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1 Motivation

The complexity of modern systems makes the task of operating them difficult. In the last decade we have
seen a trend that systems that traditionally would be deployed on a single machine are being distributed
to a cluster of machines. By using distributed system architectures, applications can achieve the benefit of
increased scalability, fault-tolerance, and availability. However, just as advanced system architectures bring
benefits, they also increase complexity of the overall environment, making it hard for human operators to
keep up.

In principle, a self-driving system is a system that is able to dynamically adjust itself and take operational
decisions to meet an objective, reducing the burden on human operators. For instance, a self-driving system
could automatically detect that the load on the system is decreasing and, as a consequence, infer that less
resources are required for a running application. Figure 1 shows a graphical view of a self-driving system.

In this project, we model the task of finding a control policy for a self-driving system as a reinforcement
learning problem. Moreover, we present a proof-of-concept implementation of a self-driving system and
demonstrate that the system can learn to allocate resources in a Kubernetes cluster in a dynamic fashion.
For our experiments we have utilized a Kubernetes testbed at KTH

2 Testbed

The Kubernetes cluster is deployed on a server rack in our laboratory at

KTH. It includes three high-performance machines interconnected by Gigabit Management Objective
Ethernet. These servers are Dell PowerEdge R715 2U servers, each with 64
GB RAM, two 12-core AMD Opteron processors, a 500 GB hard disk, and
four 1 GB network interfaces. All machines run Ubuntu Server 18.04 64 bits, T-11t

and their clocks are synchronized through NTP. The cluster includes one | Data collection, Data pre-processing, high-level metriﬁ}
master node and two worker nodes which are connected via a switch. We prediction and forecasting

run Kubernetes version v1.17.0 both on the client and the server (see Figure
2(a)).

MongoDB version 4.2.6 is running over Kubernetes cluster. We deploy | Orchestration level statistics: Kubernetes
MongoDB replica set with one primary node and two secondary nodes (see | Platform level statistics : Linux, openflow,...
Figure 2(b)) [1]. Each of the nodes in the replica set is a MongoDB container.
The primary node and one of the secondary nodes are running on the same
physical server (worker node 1) and the other secondary node is running
on the other. We setup a dynamic provisioning of persistent volumes over
network file system (NFS) for the MongoDB replica set. The NFS server is
running over the same physical machine on which the master node of the K8
cluster is running.
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Figure 1: The overview of
steps of engineering a self-
driving system.
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Figure 2: MongoDB replica set over Kubernetes cluster, all the components with blue color are the physical
components, K8 pods are shown in green color, MongoDB replica-set is shown with orange color.

3 A Model for Control of Self-Driving Systems

To model the problem we adopt the formal language from the theory of Markov Decision Processes (MDPs)
[2] and the notation from [3]. We consider the problem of constructing an optimal control-policy for
a self-driving system as a Partially Observed Markov Decision Problem (POMDP) defined by the tuple
(S§,A4,0,Pser,RE,.,7v). The set S refers to states and A refers to actions. The notation Pg,, refers to the
transition probability of moving to state s’ when taking action a in state s (Eq. 1) and the notation R?

ss’
refers to the reward when taking an action a in a state s to transition to another state s’ (Eq. 2). Effec-
tively, the reward function R%,, is the “task description” of the MDP and specifies the objective that the

process seeks to optimize. Finally, v € [0, 1] is the discount factor, that models the fact that rewards in the

near time are valued higher than rewards in the future (assuming v < 1). The notation PZ,, R%,,, instead

of Pg 51,51+ Ry 51, 15 a reflection of the Markov property; the transition probability and the reward
depends only on the current state and action (Eq. 3).

Pl =Plsii1 = 8|8y = s,a, = a Transition probability (1)

R =E[riiilar = a, 8¢ = s, 8141 = §| Expected reward (2)

P[str1]st] = Plset1]81s-- -, 5 Markov property (3)

We instantiate the POMDP model for our domain as follows. Let the set of states S represent the set
of Markov states of the testbed described earlier. Next, we define the set of actions, A, to be the set
{NoOp,CPU = 1,...,CPU = 20}, representing the CPU allocation for the distributed database in the
testbed. Moreover, we use an observation space, O, that consists of all possible combinations of the tuple
(0c, 0rs), where o, denotes the current CPU allocation and o,; denotes the observed response time of the
database. Finally, we define the reward function to be R, = (0.05 — |g,s — 0rs|) * 10, parameterized by ¢,
that denotes the desired response time of the database.

4 Results

Using the model described above, we trained an agent using tabular Q-learning with v = 0.999, o = 0.0001,
and € = 1, decayed linearly with a rate of 0.999. Figure 3 visualizes the obtained results after training for 48
hours. As we can see in the Figure, the agent learned to control the CPU constraint based on the measured



response time. Moreover, it is evident that the agent followed the periodic load pattern, which shows that
it attempts to adapt to the change of load pattern to have the minimum response time. Furthermore, we
can see that after 3000 steps the response time stabilizes despite the face that load pattern changes and we
expected change in response time. Finally, we continued the training up to 10000 steps and observed the
same pattern. These results confirm the potential of reinforcement learning to optimize control decisions in
network and systems management.
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Figure 3: Training results. Figure (a) shows the load pattern of the requests. Figure (b) shows the CPU
constraint that agent apply as vertical scaling in the environment. Figure (c) is the response time of the
service. Figure (d) shows the calculated reward.

References

[1] MongoDB, “Data model examples and patterns,” https://docs.mongodb.com/manual/tutorial/
deploy-replica-set/, 2008.

[2] R. Bellman, “A markovian decision process,” Journal of Mathematics and Mechanics, vol. 6, no. 5, pp.
679-684, 1957. [Online]. Available: http://www.jstor.org/stable/24900506

[3] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st ed. Cambridge, MA, USA:
MIT Press, 1998.



