
Learning Intrusion Prevention Policies through Optimal Stopping
Kim Hammar (kimham@kth.se) & Rolf Stadler, KTH Royal Institute of Technology, Sweden

CIFAR Deep Learning + Reinforcement Learning (DLRL) Summer School 2021

Overview

Motivation
Cyber attacks are evolving quickly and getting
increasingly automated. As a consequence, a
defender must constantly adapt and improve the
target system in order to remain effective.

Approach
We formulate the problem of intrusion prevention
as an optimal stopping problem and use a re-
inforcement learning approach to automatically
find intrusion prevention policies.

Contributions
First, we formulate the problem of intrusion pre-
vention as a problem of optimal stopping which
allows us to derive properties of the optimal de-
fender policy. Second, we present an approach
based on reinforcement learning, system emula-
tion, and simulations to approximate the optimal
defender policy.

Use Case: Intrusion Prevention

We consider an intrusion prevention use case that
involves the IT infrastructure of an organization.
The operator of this infrastructure, which we call
the defender, takes measures to protect it against
an attacker while, at the same time, providing a

service to a client population.
Attacker Clients

. . .

Defender

IDS

alerts
Gateway

POMDP for Intrusion Prevention

We model intrusion prevention as a partially ob-
served optimal stopping problem where the stopping
action refers to blocking the gateway.

Intrusion eventtime-step t = 1 Intrusion ongoing

t

t = T

Early stopping times Stopping times that
interrupt the intrusion

Episode

States S and Observations O: The state is
defined by the intrusion state it ∈ {0, 1}, it = 1 if
an intrusion occurs. The defender observes three
counters ot = (∆xt,∆yt,∆zt), which represent IDS
alerts and login attempts during time-step t. The
terminal state is ∅.

Actions A: The defender has two actions: “stop”
(S) and “continue” (C). The action space is thus
A = {S,C}.

Transition Probabilities Pass′ and Obser-
vation Function Z(o′, s′, a): The start of
an intrusion is decided by a Bernoulli process
(Qt)Tt=1. IDS alerts and login attempts generated
during a single time-step are random variables
X ∼ fX, Y ∼ fY , Z ∼ fZ, with joint pmf
fX,Y,Z(∆x,∆y,∆z|it, t) which is estimated based
on empirical data.

Reward Function Ra
ss′: The defender receives a

positive reward for maintaining service, and incurs
a loss for early stopping and being intruded. Fur-
ther, the defender receives a time-decaying reward
for stopping an ongoing intrusion:

r (it, S) = 1it=0Res + 1it=1Rst (1)
r (it, C) = Rsla + 1it=1Rint (2)

1 20 40 60 80 100
time-step t

−100

0

100

Reward function Rat
st

Stop reward
Continue reward
Intrusion starts

10 20
intrusion start time it

0.00

0.25

0.50

0.75

1.00

C
D
F
I t

(i
t)

It ∼ Ge(p = 0.2)

Figure: The reward function and the CDF of the intrusion start.

Threshold Property of the Optimal Policy

b(1) ≥ αb(t) =
110 + ∑

o∈O V
∗bCo (1)

pZ(o, 1, C) + (1− p)Z(o, 0, C)

300 + ∑
o∈O V ∗

bCo (1)

pZ(o, 1, C) + (1− p)Z(o, 0, C)−Z(o, 1, C)

(3)

The optimal policy is determined by the scalar thresholds αb(1). The difference
b(1) − αb(1)

 is increasing in
b(1) and that there exists a minimum α∗ = αb(1) such that b(1) ≥ αb(1). Thus, the optimal policy is of the
following form; if b(1) ≥ α∗ stop, otherwise continue.

Evaluation Results: Learning Defender Policies

We use the PPO reinforcement learning algorithm to learn a policy πθ : H 7→ A, where πθ is a feed-
forward neural network. The policy is learned through simulation of the POMDP. Specifically, the simulation
trajectories are used to estimate the expectation of the policy gradient Eπθ

∇θ log πθ(a|ĥ)Aπθ(ĥ, a)
. The

gradient is then used to update the policy with the PPO algorithm.

0 1000 2000 3000 4000
policy updates

−100

0

100

200
Reward per episode

0 1000 2000 3000 4000
policy updates

2

4

6

8

Episode length (steps)

0 1000 2000 3000 4000
policy updates

0.2

0.4

0.6

0.8

1.0
P[intrusion interrupted]

0 1000 2000 3000 4000
policy updates

0.0

0.2

0.4

0.6

0.8

1.0
P[early stopping]

0 1000 2000 3000 4000
policy updates

1

2

3

4
Uninterrupted intrusion t

Learned πθ vs NoisyAttacker Learned πθ vs StealthyAttacker t = 6 baseline (x + y) ≥ 1 baseline Upper bound π∗

Figure: Learning curves; the curves show the averages and the standard deviations of three training runs with different random seeds..

Threshold Properties of the Learned Policies

The learned policies can be expressed through thresholds, just like the optimal policy. Specifically, the learned
policies implement a soft threshold on the number alerts by stopping with high probability if xt + yt > 130.

0 100 200 300 400
total alerts x+ y

0.0

0.5

1.0

πθ(stop|x+ y)

πθ vs StealthyAttacker

πθ vs NoisyAttacker

0 25 50 75 100
login attempts z

0.00

0.05

0.10

0.15
πθ(stop|z)

πθ vs StealthyAttacker

πθ vs NoisyAttacker

0
50

100
150

200 0
50

100
150

200
0.0

0.2

0.4

0.6

0.8

1.0

πθ(stop|x, y) vs StealthyAttacker

0
50

100
150

200 0
50

100
150

200
0.0

0.2

0.4

0.6

0.8

πθ(stop|x, y) vs NoisyAttacker

soft
thresholds

never
stop

sev
ere

aler
ts x

warning alerts y sev
ere

aler
ts x

warning alerts y

Figure: Probability of the stop action by the learned policies πθ in function of the number of alerts x, y and login attempts z.

More Information

•Paper: https://arxiv.org/pdf/2106.07160.pdf
•Code: https://github.com/Limmen/gym-idsgame, https://github.com/Limmen/gym-optimal-intrusion-response

https://arxiv.org/pdf/2106.07160.pdf
https://github.com/Limmen/gym-idsgame
https://github.com/Limmen/gym-optimal-intrusion-response

