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Abstract

Accurate failure detection can reduce operational costs and increase the reliability of distributed
systems. However, detecting failures accurately is difficult. The difficulty can often be traced down to
weak guarantees provided by the network and clock synchronization.

Accessibility of machine learning models and better computing resources have opened the research
question whether machine learning is an effective approach for failure detection. We present a machine
learning failure detector that uses an exchangeable machine learning model for predicting one-step
ahead round-trip times. Our approach is novel in that we use a machine learning model for prediction,
rather than estimating the probability distribution of round-trip times using formulas based on moving
averages. The proposed detector uses incremental learning in combination with a dynamic safety
margin based on the variance in recorded round-trip times. Our work opens up for experimenting
with the proposed detector using different features and models depending on the characteristic of the
contemplated environment for the failure detector.

We have quantified the behavior of the machine learning failure detector in simulated environments.
Results show that it is suited for more aggressive failure detection than the eventual perfect failure
detector and that it can adapt to different network conditions. Moreover, the decisive factors for accurate
round-trip time predictions by the machine learning model were shown to be statistical patterns in
the window of recorded round-trip times. Patterns in node features, such as geographic location and
bandwidth, were shown to be of less importance.
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List of Acronyms and Abbreviations
For clarity we summarize here the acronyms and abbreviations used in this document.

♦P The eventual perfect failure detector [1].

λM Average mistake rate of a failure detector [2].

MLFD The machine learning failure detector.

MSE Mean squared error.

NN Neural Network.

QoS Quality of Service.

RNN Recurrent Neural Network.
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RTT Round-trip delay time. Originally this term is used to refer to round-trip delay
time of IP-packages, in this report RTT typically will refer to the delay from when
a failure detector sends a heartbeat request and the time a heartbeat response is
received.

TD Average detection time, a metric to measure the time between a crash and the
time it is detected by a failure detector [2].

PRNG Pseudorandom Number Generator.

PCC Pearson Correlation Coefficient.
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1 Introduction

To decide if a remote computer is functioning, down, or temporary slow is an important task for distributed
systems. Accurate decisions can reduce operational costs and increase reliability of algorithms. Often
the guarantees provided by the network are weak and clocks of nodes in the system are not synchronized.
These factors in combination with partial failures make failure detection challenging. Attributable to the
weak guarantees, failure detection is impossible in completely asynchronous systems. This follows from the
FLP-result by Fischer, Lynch & Paterson, 1985, that proves the impossibility of consensus in asynchronous
systems [3].

Failure detection is provided as a service by the failure detector abstraction. Despite previous work on
failure detection in distributed systems and research in machine learning, the integration of the two fields
has not received much attention. We believe that access to modern machine learning models have opened
the research question of whether a failure detector based on machine learning is a viable approach.

The prior work that most resembles machine learning for failure detection in a distributed system is
to use machine learning for round-trip time (RTT) prediction [4, 5, 6]. Also, machine learning has been
used to identify reasons behind high RTT and data losses, to detect network anomalies, to detect denial of
service attacks, and to predict hardware failures [7, 8, 9, 10]. To the best of our knowledge, trained machine
learning models have not yet been integrated into the failure detector abstraction.

In this report, we analyze the applicability of machine learning to the problem of failure detection. Our
contributions include a theoretical definition as well as an implementation of a machine learning failure
detector (MLFD) and evaluations of MLFD in simulated environments.

1.1 Problem Statement

Failure detection is a fundamental problem in distributed systems. Previous research on failure detectors has
provided application developers with many choices. The contemplated environment of the failure detector
has an impact on which failure detector is most suited. This project will probe the capabilities of using
machine learning for failure detection and investigate in which environments it is appropriate.

1.2 Research Questions and Hypothesis

Building upon the described problem, this research will be concentrated around the following research
questions:

Question 1. How can the problem of failure detection be modeled as a learning problem?

Question 2. In which environments does the machine learning approach work well and what are its
limitations?

Question 3. How does MLFD compare with the traditional eventual perfect failure detector (♦P)?

Hypothesis 1. We hypothesize that machine learning as a tool for failure prediction is useful when there
exist patterns in the RTT based on features of nodes that are monitored. In such environments, the MLFD
detector will outperform the traditional ♦P detector.

2 Background

This section introduces the theoretical background. The section covers the failure detector abstraction,
models of failure detection, metrics for evaluating failure detectors, and common machine learning models.
Additionally, the section highlights relevant prior work on failure detection, machine learning, and RTT
analysis.
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2.1 Failure Detectors
In this section, we outline a summary of previous work on failure detectors, including a theoretical
framework.

2.1.1 The Failure Detector Abstraction

As failure detection is such a fundamental problem for many applications, it is commonly provided as a
service through the failure detector abstraction (Figure 1). This results in a separation between applications
and the logic of the detector, which is implementation specific. The application can at any point in time
query the detector for the status of a process. As illustrated in Figure 1, a failure detector monitors a set of
processes by some means of network communication, most prevalent is the use of heartbeats.

Failure Detector

Network

Heartbeats

Trust/Suspect pi

processes
∏

= {p1, p2, ...., pn}

Figure 1: The Failure Detector Abstraction

2.1.2 Theory of Failure Detectors

We adopt the theoretical framework of unreliable failure detectors established by Chandra & Toueg [1], that
has been the basis for many theoretical results on failure detection [11, 12, 13, 2, 14]. Chandra & Toueg
propose to use abstract properties to define failure detectors. Abstract properties make it possible to reason
about correctness and determine provable guarantees of failure detectors without having to rely on specific
implementations [1]. Completeness is a requirement on the behavior of failure detectors regarding crashed
processes. A complete failure detector should eventually detect a process that has crashed. Accuracy is a
requirement on the behavior of failure detectors regarding alive processes. Accurate failure detectors will
not suspect alive processes. In isolation, neither of these properties are very useful for characterizing failure
detectors but together they can define the abstract behavior of failure detectors. Chandra & Toueg define
eight failure detectors based on variants of the accuracy and completeness properties [1]. ♦P is defined by
being a complete and eventually accurate failure detector.

2.1.3 The ♦P Failure Detector

Algorithm 1 in Appendix A implements a failure detector of class ♦P . ♦P is designed for the partially
synchronous system model where it has provable strong completeness and eventual strong accuracy. In
a partially synchronous system, timing conditions will eventually hold. When the conditions will hold
and for how long cannot be determined in advance. Hence, arbitrary timing assumptions can be violated
before the conditions hold. Partial synchrony is a theoretical construction introduced by Lynch, Dwork &
Stockmeyer in 1985 [15]. Despite being a theoretical construction many implementations assume a partially
synchronous system [16, 17, 18].

2.1.4 Quality of Service Metrics

Completeness and accuracy properties are useful for contrasting failure detectors on a theoretical level, but
are too vague for capturing the behavior of failure detectors in practice. Chen, Toueg and Aguilera, defines

5



II2202, Fall 2017, Period 1 Project report November 23, 2017

a set of quality of service (QoS) metrics for failure detection that will be used for comparing simulation
results in this study [2]. The QoS metrics have been used extensively in related work [12, 16, 19, 20, 21,
22, 18, 23, 24, 25]. In particular, this report will focus on the QoS metrics: average mistake rate (λM) and
detection time (TD). The rate of false suspicions by the failure detector is measured by λM and TD measures
the elapsed time from the actual crash of a process to the time the process is suspected by the failure detector
[2].

2.1.5 Adaptive Failure Detectors

The objective of a machine learning failure detector is to be adaptive to network conditions. Adaptive failure
detectors are designed for environments where the conditions for failure detection are expected to change
over time. Thus the idea of adaptive failure detectors is to adjust the time for failure detection based on
prevailing network conditions, typically measured as a function of RTTs recorded in the past.

Notable work on adaptive failure detectors include (1) the φ − accrual failure detector (Hayashibara,
Défago, Yared & Katayama, 2004 [12]); (2) the algorithm for failure detection presented by Chen et al.,
2002 [2]; (3) the Low-Overhead accrual failure detector (LA-FD) (Ren, Dong, Liu, Li & Yang, 2012 [20]);
(4) the Two Windows Failure Detector (2W-FD) (Tomsic, Sens, Garcia, Arantes & Sopena, 2015 [21]); (5)
the Weibull distribution failure detector (WD-FD) by Liu et al., 2017 that is explicitly designed for cloud
computing environments [22]; (6) the exponential distribution failure detector (ED FD) (Xiong & Défago,
2007 [18]); (7) the self-tuning failure detector (SFD) in Xiong et al., 2012 [23]; (8) the Adaptare-FD that is
based on the Adaptare framework (Dixit & Casimiro, 2010 [19]); and (9) in Bertier, Marin & Sens, 2002,
an adaptive version of ♦P that uses a combination of the estimation algorithm of Chen et al., 2002 and
Jacobsons’s algorithm ([26]) is presented [16].

All of the adaptive failure detectors mentioned have the same general idea in common. What
characterizes the detectors is the formula used for estimating the heartbeat arrival time and what
assumptions are made on the probability distribution of RTTs. None of the listed detectors use a trained
machine learning model for estimation. The most prevalent approach among prior work on adaptive failure
detectors is to use a sliding window of RTTs and an equation estimating the arrival time based on moving
averages.

2.1.6 Other Types of Failure Detectors

The adaptive failure detectors are the most relevant to the work in this project, other classes of failure
detectors include (1) accrual failure detectors that outputs a degree of suspicion instead of a binary decision
[17]; (2) lazy failure detectors that exploits messages already part of existing application protocols for
failure detection and (3) gossip-style failure detectors where processes in a group cooperate by gossiping to
detect failures [27]. The types of failure detectors are not mutually exclusive.

2.2 Machine Learning Approaches for RTT Prediction

This section discusses what patterns exist in RTT data and different machine learning models for predicting
RTTs.

2.2.1 Existing Patterns for Failure Detection in Distributed Systems

A machine learning model performs best when it is trained with data that contains patterns. For failure
detection in distributed systems, a salient pattern is a dependence of RTT on geographical distance. In
Krajsa & Fojtova, 2011, it is shown that the dependence is linear [28]. Moreover, distributed systems can
consist of heterogeneous computers where the knowledge of a computer’s up-link and down-link speeds
can be used to predict the RTT. Hu et al., 2015, use machine learning to diagnose factors behind high RTT
and message losses. In traces from wireless cellular networks, they show that the channel quality is a strong
factor behind RTT and message loss [7].
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Diverse distributions have been observed when measuring RTTs in distributed systems of different
nature. For this reason, different implementations assume different distributions. In Hayashibara et al.,
2004, the normal distribution is assumed [12]. In Liu et al., 2017, it is shown that in cloud computing
environments, the Weibull distribution is a better fit for RTTs than the normal distribution [22]. Adaptare-
FD from Dixit & Casimiro, 2010, analyzes the RTT to find the best fit among a range of distributions,
including the exponential, shifted exponential, Weibull, Pareto and uniform distributions [19]. Similarly,
ED FD by Xiong & Défago, 2007, assumes the exponential distribution for estimating RTT timeouts [18].

In studies of end-to-end internet package delay, both Bolot, 1993 [29], and Mukherjee, 1992 [30],
found that the probability distribution of end-to-end packet delay was modeled closest by a shifted gamma
distribution. This motivated Satzger, Pietzowski, Trumler, Ungerer, 2007, to use RTTs sampled from
a gamma distribution when evaluating failure detectors in a simulated environment [24]. In results by
Hooghiemstra & Van Mieghem, 2001, it is indicated that the end-to-end delay on the internet consists of
two components, router processing delay and queuing delay caused by simultaneous traffic [31]. Similarly,
Bogdanov, 2016, presents measurements across Amazon EC2 that too exhibits multiple elements of delay.
In addition, Bogdanov contributes a novel technique for estimating network conditions that is capable of
distinguishing between different causes of delay [32].

RTT estimation for failure detection differ from general network estimators in that the behavior of
individual processes should be taken into account. For instance a process might routinely wait a number of
seconds between receiving a heartbeat request and sending a reply, this delay is not owing to the network
or the router processing delay but to the algorithm of the process.

2.2.2 Linear Regression

The output of the linear regression model is a linear function of the input. Linear regression can be defined
mathematically as follows:

ŷ =W T ∗X (1)

where W is the weight matrix of parameters of the model and X is a matrix of input features to the model.
Karrer, 2007, used extensions of the linear model for predicting available throughput in a TCP

connection [6]. By using extensions of the linear model, Karrer achieved an improvement of 40% for
video streaming applications based on TCP.

Linear regression can be implemented as an online learning algorithm with minor modifications.
Specifically, the Stochastic Gradient Descent Algorithm (SGD) can be used to implement linear regression
for online learning.

2.2.3 Neural Networks

In a feed-forward multilayer Neural Network (NN) (often called multilayer perceptron) learning is done by
matrix multiplications between the weight matrix W and the input matrix X . After performing this step, the
output of the multiplication is passed through a non-linear function, such as Sigmoid, Tahn, or ReLU . The
algorithm for training NNs is iterative and minimizes the cost function.

Chong & Yoo, 2006, used a NN with one hidden layer for predicting one-step-ahead RTT [5]. The data
for training consisted of RTTs and packet loss rates. The model demonstrated results for one-step-ahead
prediction with a normalized error below 0.1 for 200 rounds of predictions.

Just as for standard linear regression, NNs for linear regression can be implemented using SGD.

2.2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) differ from feed-forward NNs. RNNs maintains state from previous
inputs that is used when updating the parameters of the model during training. For this reason, RNNs are
able to take into account series of data when learning. As RTTs in distributed systems is a type of time
series data, RNNs make a promising model for RTT prediction.
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Using RNNs trained on real world data, Belgah & Tagina 2009, achieved low prediction error for
forecasting RTT of time intervals [33]. Although RNNs show potential, they have the drawback that online
implementations are not widely available; as a consequence, we will not consider RNNs further in this
study. We believe that this shortcoming is not intractable and as online implementations of RNNs become
available we consider it to a be a promising model for failure detectors that use machine learning.

2.2.5 Other Machine Learning Models

Support Vector Regression (SVR) modeling was used in Mirza, Sommers, Barford, and Zhu, 2010, for TCP
throughput prediction [34]. With SVR they were able to predict TCP throughout with a margin of 10%
most of the time. Due to this result, we see potential in using a SVR model for failure detection but leave it
for future work.

Nunes et al., 2011, shows that a machine learning technique known as the Experts Framework can adapt
quickly to changes in RTT [4]. They demonstrate that it can do better than the classical Jacobson’s RTT
estimate. In the context of failure detection, we consider the main limitation of their approach to be the
heavyweight nature of the framework.

Hu, Wang, and Sun, 2015, proposed a model that combines learning and modeling for predicting RTTs
[35]. By using a decision tree for predicting RTTs over long distance links and a modeling approach for
prediction over smaller distances, they achieved a high prediction accuracy. We have not considered this
approach for our study due to the added complexity of using two models.

3 Method

This section outlines our strategy for answering the research questions in Section 1.2.

3.1 Overview

The study was initiated with an exploration of the data available to failure detectors followed by an
evaluation of machine learning models on the data. The outcome of the evaluation served as a basis for
research question 1 and the design of MLFD, a failure detector based on machine learning. Evaluations
of MLFD were based on Monte Carlo Simulations of a distributed system. The environments for
simulation were designed in consideration of previous work on analyzing RTTs in distributed systems
[28, 22, 18, 2, 29, 30, 32, 31]. To put evaluations in a context and answer research question 3, MLFD was
compared with the traditional ♦P .

3.2 System Model

We consider a partially synchronous system consisting of a finite set of processes ∏ = {p1, p2, ..., pn}.
Processes are assumed to be in the crash-stop failure model extended with omission faults, defined in
Cachin et al., 2011 [11]. Processes are non-byzantine and may crash at any time. Moreover, a crashed
process does not recover, and restarted processes are considered by the system as new processes. Processes
may exhibit omission faults. Finally, clocks of processes may drift at arbitrary rates, the only assumption is
that each individual process clock is monotonically increasing and drifts at a constant rate.

3.3 Testbed

We did not find any existing testbed to match our requirements regarding machine learning models and
configurable simulations. The environment for our custom testbed was Akka, an implementation of the
actor model on the JVM [36]. As Akka runs on the JVM there exists a range of machine learning tools to
leverage for prototyping. In particular, the implementation in this study leverages the support for machine
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learning in Apache Spark ∗. Actors in Akka can be viewed as lightweight processes and for the rest of the
report, the terminology of processes is used.

The testbed used for simulation is open source and available online†. The testbed uses a driver program
that can be parameterized by options for the simulation. The simulations consisted of a supervisor process
that monitored a set of worker processes using a failure detector. The worker and supervisor processes
follow primitive message-passing algorithms, where distribution is simulated through added network delay
and a simulated probability of crashes and omission faults. Pseudo-code for the worker and the supervisor
can be found in algorithm 3 of Appendix C and algorithm 4 of Appendix D, respectively. To sample RTTs
pseudo-randomly from different distributions, implementations of probability distributions and random
generators from the apache.commons.math3 package [37] were used.

3.4 Experiment Setup
The average mistake rate λM and the detection time TD metrics, defined in [2] were used when evaluating
failure detectors. Our method to compute the detection time of failure detectors is equivalent to the method
used in simulations of Satzger et al., 2007 [24]. When a process crashes, the time of the crash is measured
exactly after successfully sending a heartbeat message to the detector, which implies that the detection time
is measured in the worst case scenario.

All experiments were conducted through the testbed on a local machine with 8 cores Intel i7-4790
p 3.60GHz processor, 16GB RAM and 64-bit Ubuntu 16.04.2 LTS with Linux kernel 4.10.0-33. Scala
version 2.11.8 and OpenJDK 64-Bit Server VM, Java 1.8.0 131 was used for the testbed.

Similar to simulations of Satzger et al., 2007 [24] and Chen et al., 2002 [2], the inter-sending of heartbeat
messages, message loss probability, and crash probability were fixed for each simulation. Message delays
were simulated according to different probability distributions. Test parameters that were fixed for each
simulation are listed in Table 1.

Table 1: Test parameters

Parameter Value
Test duration 30 minutes
Number of processes to monitor 100
Sample window size 200
Default mean 3000 ms
Default standard deviation 1000 ms
Crash probability 0.001
Heartbeat interval 2s
Machine Learning parameters regularization = 0.3, η = 0.0000001

The test duration was decided based on observations. The duration was chosen to be long enough for the
machine learning model to stabilize and long enough for a substantial amount of crashes to be simulated. We
found that 30 minutes of simulation with the given simulation parameters lead to≈ 60 crashed processes out
of a total of 100 processes and approximately 17000 heartbeats collected by the failure detector. We assume
that 17000 is smaller than the period of the PRNG. Furthermore, 17000 have shown to be enough samples
for the machine learning model to stabilize. The sample window size is the number of RTTs that MLFD
buffers for each monitored process. Default mean and standard deviation are the values used by MLFD
when the sample window is of size zero. Heartbeat interval refers to the period between heartbeat requests.
Crash probability is the probability for a process to crash after sending a heartbeat reply. Machine learning
parameters are specific to the chosen linear regression model, η stands for the learning rate. Regularization
parameter and learning rate were chosen based on trial and error.

∗ https://spark.apache.org/ † https://github.com/Limmen/mlfd_prototype
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3.4.1 Experiments for Evaluating Machine Learning Models

Datasets from two simulations were used for data exploration and to evaluate machine learning models.
The datasets were divided into a training set (80%) and testing set (20%) used for training and evaluation,
respectively. Table 2 describes the simulations.

Table 2: Experiments used to evaluate machine learning models for predicting RTTs

Name Description

Experiment 1
A simulation where there is a correlation between geographic location, bandwidth, and RTT.

The correlation is linear. RTTs were sampled from a normal distribution (RT T ∼Np(µ,σ
2)).

Experiment 2
A simulation where there is no correlation between geographic location, bandwidth and RTT.

RTTs were sampled from a normal distribution (RT T ∼Nnp(µ,σ
2)).

The notation of subscript p (pattern) is used for RTT distributions where there is a linear correlation
between RTT and geographic location and between RTT and bandwidth capacity. Subscript np (no pattern)
is used to denote that there is no correlation. Depending on the nature of the distributed system it might
be realistic or not to assume that there is a correlation between properties such as geographic location and
RTT. Hence the experiments in Table 2 were identified as two cases which should highlight how effective
machine learning is depending on available features and their accuracy.

It was anticipated that data from simulations would have linear correlations and Pearson correlation
coefficient (PCC) was used for measuring correlations in the data. PCC has a value between +1 and −1.
A PCC of 0 indicates that there is no correlation, a PCC of +1 and −1 indicates that there is positive or
negative correlation, respectively. To evaluate models, the R2 metric was used. This measure corresponds
to the squared correlation between the ground truth and the predicted values. Values of R2 are in the range
from 0 to 1 where a value of 1 indicates that the model fits the data perfectly. R2 was preferred as it is a
normalized measure that enables comparison with other models.

3.4.2 Experiments for Evaluating MLFD

MLFD was evaluated and compared with ♦P in two independent experiments listed in Table 3. The
experiments were designed in consideration of research question 2 and 3.

Table 3: Experiments used to evaluate MLFD and ♦P

Name Description

Experiment 3
Experiment to compare how MLFD and ♦P behave in increasingly unreliable network

conditions. Five executions were run with a probability of omission fault being
0.001,0.01,0.1,0.5,0.75. RTTs were sampled from a normal distribution (RT T ∼Np(µ,σ

2)).

Experiment 4

Experiment for comparing how MLFD and ♦P behave when RTTs are sampled from different
distributions. Four simulations were run using the following distributions.

Normal distribution with correlation (RT T ∼Np(µ,σ
2)).

Normal distribution without correlation (RT T ∼Nnp(µ,σ
2)).

Exponential distribution with correlation (RT T ∼ Expp(µ)).
Weibull distribution with correlation and shape 1.5 (RT T ∼Weip(λ ,1.5)).
The probability of omission fault was fixed for each simulation at 0.001.

To measure stabilization of the machine learning model in MLFD, mean squared error (MSE) was used.
MSE was the metric available to the online learning model of our implementation. The lower MSE the
better the prediction. As it would be disadvantageous for MLFD to leave out training data, the data for
prediction was used for training afterward.
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4 Machine Learning for Failure Detection
This section includes data exploration and an evaluation of machine learning models on the simulated data.
Additionally, the section presents MLFD. We model failure detection as a learning problem where RTTs
are predicted using incremental learning on data from recorded heartbeats.

4.1 Feature Exploration
Features for training the machine learning model depends on the environment where the failure detector
operates. For experiments in this study, a feature vector v consists of the features listed in Table 4.

Table 4: Feature vector for training machine learning models

Feature Explanation
RT Tµ Mean value of a window of the latest RTTs
RT Tσ Standard deviation of a window of the latest RTTs
RT Tmin Minimum RTT of a window of the latest RTTs
RT Tmax Maximum RTT of a window of the latest RTTs
Nodeloc Geographic distance to the node in relation to the detector
Nodebw Bandwidth capacity of the node
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Figure 2: Correlation between RTT and geographical location for different experiment 1 and 2.

The effect size of features on the RTT have been computed with the Pearson correlation coefficient
(PPC). Experiment 1 exhibited a near positive linear correlation between geographic location and RTT,
giving a PCC of≈ 0.96 (Figure 2a); the same PCC in experiment 2 was≈ 0.02 (Figure 2b). The correlation
between Nodebw and RTT was weaker and outweighed by the correlation between RTT and Nodeloc,
yielding approximate PCCs of −0.26 and −0.09 for experiment 1 and 2, respectively. Furthermore, in
both experiments the correlation between the features RT Tµ , RT Tσ , RT Tmax, RT Tmin, and the RTT was
prevalent, having approximate PCCs of 0.96,0.25,0.90,0.90 respectively.

4.2 Model Evaluation
A feed-forward NN with 4 hidden layers and 256 units in each layer was trained on the simulated data to
predict RTTs. The NN used ReLU as its activation function. The network architecture was chosen based on
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empirical testing and the hyper-parameters of the model were not tuned. We achieved a R2 of 0.93±7.43∗
10−5SE when training the model on data from experiment 1 (Figure 3a) and a R2 of 0.91±1.11∗10−5SE
when training the model on data from experiment 2 (Figure 3b). Thus, the goodness of fit for the two
experiments was nearly the same.
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Figure 3: Goodness of fit of multilayer perceptron regression

With linear regression, we achieved a R2 score of 0.93±7.43∗10−5SE when training the model on data
from experiment 1 and a R2 of 0.91± 1.59 ∗ 10−5SE when training the model on data from experiment 2.
The results were near identical to the results achieved with the NN model.

The patterns between Nodeloc and RTT and between Nodebw and RTT which is exhibited by experiment
1 had a modest impact on the RTT prediction. This indicates that the model was able to learn from
statistical features of previous RTTs such as RT Tµ ,RT Tσ ,RT Tmax,RT Tmin. Moreover, the results indicate
no noteworthy differences between the NN model and the linear regression model.

4.3 MLFD
With the results derived above, we designed MLFD, an adaptive binary failure detector based on an online
linear regression model. MLFD sends a liveness request to every process it is monitoring every heartbeat
timeout δ . Monitored processes respond with a heartbeat message, indicating their liveness. When
determining to detect or suspect a process, MLFD uses the concept of freshness points [16, 2, 21, 23].
A freshness point τp is an estimation of the time when the next heartbeat will be received from process
p. In MLFD, τp is computed based on a prediction predp from a machine learning model, and a safety
margin αp. MLFD stores heartbeat arrival times in a sample window Sp of fixed size for each process.
Sp is updated dynamically. In addition, MLFD maintains a linear regression model M. MLFD uses Sp to
dynamically compute the safety margin αp for process p based on an estimate of the standard deviation σp,
times a configurable constant k.

µp =
∑si∈Sp si

|Sp|
(2)

σp =

√
1
|Sp| ∑

si∈Sp

(si−µp) (3)

αp = k ·σp (4)
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For each heartbeat reply from process p, MLFD adds the reply to Sp and updates M by computing a feature
vector v. The feature vector is computed from the heartbeat reply and the current state of Sp. In this study,
we assume the features listed in Table 4. Statistical features of recorded RTTs are computed from the
contents of Sp. The features Nodeloc and Nodebw are assumed to be appended to heartbeat replies. The
truth label lbl for vector v is the time difference from when the heartbeat request was sent (tsent) and the
reply was received (trec). The vector v together with the label lbl is used to update the model M.

v = [RT Tµ ,RT Tσ ,RT Tmin,RT Tmax,Nodeloc,Nodebw] (5)

lbl = trec− tsent (6)

M = M.train(v, lbl) (7)

For each heartbeat timeout δ , the model M is used to compute a prediction predp for every process p. For all
processes that have not yet replied to an outstanding heartbeat request, the current timeout Ct is computed
by taking the time difference of the current time (tnow) and the time the request was sent (tsent). The current
timeout Ct , the prediction predp, and the safety margin αp, constitutes as the freshness point for process p.
The current timeout Ct and the freshness point τi are used by MLFD to make a binary decision dp, either to
trust or suspect process p.

predp = M.predict(p) (8)

Ct = tnow− tsent (9)

τp = predp +αp (10)

dp =

{
〈suspect〉 if Ct > τp

〈trust〉 if Ct ≤ τp

}
(11)

An overview of the functioning of MLFD is shown in Figure 4.
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Figure 4: The functioning of MLFD, an adaptive binary failure detector that uses a sliding window of RTTs
and a machine learning model that is updated incrementally to detect failures.
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We have implemented MLFD using a streaming linear regression with stochastic gradient descent (SGD)
model and the feature vector described in Table 4 ∗. Pseudo-code for MLFD can be found in algorithm 2 of
Appendix B.

5 Results and Analysis

In this section, a theoretical analysis and evaluation of MLFD is presented. The partially synchronous
system model is assumed.

5.1 Theoretical Analysis

Strong completeness of MLFD can be proved by relying on a weak assumption of the machine learning
model M.

Assumption 1-A . Given training examples {x1, ...,xn} where the truth label xi(lbl) (i.e the RTT) for each
example xi is less than some real number y. Then M.pred(p)≤ y, ∀p.

Theorem 5.1. Given assumption 1-A , MLFD fulfills the strong completeness property. Eventually every
crashed process p is permanently suspected by every correct process.

Proof. Given that the model M is trained with new examples only when heartbeat replies are received by
MLFD, all training examples will have labels that are less than some real number y. Eventually, the timeout
since the last liveness-request to a crashed process p will exceed y. Given assumption 1-A , this implies
that p will be suspected by MLFD. As a suspicion for a process can only be revised in MLFD when a new
heartbeat reply is received from the process, the suspicion is permanent under the assumption that crashed
processes do not send heartbeats.

For MLFD to guarantee eventual strong accuracy, like ♦P does, there must be an upper bound on how
inaccurate a prediction for process p can be with respect to αp. This assumption is not realistic for most
machine learning models. In this sense, MLFD takes a probabilistic approach to the accuracy property.

5.2 MLFD Evaluation

This section presents an analysis of the configurable parameters of MLFD and ♦P , as well as the results
of experiments 3 and 4 described in Table 3. The evaluation compares MLFD (algorithm 2) with ♦P
(algorithm 1).

5.2.1 Trade-off Between Detection Time and Mistake Rate

Both MLFD and ♦P have adjustable parameters to control the trade-off between the QoS metrics mistake
rate (λM) and average detection time (TD). For MLFD, the constant parameter k can be used to control the
safety margin (αp = k ·σp). Likewise, ♦P allows tuning the parameter ∆ which controls the increase of
the detection timeout for each false suspicion.

∗ https://github.com/Limmen/mlfd_prototype
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Figure 5: Plots depicting the effect of tuning parameter k of MLFD. RT T ∼Np(µ,σ
2).
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Figure 6: Plots depicting the effect of tuning parameter ∆ of ♦P . RT T ∼Np(µ,σ
2).

The higher k the higher TD and the lower λM of MLFD (Figure 5). Similarly, the higher ∆ the higher TD
and the lower λM of ♦P (Figure 6), with an exception that if ∆ is too large to begin with, it takes longer for
♦P to find the right threshold for detection which causes it to make more mistakes initially. We can see in
Figure 6 that this behavior happens when ∆ > 2000. The effect of tuning k and ∆ is independent of RTT
distribution. To pick analogous trade-offs between λM and TD for MLFD and ♦P , the parameters k = 3
and ∆ = 2000 were chosen for the rest of the simulations.

5.2.2 Detection Performance in Unreliable Network Conditions

This section outlines the result of experiment 3 from Table 3. The experiment tested how the detectors
handle RTTs that are highly irregular. The results show that the higher the probability of omission fault,
the higher value of TD for both detectors (Figure 7). The increase in TD for both detectors show a similar
growth, where TD for MLFD was an order of magnitude smaller in general. As the probability of omission
faults increased and TD increased with it, λM of MLFD decreased. A steep decrease in λM occurred when
a non-zero probability of omission fault was introduced and then it decreased linearly as the probability
increased. Moreover, the steepest growth in TD occurred when increasing the probability of omission fault
from 0.5 to 0.75. Finally, it can be seen that MLFD had a larger mistake rate than ♦P .
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Figure 7: Comparison between QoS metrics of MLFD and ♦P in presence of omission faults.

5.2.3 Detection Performance for Different RTT Probability Distributions

This section outlines the result of experiment 4 from Table 3. The experiment evaluated how MLFD and
♦P adapts to different RTT distributions.
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Figure 8: Comparison how MLFD adapts when RTTs are sampled from different probability distributions.

MLFD performed near equivalently regarding both λM and TD for the normal distribution with and
without correlation between node features and RTT (Figure 8). For RTTs from the Weibull distribution, the
TD was the lowest and the λM was the highest among all of the distributions. The exponential distribution
caused the lowest λM, but at the cost of a higher TD. Overall the results show that the higher TD the lower
λM. The exponential distribution had more outliers in the RTTs compared with the other distributions which
caused ♦P to increase its timeout value significantly, increasing both λM and TD (Figure 9).
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Figure 9: Comparison how ♦P adapts when RTTs are sampled from different probability distributions.

6 Discussion

There is a mismatch between the traditional computer science approach to focus on correctness and
deterministic computations and the approach used in machine learning. In machine learning, a model
that gives accurate output 99% of the time is typically considered good. This makes it harder to reason
about provable properties when machine learning is involved. As a consequence, MLFD only guarantees
probabilistic eventual accuracy. Whereas ♦P has provable eventual accuracy. MLFD can be modified
to guarantee eventual accuracy at the cost of higher detection times by making the safety margin αp
monotonically increasing for each false suspicion.

When compared with ♦P , MLFD demonstrates consistently lower detection times but is also more
prone to false suspicions. This is because ♦P monotonically increases its timeout until it does not do any
premature suspicions while MLFD adapts its timeout for suspicion based on recorded RTTs. This has the
side effect that MLFD uses a lower detection timeout for processes with consistently low RTTs and higher
timeouts for processes with consistently higher RTTs, causing irregular RTTs to be detected quicker. On the
contrary, ♦P uses a single timeout for all processes and is therefore not as responsive for irregular RTTs
as MLFD.

Our hypothesis that MLFD would excel when there exist patterns in the RTTs based on features
of the nodes was partially rejected. We found the reason that such correlations did not improve the
prediction results to be that there existed strong correlations between RTT and statistical features such
as RT Tµ ,RT Tσ ,RT Tmin, and RT Tmax, which the model based its predictions on.

Both MLFD and ♦P made most of their inaccurate suspicions early in the simulations, before they
had adapted their timeouts. This is visualized in Figure 10 where the number of false suspicions is plotted
with respect to time. The plot is from experiment 4 and the simulation where RTTs were sampled from the
Expp(µ) distribution.
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Figure 10: Number of false suspicions with respect to time. RTTs were sampled from the Expp(µ)
distribution.

The machine learning model of MLFD stabilized early in the execution for most test cases (Figure
11). For the simulation with a high probability of omission faults and for the simulation where RTTs were
sampled from the exponential distribution, the prediction error was the highest. This indicates that the
prediction performance is sensitive to wide RTT distributions that contain outliers.
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Figure 11: Stabilization of Mean squared error (MSE) over time for MLFD.

The safety margin αp that MLFD computes dynamically for each process is supposed to cover up for
inaccurate predictions when the RTTs are irregular. The results of experiment 4 demonstrates that this was
effective. The λM for the simulation with RTTs sampled from the exponential distribution were the lowest
despite having poor prediction performance, this was at the cost of a higher TD. The same phenomenon
is shown in the results of experiment 3, where λD of MLFD decreased when the probability of omission
fault increased. Although MLFD adapts to RTT distributions, it showed alarmingly high mistake rate when
the detection time decreased, as is shown in Figure 8 and the result when RTTs were sampled from a
Weibull distribution. The low detection time and the poor mistake rate were due to a low variance in the
RTT distribution, causing the safety margin to be unreasonably small. We believe that this scenario can be
improved by introducing a lower bound on the safety margin.

We observed that the higher the maximum RTT of alive processes were, the more mistakes ♦P made
and the longer it took for it to detect real crashes, which was expected. ♦P is only dependent on how large
the highest RTTs are, which is why it performed the worst when RTTs were sampled from the exponential
distribution, which had the most outliers.
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6.1 Related Work
To the best of our knowledge, there are no prior attempts to use machine learning models inside a failure
detector, which would have made for the most interesting comparisons. Prior results of failure detectors are
not directly comparable to the results presented here as the environments and assumptions differ. It is left
for future work to implement and evaluate the detectors in fair conditions.

In evaluations by Hayashibara et al., 2004, it is shown that the effect of increasing the φ parameter of the
φ − accrual failure detector is similar to the effect of tuning the k parameter of MLFD [12]. Increasing φ

gave a near linear decrease in λM and an exponential increase in TD, which can be compared with increasing
k of MLFD that resulted in a near linear decrease of λM and a linear increase in TD. In our simulations the
window size was fixed to 200, in Hayashibara et al., 2004 it is shown that increasing the window size up to
10000 can reduce the mistake rate of the φ −accrual failure detector drastically. Hence we anticipate that
MLFD might see improved accuracy by increasing the window size as well. Finally, the trade-off between
λM and TD that we observed is in concordance with results of prior work such as [21, 24, 18, 23].

6.2 Conclusion
We have shown that it is possible to integrate machine learning into a failure detector with strong
completeness and eventual probabilistic accuracy. The proposed detector, MLFD, uses an exchangeable
machine learning model and opens up for experiments with different models on empirical data. The key
idea to use machine learning for failure detection is to train the model on streaming data to predict RTTs
based on recorded RTTs and node features. MLFD is able to adapt to different RTT distributions by
using incremental learning of a machine learning model, in combination with a dynamic safety margin
to compensate for inaccurate predictions. Evaluating MLFD in simulated environments indicate that it
is suited for more aggressive failure detection than the traditional ♦P . Finally, the decisive element for
accurate RTT predictions by the machine learning model were shown to be statistical patterns in the window
of recorded RTTs.

6.3 Future Work
A natural extension of our work is to evaluate MLFD further. Interesting evaluations to be done include
to test MLFD in real-world scenarios, which have been left out in this study due to a restricted budget;
evaluations to compare MLFD against other failure detectors, to evaluate MLFD with different window
sizes and to evaluate MLFD with other probability distributions, all of which were left out in this study
due to time limitations. Other measurements that were left out is to evaluate the overhead of using machine
learning for failure detection, and evaluation of how quick MLFD can adapt to changing network conditions.

Our evaluation of machine learning models focused on linear regression and neural networks, future
work may involve further evaluation of machine learning models. Finally, the MLFD algorithm presented in
this study can inspire for new failure detectors based on machine learning. Such as making MLFD accrual,
experimenting with pre-training, using different features for training and to evaluate the effectiveness of
using individual machine learning models for each monitored process.
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A Increasing Timeout Algorithm

Algorithm 1 Increasing Timeout algorithm for implementing the ♦P abstraction. Adapted from pseudo-
code in [11].
Require:

∏ . Set of processes to monitor
∆ . Value to increase timeout with
procedure INCREASING TIMEOUT(∏,∆)

timeout← ∆

alive←∏

suspected← /0
starttimer(timeout)

upon event timeout do
if alive∩ suspected 6= /0 then

timeout← timeout +∆

end if
for p ∈∏ do

if (p 6∈ alive)∧ (p 6∈ suspected) then
suspected← suspected∪{p}
output 〈Suspect|p〉

else if (p ∈ alive)∧ (p ∈ suspected) then . Mistakenly suspected process p
suspected← suspected \{p}
output 〈Restore|p〉

end if
send 〈HeartBeatRequest|p〉

end for
alive← /0
starttimer(timeout)

upon event received〈HeartBeatRequest|p〉 do
send 〈HeartBeatReply|p〉

upon event received〈HeartBeatReply|p〉 do
alive← alive∪{p}

end procedure
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B MLFD Algorithm

Algorithm 2 MLFD algorithm
Require:

∏ . Set of processes to monitor
windowSize . Size of sample window
δ . Heartbeat period
k . Constant to compute safety margin αp
procedure MLFDALGORITHM()

S← /0
alive←∏

suspected← /0
starttimer(timeout)
outstandingHBs← /0
M← newStreamingLinearRegressionModel()

upon event timeout do
tnow← getCurrentTimestamp()
for p ∈∏ do

if (p 6∈ alive)∧ (p 6∈ suspected) then
tsent ← outstandingHbs(p)
(µ,σ ,min,max)← getStatisticalFeatures(S)
predp←M.predict(µ,σ ,min,max, p.location, p.bandwidth)
αp← σ · k
Ct ← tnow− tsent
if predp +αp <Ct then

suspected← suspected∪ p
end if

else if (p ∈ alive)∧ (p ∈ suspected) then . Mistakenly suspected process p
suspected← suspected \{p}

end if
if p ∈ alive then

outstandingHBs← outstandingHBs.put(p→ tnow)
end if
send 〈HeartBeatRequest|p〉

end for

upon event received〈HeartBeatRequest|p〉 do
send 〈HeartBeatReply|p〉

upon event received〈HeartBeatReply|p〉 do
tnow← getCurrentTimestamp()
S← S∪ (p→ (HeartBeatRebly, tnow))
(µ,σ ,min,max)← getStatisticalFeatures(S)
lbl← tnow−outstandingHBs(p)
M←M.train((µ,σ ,min,max), lbl)
alive← alive∪{p}

end procedure

24



II2202, Fall 2017, Period 1 Project report November 23, 2017

C Worker Process of the Testbed

Algorithm 3 Algorithm of a worker process in the testbed
Require:

D . Probability Distribution of RTTs
k . Constant added delay based on geographic location and network topology
crash . Probability of crash
omission . Probability of omission faults
procedure WORKERALGORITHM(D,k,crash,omission)

upon event received〈HeartBeatRequest|p〉 do
if ¬messageLoss(omission) then

delay← D.sample()+ k
starttimer(delay, p)

end if

upon event 〈timeout, p〉 do
send 〈HeartBeatReply|p〉
simulateCrash(crash)

end procedure

D Supervisor Process of the Testbed

Algorithm 4 Algorithm of a supervisor process in the testbed
Require:

f d . Failure Detector
timeout . Heartbeat period
∏ . Set of processes to monitor
procedure SUPERVISORALGORITHM()( f d,∏,timeout)

starttimer(timeout)

upon event 〈timeout, p〉 do
f d.timeout()
for p ∈∏ do

send 〈HeartBeatRequest|p〉
end for

upon event received〈HeartBeatReply|p〉 do
f d.receivedReply(p)

end procedure
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