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Motivation and Contributions

I Problem: Cyber attacks evolve quickly. As a consequence, a defender
must constantly adapt and improve the target system to remain effective.

I Contributions
1. A novel formulation of intrusion prevention as a multiple stopping problem.
2. A method to obtain policies with demonstrated performance in emulated infrastructures.
3. A reinforcement learning algorithm (T-SPSA) that outperforms state-of-the-art.

Use Case: Intrusion Prevention

A defender takes measures to protect an IT infrastructure against an attacker
while, at the same time, providing a service to a client population.

a) The infrastructure and
the actors in the use case.

b) The game between
the attacker and the defender
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POMDP Model of the Intrusion Prevention Use Case

We formulate the use case as a multiple stopping problem, where each
stopping action is associated with a measure against a possible intrusion.
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We use the following POMDP model:
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Video of Software Framework

Our Approach

I The emulation system replicates key components of the target
infrastructure and is used for data collection and policy evaluation.

I The simulation system is used to execute POMDP episodes and learn
policies through reinforcement learning.
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Learning Intrusion Prevention Policies with T-SPSA

We approximate an optimal defender policy π∗l ,θ through reinforcement learning.
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Threshold Properties of an Optimal Policy

Theorem 1. Let S l be the stopping set, and C l the continuation set. The
following holds:
(A) S l−1 ⊆ S l for l = 2, . . . L.
(B) If L = 1, there exists a value α∗ ∈ [0, 1] and an optimal policy π∗L that

satisfies:
π∗L(b(1)) = S ⇐⇒ b(1) ≥ α∗ (1)

(C) If L ≥ 1 and fXYZ |s is totally positive of order 2 (i.e., TP2), there exist L
values α∗1 ≥ α∗2 ≥ . . . ≥ α∗L ∈ [0, 1] and an optimal policy π∗l that satisfies:

π∗l (b(1)) = S ⇐⇒ b(1) ≥ α∗l l ∈ {1, . . . , L} (2)
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