):
if round(sum(emission_matrix[i]), 10) != 1:
print (f 'Sum of probabilities for state {
hidden_states[i]} is not 1')
print (f 'Sum of probabilities: {sum(
emission_matrix[i])} ")

The number of hidden states
S = len(hidden_states)

The number of observations
T = len(obs)

The Viterbi matrix (prob) T x S matrix of zeroes

prob = np.zeros ((T, S))

The backpointer matrix (prev)

prev = np.empty ((T, S))

Initialization

for i in range(S):

Fetch the index of the observation in the

emission_matrix

index , = np.where(emissions_list_typed == obs[0])
if index[0].size > O:
prob[0][i] = init_probs[i] % emission_matrix [

i][index [0]]
else:
print (f'Observation {obs[0]} not found in the
emission matrix ')
sys.exit(l)

Recursion
for t in range (1, T):
index , = np.where(emissions_list_typed == obs[t])
for i in range(S):
max_prob = -1
max_state = -1
for j in range(S):
new_prob = prob[t — 1][j] * trans_matrix|

Appendix A: Implementation details | 65

jlli] * emission_matrix[i][index [0]]

53 if new_prob > max_prob:

54 max_prob = new_prob

55 max_state = j

56 prob[t][i] = max_prob

57 prev[t][i] = max_state

58

59 path = np.zeros(T)

60 path[T - 1] = np.argmax(prob[T - 1])

61 for t in range(T - 2, -1, -1):

62 path[t] = prev[t + I1][int(path[t + 1])]
&3 # Convert the path to a list

64 typed_path: List[float] = path.tolist ()
65

66 return typed_path

Listing A.7: Implementation of the viterbi algorithm

1 class HMMProfiler:
The HMMProfiler class is used to profile a sequence of
observations based on a Hidden Markov Model (HVIM) .

"o

6 def __init__ (self, statistics: List[EmulationStatistics],
model_name: Union[str, None] = None) —-> None:

7 nmon

8 Class constructor

10 :param statistics: The list of EmulationStatistics
objects
o :param model_name: The name of the model

13 self.statistics = statistics

14 self.transition_matrix: List[List[float]] = []

15 self.emission_matrix: List[List[float]] = []

16 self . hidden_states: List[str] = []

17 self.emission_matrix_observations: List[int] = []
18 self.start_state_probs: List[float] = []

19 self . model name = None

Listing A.8: Constructor for the HMM profiler

1 def create_model(self, transition_matrix: List[List[float

11,

hidden_states: List[str], metric: str,
save_model: bool = False, location: str

= ".") => None:

66 | Appendix A: Implementation details

5 Creates the HVMM model based on the given transition
matrix , states and metrics.

6 If save = True, matrices are saved to given location

7

8 :param transition_matrix: The transition matrix

9 :param states: The list of states of the HVMM (format:

'A:attack _name ' or
10 'no_intrusion ' based on emulation statistics file)
1 :param metrics: The list of metrics to profile

12 :param save: Whether to save the matrices to a file
13 :param location: The location to save the matrices,
if save = True, e.g "./resources",
14 default is current directory
nan
15
16 emission_matrix , emission_matrix_observations = self.

get_matrices_of_observation(self.statistics ,

metric, hidden_states)

18 self.emission_matrix = emission_matrix

19 self .emission_matrix_observations =
emission_matrix_observations

20 self.transition_matrix = transition_matrix

21 self.start_state_probs = self.
calculate_initial_states (self.transition_matrix)

2 self . hidden_states = hidden_states

23 if save_model and location:

24 np.save(f'{location }/transition_matrix .npy "',
transition_matrix)

25 np.save (f'{location }/hidden_states .npy "',
hidden_states)

26 np.save(f '{location }/start_state_probs.npy', self
.start_state_probs)

27 np.save (f'{location }/emission_matrix_{metric }.npy
', emission_matrix)

28 np.save(f '{location }/

emission_matrix_observations_{metric }.npy ",
emission_matrix_observations)

Listing A.9: Creates an HMM model, based on statistics from the testbed

1 def get_matrices_of_observation(self, statistics: List][
EmulationStatistics],

metric: str, states: List
[str]) —> Tuple[List[List[float]], List[int]]:

)

4 Creates the emission matrix for a given metric based
on the statistics from the EmulationStatistics objects.

29

30

36

Appendix A: Implementation details | 67

:param statistics: The list of EmulationStatistics
objects

:param metric: The metric to get the emission matrix
for

:return: The emission matrix, the list of
observations , the list of states

emission_matrix = []
attack_observations = {}
attack_observations_total_counts = {}

all_keys = set()

for stats in statistics:
for condition, metric_distribution in stats.
conditionals_counts .items () :

action = condition.split('_")
if action[0] == 'no':
action[0] = 'no_intrusion'

if action[0] not in attack_observations:
We are not intrested in the

observations from 'intrusion' or 'A:Continue
if action[0] == 'intrusion' or action[O0]

== 'A:Continue ':
continue
else:
Add the observations of the attack
to the dictionary
if metric in metric_distribution :
attack_observations [action [0]] =
metric_distribution [metric |
Sum the total counts of the
observations
attack_observations_total_counts|[
action[0]] = sum(attack_observations[action[0]]. values ())
Aggregate the counts from the metric
distribution
else:
counts_observation = metric_distribution [
metric |
for element in counts_observation:
if element in attack_observations |
action [0]]:
Aggregate the counts if the
element is already in the dictionary
attack_observations[action [0]][

68 | Appendix A: Implementation details

element] += counts_observation[element]

38 else:

39 attack_observations[action [O]][
element] = counts_observation[element]

40 # Sum the total counts of the
observations

41 attack_observations_total_counts[action

[0O]] += sum(attack_observations[action[0]]. values())

43 # Store all possible values for the
observation

44 if action[0] in attack_observations:

45 all_keys.update (attack_observations [

action[0]])

46

47 # Normalize the counts

48 for attack, _ in attack_observations.items () :

49 attack_observations_total_counts[attack] = sum(
attack_observations[attack]. values ())

50 for key in all_keys:

51 int_key = int(key)

52 if key in attack_observations[attack]:

53 count = attack_observations[attack].pop(
key, 0)

54 attack_observations [attack J[int_key] =

count / attack_observations_total_counts[attack]
55 else :

56 attack_observations [attack J[int_key] = 0
57 # Sort the dictionary by key
58 attack_observations[attack] = dict(sorted (

attack_observations[attack].items ()))

60 # Take any attack as the reference to get the keys

61 emission_matrix_observations = []

62 emission_matrix_states = []

63 # Create the emission matrix

64 for state in states:

65 if state in attack_observations:

66 # Normalize the and then append

67 emission_matrix .append(list (
attack_observations[state |. values()))

68 # Get the keys of all observations

69 emission_matrix_observations = list (

attack_observations[state].keys ())
70 emission_matrix_states .append(state)
71 else:
7 # LaPlace smoothing for missing observations

)

Appendix A: Implementation details | 69

num_keys = len(all_keys)

laplace_probability = 1 / (num_keys + 2)

laplace_sum = laplace_probability % num_keys

laplace_probability_adj = laplace_probability
/ laplace_sum

emission_matrix .append ([
laplace_probability_adj] % num_keys)

emission_matrix_states .append(state)

Check if the sum of the probabilities is 1
for i in range(len(emission_matrix)):
sum_prob = round(sum(emission_matrix[i]), 10)
if sum_prob != 1:
print (f 'Sum of probabilities for state {
emission_matrix_states[i]} is {sum_prob} ")

return (emission_matrix , emission_matrix_observations

)

Listing A.10: Function for constructing emission matrix for an observation
based on testbed statistics

def profile_sequence (self, sequence: List[int]) —> List[
str]:

Profiles a sequence of observations based on the HVM
model .

:param sequence: The sequence of observations

:return: The most likely sequence of states

path = HMMProfiler. viterbi (self.hidden_states , self.
start_state_probs ,
self .transition_matrix ,
self .emission_matrix ,
sequence , self.
emission_matrix_observations)
profiled_sequence = []
for i in range(len(path)):
profiled_sequence .append(self.hidden_states[int(
path[i])])

return profiled_sequence

Listing A.11: Profiles a sequence of observations

70 | Appendix A: Implementation details

i def convert_states_to_profiles (self, states: List[str]) —>
List[Union[AttackProfiler , str]]:

S}

Converts a list of states to a list of AttackProfiles

5 :param states: The list of states to convert

7 :return: The list of EmulationAttackerActionld

10 new_states: List[Union[AttackProfiler, str]] = []

3 for state in states:

12 if state == 'A:Continue

13 action = EmulationAttackerAction (id=
EmulationAttackerActionld .CONTINUE, name="Continue", cmds

=[],

14 type=None,
descr="CONTINUE", ips=[], index=0, action_outcome="'")

15 p = AttackProfiler.get_attack_profile (action)

16 new_states .append(p)

17 elif state == 'A:CVE-2015-1427 exploit ':

18 action = EmulationAttackerAction (

19 id=EmulationAttackerActionld .
CVE_2015_1427_EXPLOIT, name="CVE-2015-1427 exploit", cmds=
None ,

20 type=EmulationAttackerActionType . EXPLOIT,

21 descr="Uses the CVE-2015-1427
vulnerability to "

)
§]

"get remote code execution and then sets
up a SSH backdoor"

23 "to upgrade the channel", index=None, ips
=[1,

24 action_outcome=
EmulationAttackerActionOutcome . SHELL_ACCESS)

25 p = AttackProfiler.get_attack_profile (action)

26 new_states .append(p)

27 elif state == 'A:DVWA SQL Injection Exploit"':

28 action = EmulationAttackerAction (

29 id=EmulationAttackerActionld .

DVWA_SQL_INJECTION, name="DVWA SQL Injection Exploit",
30 cmds=None, type=
EmulationAttackerActionType . EXPLOIT,
31 descr="Uses the DVWA SQL Injection
exploit to extract secret passwords",
index=None, ips=[], action_outcome=
EmulationAttackerActionOutcome . SHELL_ACCESS)

e

40

46

47

48

49

50

51

54

55

56

57

58

59

60

63

64

Appendix A: Implementation details | 71

p = AttackProfiler.get_attack_profile (action)
new_states .append(p)
elif state == 'A:Install tools
action = EmulationAttackerAction (
id=EmulationAttackerActionld .
INSTALL_TOOLS, name="Install tools", cmds=None,
type=EmulationAttackerActionType.

LI

POST_EXPLOIT,
descr="If taken root on remote machine,
installs pentest tools, e.g. nmap",
index=None, ips=[], action_outcome=
EmulationAttackerActionOutcome . PIVOTING)
p = AttackProfiler. get_attack_profile (action)
new_states .append(p)
elif state == 'A:Network service login'
action = EmulationAttackerAction (
id=EmulationAttackerActionld .
NETWORK_SERVICE_LOGIN, name="Network service login",
cmds=[], type=EmulationAttackerActionType
.POST_EXPLOIT,
descr="Uses known credentials to login to
network services on a server",
index=None, ips=None, action_outcome=
EmulationAttackerActionOutcome .LOGIN)
p = AttackProfiler. get_attack_profile (action)
new_states .append(p)
elif state == 'A:Ping Scan':
action = EmulationAttackerAction (
id=EmulationAttackerActionld.
PING_SCAN_HOST, name="Ping Scan",
cmds=None, type=
EmulationAttackerActionType .RECON,
descr="A host discovery scan, it is quick
because it only checks of hosts "
"are up with Ping, without scanning the
ports.", ips=None, index=None,
action_outcome=
EmulationAttackerActionOutcome .INFORMATION_GATHERING,
backdoor=False)
p = AttackProfiler.get_attack_profile (action)
new_states .append(p)
elif state == 'A:Sambacry Explolit':
action = EmulationAttackerAction (
id=EmulationAttackerActionld .
SAMBACRY_EXPLOIT, name="Sambacry Explolit", cmds=None,
type=EmulationAttackerActionType . EXPLOIT,
descr="Uses the sambacry shell to get

72 | Appendix A: Implementation details

remote code execution and then"

65 "sets up a SSH backdoor to upgrade the
channel",

66 index=None, ips=[], action_outcome=
EmulationAttackerActionOutcome . SHELL_ACCESS)

67 p = AttackProfiler. get_attack_profile (action)

68 new_states .append(p)

69 elif state == 'A:ShellShock Explolit":

70 action = EmulationAttackerAction (

71 id=EmulationAttackerActionld.
SHELLSHOCK_EXPLOIT, name="ShellShock Explolit",

72 cmds=None, type=
EmulationAttackerActionType . EXPLOIT,

7 descr="Uses the Shellshock exploit and
curl to do remote code execution and create a backdoor",

74 index=None, ips=[], action_outcome=
EmulationAttackerActionOutcome . SHELL_ACCESS)

75 p = AttackProfiler. get_attack_profile (action)

76 new_states .append(p)

77 elif state == 'A:SSH dictionary attack for
username=pw ':

78 action = EmulationAttackerAction (

79 id=EmulationAttackerActionld.
SSH_SAME_USER_PASS_DICTIONARY_HOST,

80 name="SSH dictionary attack for username=
pw", cmds=None,

81 type=EmulationAttackerActionType . EXPLOIT,

index=None,

82 descr="A dictionary attack that tries
common passwords and usernames for SSH"

83 "where username=password", ips=None,
action_outcome=EmulationAttackerActionOutcome . SHELL_ACCESS
)

84 p = AttackProfiler. get_attack_profile (action)

85 new_states .append(p)

86 elif state == 'A:FTP dictionary attack for
username=pw ':

87 action = EmulationAttackerAction (

88 id=EmulationAttackerActionld.
FTP_SAME_USER_PASS_DICTIONARY_HOST,

89 name="FTP dictionary attack for username=

"

pw", cmds=None, type=EmulationAttackerActionType .EXPLOIT,

90 index=None, descr="A dictionary attack
that tries common passwords and"

91 "usernames for FTP where username=
password", ips=None,

92 action_outcome=

98

99

108

110

116

118

Appendix A: Implementation details | 73

EmulationAttackerActionOutcome . SHELL_ACCESS)
p = AttackProfiler.get_attack_profile (action)
new_states .append(p)
elif state == 'A:Telnet dictionary attack for
username=pw ':
action = EmulationAttackerAction (
id=EmulationAttackerActionld .
TELNET_SAME_USER _PASS_DICTIONARY_HOST,
name="Telnet dictionary attack for
username=pw" , cmds=None,
type=EmulationAttackerActionType . EXPLOIT,
index=None,
descr="A dictionary attack that tries
common passwords and usernames for"
"Telnet where username=password", ips=
None ,
action_outcome=
EmulationAttackerActionOutcome . SHELL_ACCESS)
p = AttackProfiler. get_attack_profile (action)
new_states .append(p)
elif state == 'A:CVE-2010-0426 exploit ':
action = EmulationAttackerAction (
id=EmulationAttackerActionld.
CVE_2010_0426_PRIV_ESC,
name="CVE-2010-0426 exploit", cmds=None,
type=EmulationAttackerActionType . PRIVILEGE_ESCALATION,
descr="Uses the CVE-2010-0426
vulnerability to perform privilege escalation to get root
access ",
index=None, ips=[], action_outcome=
EmulationAttackerActionOutcome . PRIVILEGE_ESCALATION_ROOT)
p = AttackProfiler. get_attack_profile (action)
new_states .append(p)
elif state == 'A:TCP SYN (Stealth) Scan':
action = EmulationAttackerAction (
id=EmulationAttackerActionld.
TCP_SYN_STEALTH_SCAN_HOST, name="TCP SYN (Stealth) Scan",
cmds=None, type=
EmulationAttackerActionType .RECON,
descr="A stealthy and fast TCP SYN scan
to detect open TCP ports on the subnet", ips=None,
index=None, action_outcome=
EmulationAttackerActionOutcome .INFORMATION GATHERING,
backdoor=False)
p = AttackProfiler.get_attack_profile (action)
new_states .append(p)
elif state == 'ssh backdoor ':

74 | Appendix A: Implementation details

122 action = EmulationAttackerAction (

123 id=EmulationAttackerActionld .SSH_BACKDOOR
, name="Install SSH backdoor",

124 cmds=None, type=
EmulationAttackerActionType . POST_EXPLOIT,

125 descr="1f taken root on remote machine,
installs a ssh backdoor useful for"

126 "upgrading telnetor weaker channels",
index=None, ips=[],

127 action_outcome=

EmulationAttackerActionOutcome . PIVOTING, alt_cmds=None,
backdoor=True)

128 p = AttackProfiler.get_attack_profile (action)
129 new_states .append(p)
130 else:

131 new_states .append(state)

133 return new_states

Listing A.12: Convert states to attack profiles

1 def generate_sequence(self, intrusion_length: int,
initial state_index: int,

seed: Union[int, None] = None) —>
Tuple[List[str], List[int]]:

IS}

4 Generates a sequence of states and corresponding
observations based on the given emission matrix ,

5 and transition matrix. First, a sequence of
observation from 'no intrusion' is generated

6 based on the geometric distribution of the initial
state. Then, a sequence observations and states are

7 generated based on emission matrix and transition
matrix . The length of this intrusion

8 sequence is given by the intrusion_length parameter.

10 :param intrusion_length: The length of the intrusion
o :param initial_state: The index of the initial state

12 :param seed: The seed for the random number generator
13

14 return: The sequence of states and observations

15 e

16 P _obs = self.emission_matrix

17 P_states = self.transition_matrix

18 states = self.hidden_states

19 observations = self.emission_matrix_observations

20 if seed:

21 np.random . seed (seed)

26

40

41

48

49

50

53

54

55

Appendix A: Implementation details | 75

obs_len = len(observations)
states_len = len(states)

Return the geometric distribution of the initial
state

dist = np.random. geometric (p=P_states [
initial_state_index][0], size=1000)

T_i = round(sum(dist) / len(dist))

state_seq = [states[initial_state_index]] % T_i
obs_seq = []
for i in range(T_i):

o_i = np.random.choice(obs_len, p=P_obs]|
initial_state_index])
obs_seq.append(observations[o_i])

recon_states_sum = np.sum(P_states [
initial_state_index J[1:])
recon_states = P_states[initial_state_index J[1:] /

recon_states_sum

intrusion_start_state = np.random.choice(states_len -
1, p=recon_states) + 1
intrusion_start_observation = np.random. choice (

obs_len, p=P_obs[intrusion_start_state])
state_seq .append(states[intrusion_start_state])
obs_seq.append(observations [
intrusion_start_observation])

S 1 = intrusion_start_state
if intrusion_length == 1:
return state_seq , obs_seq
for i in range(intrusion_length):
si ~ Ps(si | si-1)
s_i = np.random.choice(states_len , p=P_states[s_i
1
0oi ~ Po(oi | si)
o_i = np.random.choice (obs_len, p=P_obs[s_i])
state_seq .append(states[s_i])
obs_seq.append(observations[o_i])

return state_seq , obs_seq

Listing A.13: Function to generate sample sequences based on HMM model

76 | Appendix A: Implementation details

TRITA-EECS-EX- 2024:0000

www.kth.se

€€€€ For DIVA €€€€

{

"Author1": { "Last name": "Pappila”,

"First name": "Bength",

"Local User Id": "u1gqc4ls”,

"E-mail": "brpa@kth.se",

"organisation": {"L1": "School of Electrical Engineering and Computer Science",
}

b
"Cycle": "2",

"Course code": "DA231X",

"Credits": "30.0",

"Degree1": {"Educational program": "Master’s Programme, Computer Science, 120 credits
,"programcode”: "TCSCM"

,"Degree": "Master’s Programme, Computer Science, 120 credits"

,"subjectArea": "Computer Science"

b

"Title": {

"Main title": "Automated Profiling of Cyber Attacks Based on MITRE ATT&CK",
"Language": "eng" },

"Alternative title": {

"Main title": "Automatiserad Profilering av Cyberattacker Baserat pa MITRE ATT&CK",
"Language": "swe"
b

"Supervisor1": { "Last name": "Hammar",

"First name": "Kim",

"Local User Id": "uljhfthv",

"E-mail": "kimham@kth.se",

"organisation": {"L1": "School of Electrical Engineering and Computer Science",
"L2": "Computer Science" }

b
"Examiner1": { "Last name": "Stadler",

"First name": "Prof. Rolf",

"Local User Id": "u158ez9a",

"E-mail": "stadler@kth.se",

"organisation": {"L1": "School of Electrical Engineering and Computer Science",
"L2": "Computer Science" }

b

"National Subject Categories": "10201, 10206",

"Other information": {"Year": "2024", "Number of pages": "xiii,75"},
"Copyrightleft": "copyright",

"Series": { "Title of series": "TRITA-EECS-EX" , "No. in series": "2024:0000" },
"Opponents": { "Name": "A. B. Normal & A. X. E. Normale"},

"Presentation": { "Date": "2022-03-15 13:00"

,"Language":"eng"

,"Room": "via Zoom https:/kth-se.zoom.us/j/ddddddddddd"

,"Address": "Isafjordsgatan 22 (Kistagangen 16)"

,"City": "Stockholm" },

"Number of lang instances": "2",

"Abstractleng |": €€€€

€€€¢€,

"Keywords[eng]": €€€€

Attack emulation, Attack profiling, Autonomous network security, Cyber security, Hidden Markov Model, Mitre Att&ck, The Cyber Security Learning
Environment (CSLE) €€€€,

"Abstract[swe |": €€€€

€€€¢€,

"Keywords[swe |": €€€€

Attack emulering, Attack profilering, Autonom natverkssékerhet, Cybersakerhet, Dold Markovmodell, Mitre Att&ck, The Cyber Security Learning
Environment (CSLE) €€€€,

}

acronyms.tex

o
o

Local Variables:

mode: latex

TeX-master: t

End:

The following command is used with glossaries-extra
setabbreviationstyle[acronym]{long-short}

The form of the entries in this file is \newacronym{label}{acronym}{phrase}

or \newacronym[options]{label}{acronym}{phrase

o
%
o
%

Py
%%
o

—~

E

}
see "User Manual for glossaries.sty" for the details about the options, one
example is shown below
note the specification of the long form plural in the line below
newacronym[longplural={Debugging Information Entities}]{DIE}{DIE}{Debugging
Information Entity}

o

o

-

o0 o

The following example also uses options

\newacronym|[shortplural={0Ses}, firstplural={operating systems (0OSes)}]{0S}{0S}{
operating system}

% note the use of a non-breaking dash in long text for the following acronym

\newacronym{IQL}{IQL}{Independent Q""e2”"80""91Learning}

\newacronym{TTP}{TTP}{Tactics, technigques and procedure}

\newacronym{CSLE}{CSLE}{The Cyber Security Learning Environment}

\newacronym{KTH}{KTH}{KTH Royal Institute of Technology}

\newacronym{VPN}{VPN}{Virtual Private Network}

\newacronym{CAPEC}{CAPEC}{Common Attack Pattern Enumeration and Classification}

\newacronym{HMM} { HMM} { Hidden Markov Model}

\newacronym{KLD}{KLD}{Kullback-Leibler divergence}

\newacronym{IDS}{IDS}{Intrusion Detection System}

\newacronym{CVE}{CVE}{Common Vulnerabilities and Exposures}

\newacronym{LAN}{LAN}{Local Area Network}
\newacronym{VM}{VM}{virtual machine}

% note the use of a non-breaking dash in the following acronym
\newacronym{WiFi}{Wi~"*e27"80""91Fi}{Wireless Fidelity}

\newacronym{WLAN}{WLAN}{Wireless Local Area Network}
\newacronym{UN}{UN}{United Nations}
\newacronym{SDG}{SDG}{Sustainable Development Goal}

	Introduction
	Background
	Problem
	Approach
	Delimitations
	Structure of the thesis

	Background
	MITRE ATT&CK® for Enterprise
	Tactics
	Techniques and Sub-techniques

	Kullback-Leibler divergence
	Hidden Markov Model (HMM)
	Related work
	Attack Emulation
	Attack Profiling

	Methodology
	Testbed
	Data collection
	Goal of experiments

	Attack profiler
	Profiling a single attack
	Profiling attacker sequences
	Probabilistic profiling of attacker sequences
	Empirical distributions of infrastructure metrics
	Attack profiling through hidden Markov models
	Evaluation of HMM profiling

	Implementation

	Results and discussion
	Results
	Discussion

	Conclusions and Future work
	References
	Implementation details

