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Aggregation is A Form of Problem Simplification

Original problem
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Aggregation is A Form of Problem Simplification

Original problem Simplified problem

' . ' Aggregation
O ) —

The Aggregation Methodology

© Combine groups of similar states into aggregate states.
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Aggregation is A Form of Problem Simplification

Original problem Simplified problem

' . ' Aggregation
O ) — —

The Aggregation Methodology
© Combine groups of similar states into aggregate states.
@ Formulate an aggregate dynamic programming problem based on these states.

© Solve the aggregate problem using some computational method.
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Aggregation is A Form of Problem Simplification

Original problem Simplified problem Simplified solution

' . ' Aggregation
O ) —

The Aggregation Methodology
© Combine groups of similar states into aggregate states.
@ Formulate an aggregate dynamic programming problem based on these states.
© Solve the aggregate problem using some computational method.

© Use the solution to the aggregate problem to compute a cost function approximation
for the original problem.
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Outline

© Aggregation with Representative States
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© Aggregation with Representative States

@ Example: Aggregation with Representative States for POMDPs
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© Aggregation with Representative States
@ Example: Aggregation with Representative States for POMDPs

© General Aggregation Methodology
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© Aggregation with Representative States
@ Example: Aggregation with Representative States for POMDPs
© General Aggregation Methodology

@ Case study: Aggregation for Cybersecurity
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Reminder on Notation

o State space: X ={1,...,n}, states are denoted by i, j.

e Control constraint set: U(i).

@ Cost of transitioning from state i to j given control u: g(i, u, j).

o Cost-to-go from state i: J(i).

@ Discount factor: «.

o Probability of transitioning from state i to j given control u: p;(u).
Equivalent formulation: xxi1 = f(Xk, Uk, wg).

pij(U),g(i, U,j)

© 19
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Representative States

o Introduce a subset A of the original states 1,...,n, called representative states.
o We use i, j to denote original states and x, y to denote representative states. J
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Aggregation Probabilities

o For each state i we define aggregation probabilities {¢i | x € A}. J

@ Intuitively, ¢ix expresses similarity between states i and x, where ¢, = 1.

Representative States | Aggregation Probabilities

7y
Relate
Original States to

Original State Space Representative States
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Dynamics of the Aggregate System

Original States

—

Dij (’U,), g(ia ua])

Aggregation
Probabilities
Pjy

Kim Hammar Approximation by Aggregation 2 April, 2025



Formulating the Aggregate Dynamic Programming Problem

@ State space: A (the set of representative states).

Kim Hammar Approximation by Aggregation 2 April, 2025



Formulating the Aggregate Dynamic Programming Problem

@ State space: A (the set of representative states).

o Control constraint set: U(i) (the original control constraint set).
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Formulating the Aggregate Dynamic Programming Problem

@ State space: A (the set of representative states).
o Control constraint set: U(i) (the original control constraint set).

@ Transition probabilities and costs

n
Py (U) = Z Ppxi(U)dji, for all representative states (x,y) and controls u,
i=1

n
g(x,u) = Z pxi(u)g(x, u, i), for all representative states x and controls w.
i=1
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Formulating the Aggregate Dynamic Programming Problem

@ State space: A (the set of representative states).
o Control constraint set: U(i) (the original control constraint set).

@ Transition probabilities and costs

n
Py (U) = Z Ppxi(U)dji, for all representative states (x,y) and controls u,
i=1

n
g(x,u) = Z pxi(u)g(x, u, i), for all representative states x and controls w.
i=1

Original system states

pii(u), g(i, u,j) '@

Representative states
I,\)X,V(u)v é’(X, U)
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Solving the Aggregate Dynamic Programming Problem

o The aggregate problem can be solved “exactly” using dynamic
programming/simulation.

*

@ The optimal cost from a representative state x in this problem is denoted by r;.

Cost
I'://
ry ’
1
* )
1 1
1 1
1 1
*
1 r 1
1 x 1
1 L/ 1
1 1 1
1 1 1 .
} t } States i
X X/ X/l
N _
~

Representative states
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Cost Difference Between the Aggregate and Original Problems

o The aggregate cost function r; is only defined for representative states x € A.
@ The optimal cost function J*(i) is defined for the entire state space /i = 1,...,n.

o For a representative state x, we generally have r; # J*(x).

Cost r,

PR

I P

States i

("<-"-————————-.
X 4--
\ X_

~
Representative states
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Cost Difference Between the Aggregate and Original Problems

o The aggregate cost function r; is only defined for representative states x € A.
@ The optimal cost function J*(i) is defined for the entire state space /i = 1,...,n.

o For a representative state x, we generally have r; # J*(x).

Cost r
What is the cost for j? J*(i)
Can interpolate from r; and r},. [ ]
1
* '
1 1
1 1
1 1
1 1 r, 1
1 1 S X 1
1 1 4 1
1 1 1 1
1 1 1 1 .
} } } t States |
X J X/ X//
. 7
~"

Representative states
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Using the Aggregate Solution to Approximate the Original Problem

@ We obtain an approximate cost function J for the original problem via interpolation:

Jiy =Y burr, i=1,...,n.

x€EA

Cost s,
J*(i)
J(

States |

X dmmmmmm

Representative states
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Using the Aggregate Solution to Approximate the Original Problem

@ We obtain an approximate cost function J for the original problem via interpolation:

Jiy =Y burr, i=1,...,n.

x€EA

@ Using this cost function, we can obtain a one-step lookahead policy:

’ "

n
u(i) € argmin § > pi(u) (g(isu, ) +aJ()) o i=1.n.
ueU(i) =
Cost rh
J*(i)
' (i)
} } } States |
X X X

Representative states
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What is the difference between the approximation J and the optimal cost function J*?
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Hard Aggregation

o Consider the case where ¢;, = 0 for all representative states x except one.

Footprint set of x (example)

\ . .
——— States (Fine Grid)

. — Representative States
(Coarse Grid)
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Hard Aggregation

o Consider the case where ¢;, = 0 for all representative states x except one.
o Let Si denote the set of states that aggregate to the representative state x.
i.e., the footprint of x, where {1,... ,n} = UxeA Sx.

Footprint set of x (example)

\ . .
——— States (Fine Grid)

. — Representative States
(Coarse Grid)
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Structure of the Cost Function Approximation

o In the case of hard aggregation, J(i)= erA oty =1, forallieS,. J
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Structure of the Cost Function Approximation

o In the case of hard aggregation, J(i)= erA oty =1, forallieS,. J

@ Hence, J is piecewise constant.

Kim Hammar Approximation by Aggregation 2 April, 2025



Structure of the Cost Function Approximation

o In the case of hard aggregation, J(i)= erA oty =1, forallieS,. J

@ Hence, J is piecewise constant.

Cost r,

| 0

i

>(<'n< --_--—-'1>><ﬁ*

rX/
4
1
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} States |
A - N N -
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SX/ SX//
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Approximation Error Bound in the Case of Hard Aggregation

@ Let € be the maximum variation of J* within a footprint set Sy, i.e.,
e—maxmaxJ J()|.
max max |°(7) = ()
V.
Cost
€ = max{e1, €2, €3} t J*(i)
J(i)
States i
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Approximation Error Bound in the Case of Hard Aggregation

Let € be the maximum variation of J* within a footprint set Sy, i.e.,

= (i) = I (G)I-
== e e |4 (6] — S

We refer to the difference |J*(i) — J(i)| as the approximation error.

This error is bounded as

|J*(i)—](i)|gﬁ i=1,...,n.

o Takeway: choose the footprint sets so that € is small.
V.
Cost
e = max{ey, €2, €3} ' J*(i)
™ J(i)
States i
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© Aggregation with Representative States

@ Example: Aggregation with Representative States for POMDPs
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Recap of Partially Observed Markov Decision Problems (POMDPs)

o State space X = {1,..., n}, observation space Z, and control constraint set U(/).
o Each state transition (i, /) generates a cost g(/, u,);

@ and an observation z with probability p(z | j, u).

Observationlzkﬂ

Belief Estimator
Belief State System | Belief State by
b1 = Fr(bk, ug, 2r41)

Belief State is a
“Probabilistic Estimate”
of the Unknown State

Cost g (br, ur)

Control of
Control u = pk(b) [ Gontroller Belief State

Mk
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Recap of Partially Observed Markov Decision Problems (POMDPs)

o State space X = {1,..., n}, observation space Z, and control constraint set U(/).
o Each state transition (i, /) generates a cost g(/, u,);
@ and an observation z with probability p(z | j, u).

o Let b(i) denote the conditional probability that the state is /, given the history.

Observationlzkﬂ

Belief Estimator
Belief State System | Belief State by
b1 = Fr(bk, ug, 2r41)

Belief State is a
“Probabilistic Estimate”
of the Unknown State

Cost g (br, ur)

Control of
Control u = pk(b) [ Gontroller Belief State

Mk
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Recap of Partially Observed Markov Decision Problems (POMDPs)

State space X = {1, ..., n}, observation space Z, and control constraint set U(i).
Each state transition (i, /) generates a cost g(/, u, j);

and an observation z with probability p(z | j, u).

Let b(i) denote the conditional probability that the state is /, given the history.
The belief state is defined as b = (b(1), b(2), ..., b(n)).

The belief b is updated using a belief estimator F(b, u, z).

Goal: Find a policy as a function of b that minimizes the cost.

Observationlzkﬂ

Belief Estimator
Belief State System | Belief State by
b1 = Fio(br, uk 2k+1)

Cost g (br, ur)

Belief State is a
“Probabilistic Estimate”
of the Unknown State

Control of
Belief State

Control ug = gy (br)

Controller
Mk
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Recap of Partially Observed Markov Decision Problems (POMDPs)

State space X = {1, ..., n}, observation space Z, and control constraint set U(i).
Each state transition (i, /) generates a cost g(/, u, j);

and an observation z with probability p(z | j, u).

Let b(i) denote the conditional probability that the state is /, given the history.
The belief state is defined as b = (b(1), b(2), ..., b(n)).

The belief b is updated using a belief estimator F(b, u, z).

Goal: Find a policy as a function of b that minimizes the cost.
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The Belief Space

@ The belief b resides in the belief space B, i.e., the n — 1 dimensional unit simplex.
o For example, if the states are {0, 1}, then b € [0, 1]. J

(0,0,1)

(0.25,0.55,0.2)

0.55

(0.4,0.6)
0.4 : 0.6
(1,0) M (0,1) (1,0,0) (0,1,0)
(a) 1-dimensional unit simplex. (b) 2-dimensional unit simplex.
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Aggregation of the Belief Space into Representative Beliefs

@ We can obtain representative beliefs via uniform discretization of the belief space:

ki —
A=<b|beB,b(i)==, k=pke{0,..., ,
| (i) pZ p.ki € { p}

where p serves as the discretization resolution.

B B B

Discretization resolution p =1 Discretization resolution p =5 Discretization resolution p = 10
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Hard Aggregation of the Belief Space

o We can implement hard aggregation via the nearest neighbor mapping: J

¢, = 1 if and only if y is the nearest neighbor of b,where b € B and y € A.

B B

l v el lelolN

Discretization resolution p =1 Discretization resolution p =5 Discretization resolution p = 10
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Example POMDP: Rocksample (4,3)

@ Problem: rover exploration on Mars to find “good” rocks with high scientific value.

Rocksample (4, 3)

ROCK 3

b(good) = 0.5

ROCK 2

b(good) = 0.5

1Ixa

ROCK T

sl

b(good) = 05
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Example POMDP: Rocksample (4,3)

@ Problem: rover exploration on Mars to find “good” rocks with high scientific value.

@ There are 3 rocks on a 4 x 4 grid. The rover does not know which rocks are good.

Rocksample (4, 3)

ROCK 3
b(good) = 0.5
ROCK 2
b(good) = 0.5 5
ROCK 1
)
b(good) = 0.5
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Example POMDP: Rocksample (4,3)

@ Problem: rover exploration on Mars to find “good” rocks with high scientific value.
@ There are 3 rocks on a 4 x 4 grid. The rover does not know which rocks are good.

@ The controls (north, south, east, west) (at cost 0.1).

Rocksample (4, 3)

ROCK 3
b(good) = 0.5
ROCK 2
b(good) = 0.5 5
ROCK 1
)
b(good) = 0.5
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Example POMDP: Rocksample (4,3)

@ Problem: rover exploration on Mars to find “good” rocks with high scientific value.
@ There are 3 rocks on a 4 x 4 grid. The rover does not know which rocks are good.
@ The controls (north, south, east, west) (at cost 0.1).

@ The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost —10 for sampling a good rock).

Rocksample (4, 3)
ROCK 3

b(good) = 0.5

ROCK 2

b(good) = 0.5

1Ixa

ROCK T

P

b(good) = 0.5
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Example POMDP: Rocksample (4,3)

@ Problem: rover exploration on Mars to find “good” rocks with high scientific value.
@ There are 3 rocks on a 4 x 4 grid. The rover does not know which rocks are good.
@ The controls (north, south, east, west) (at cost 0.1).

@ The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost —10 for sampling a good rock).

Control “check-I" applies a sensor to check the quality of rock / (at cost 1).

Accuracy of the sensor decreases exponentially with Euclidean distance to the rock.

Rocksample (4, 3)

ROCK 3

b(good) = 0.5

ROCK 2

b(good) = 0.5

1Ixa

ROCK T

b(good) = 0.5
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Example POMDP: Rocksample (4,3)

Problem: rover exploration on Mars to find “good” rocks with high scientific value.
There are 3 rocks on a 4 x 4 grid. The rover does not know which rocks are good.

The controls (north, south, east, west) (at cost 0.1).

The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost —10 for sampling a good rock).

Control “check-I" applies a sensor to check the quality of rock / (at cost 1).

o Accuracy of the sensor decreases exponentially with Euclidean distance to the rock.

@ The rover stops the mission by moving to the right, yielding an exit-cost of —10.

Rocksample (4, 3)

ROCK 3

ROCK 2

1Ixa

ROCK T

o)
BAD a ;
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Approximating Rocksample (4,3) via Representative Aggregation

@ The Rocksample (4,3) POMDP has a 127-dimensional belief space.
o We discretize the belief space with three different resolutions:

p = 1 leads to an aggregate problem with 128 representative beliefs.
p = 2 leads to an aggregate problem with 8256 representative beliefs.
p = 3 leads to an aggregate problem with 357760 representative beliefs.

Rocksample (4, 3)

ROCK 3

b(good) = 0.5

ROCK 2
BAD

b(good) = 0.5

&LIxd

ROCK 1

&k

b(good) = 0.5
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Approximating Rocksample (4,3) via Representative Aggregation

@ The Rocksample (4,3) POMDP has a 127-dimensional belief space.
o We discretize the belief space with three different resolutions:

p =1 leads to an aggregate problem with 128 representative beliefs.
p = 2 leads to an aggregate problem with 8256 representative beliefs.
p = 3 leads to an aggregate problem with 357760 representative beliefs.

,—(Aggregation Methodology) N\

The representative beliefs define an aggregate dynamic programming problem,
which we solve using value iteration to obtain J. We then use J to obtain a

one-step lookahead policy as

u(b) € argmin S &(b,u) +a Y p(z | b,u)J(F(b,u,2)) ¢, bEB.

ueU(i) ez

Kim Hammar Approximation by Aggregation 2 April, 2025



Animation Setup

Rocksample (4, 3)

ROCK 3
b(good) = 0.5
ROCK 2
BAD
b(good) = 0.5

LIXH

ROCK 1

BAD

b(good) = 0.5
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Animation Setup

Rocksample (4, 3)

ROCK 3
b(good) = 0.5
ROCK 2
BAD
b(good) = 0.5

LIXH

ROCK 1

BAD

b(good) = 0.5

Kim Hammar Approximation by Aggregation 2 April, 2025



Animation Setup

Rocksample (4, 3)

ROCK 3
b(good) = 0.5
ROCK 2
BAD
b(good) = 0.5 g
£
ROCK 1
H—— |
\
b(good) = 0.5
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Animation of Control Policy Based on Aggregation with p =1

Rocksample (4, 3)

ROCK 3

b(good) = 0.5

ROCK 2

LIXd

b(good) = 0.5
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Animation of Control Policy Based on Aggregation with p = 2

Rocksample (4, 3)
ROCK 3

b(good) = 0.5

LIXH

ROCK 1

of E

|b(good) = 0.5
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Animation of Control Policy Based on Aggregation with p =3

Rocksample (4, 3)
ROCK 3

b(good) = 0.5

ROCK 2

LIX"

b(good) = 0.5
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Computational Trade-Offs

@ The animations show that performance improves with the discretization resolution p.
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Computational Trade-Offs

@ The animations show that performance improves with the discretization resolution p.

@ This is not surprising. One can show that lim,_||J* — ]|| =0.
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Computational Trade-Offs

@ The animations show that performance improves with the discretization resolution p.
@ This is not surprising. One can show that lim,_||J* — ]|| =0.

@ However, the computational complexity increases with the resolution p.
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Computational Trade-Offs

@ The animations show that performance improves with the discretization resolution p

e This is not surprising. One can show that lim,_,.o||J* — J|| = 0.
@ However, the computational complexity increases with the resolution p.

—4—n=2 —x—n=4—4—-n=238

| Al
103
10?
10! — N o
‘ s 4 5 6 1 8
P

Discretization resolution

2 April, 2025
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Comparison Between Aggregation and Other POMDP Methods

POMDP States n Observations |Z| Controls |U| Discount factor «

RS (4,4) 257 2 9 0.95
RS (55) 801 2 10 0.95
RS (57) 3201 2 12 0.95
RS (7,8) 12545 2 13 0.95
RS (10,10) 102401 2 15 0.95

Table: POMDPs used for the experimental evaluation.

Method Aggregation  Point-based  Heuristic search  Policy-based  Exact DP

Our method

IP v
PBVI v
SARSOP v
POMCP

HSVI

AdaOPS

R-DESPOT

POMCPOW

PPO v
PPG v

SNENENENEN

Table: Methods used for the experimental evaluation; all methods are based on approximation
schemes except IP, which uses exact dynamic programming.
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Comparison Between Aggregation and Other POMDP Methods

POMDP

m RS (4.4) RS (5.5) RS (5.7) RS (7.8) RS (10, 10)
Aggregation -17.15/2.4  -18.12/1255 -17.51/180.1 -14.71/202 -11.59/500
P N/A N/A N/A N/A N/A
PBVI -8.24/300  -9.05/300 N/A N/A N/A
SARSOP -17.92/1072  -19.24/58.5 N/A N/A N/A
POMCP -8.64/1.6 -8.80/1.6 9.81/1.6 9.46/1.6  -8.98/1.6
HSVI -17.92/1072  -19.24/6.2  -24.69/721.3 N/A N/A
PPO 8.57/300  -8.15/300 -8.76/300 7.35/300  -4.59/1000
PPG -8.57/300 -8.24/300 -8.76,/300 -7.35/300 -4.41/1000
AdaOPS -16.95/1.6  -17.39/1.6  -16.14/1.6  -15.99/1.6 -15.20/1.6
R-DESPOT -12.07/16  -12.09/16  -12.00/1.6 -13.14/16  -10.41/1.6
POMCPOW -8.60/1.6 8.47/16 8.26/1.6 8.14/16  -7.88/1.6

Table: Evaluation results on the benchmark POMDPs; the first number in each cell is the total
discounted cost; the second is the compute time in minutes (online methods were given 1 second
planning time per control); cells with N/A indicate cases where a result could not be obtained for
computational reasons. RS(m,l) stands for an instance of Rocksample with an m x m grid and /
rocks.

Kim Hammar
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A Fifteen-Minute Break

o Digest the first half of the lecture.
@ The next half will cover

General aggregation; and
a case study of using aggregation for network security.
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© Aggregation with Representative States
@ Example: Aggregation with Representative States for POMDPs

© General Aggregation Methodology
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General Aggregation: Replace Representative States with Subsets

o Introduce a finite set of aggregate states A.
o Each aggregate state x € A is associated with a disjoint subset Ik C {1,...,n}. J

State space {1,...,n} Aggregate states A
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General Aggregation: Replace Representative States with Subsets

o Introduce a finite set of aggregate states A.
o Each aggregate state x € A is associated with a disjoint subset Ik C {1,...,n}. J

State space {1,...,n} Aggregate states A

Question

Why is aggregation with rep. states a special case of general aggregation?
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General Aggregation: Replace Representative States with Subsets

o Introduce a finite set of aggregate states A.
o Each aggregate state x € A is associated with a disjoint subset Ik C {1,...,n}. }

State space {1,...,n} Aggregate states A

— Question .

Why is aggregation with rep. states a special case of general aggregation?

\.

— Answer <

If each I contains a single state, we obtain the representative states framework.
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Aggregation Probabilities

Q aggregate state©

State space {1,...,n}
For each state j € {1,...,n}, we associate
@ aggregation probabilities {¢jx | x € A}, where ¢j =1 for all j € . J
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Disaggregation Probabilities

State space {1,...,n} Aggregate states A
For every aggregate state x € A, we associate
o disaggregation probabilities {dyi | i = 1,...,n}, where dy; = 0 for all i & I. J
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Dynamic System of General Aggregation

o Similar to the earlier case, the aggregation leads to a dynamic system. J

@ This system can be understood through the following transition diagram.

Original states

@ pii(u), g(i, u,J)

Aggregate states
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How to select the aggregate states?
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Feature-Based Aggregation

@ Suppose that we have a feature mapping F(/) that maps states into feature vectors.

@ The mapping F can be obtained using engineering intuition or deep learning.

— o e e e o o
features

State space {1,...,n} Feature space F Aggregate states A
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Feature-Based Aggregation

@ Suppose that we have a feature mapping F(/) that maps states into feature vectors.
@ The mapping F can be obtained using engineering intuition or deep learning.

o We can then form the aggregate states I, by grouping states with similar features.

— o e e e o o
features

State space {1,...,n} Feature space F Aggregate states A
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© Aggregation with Representative States
@ Example: Aggregation with Representative States for POMDPs
© General Aggregation Methodology

Q@ Case study: Aggregation for Cybersecurity
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Traditional /Current Network Security Operations
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Adaptive Control Methodology for Network Security Operations
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Adaptive Control Methodology for Network Security
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Adaptive Control Methodology for Network Security
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Adaptive Control Methodology for Network Security

System Identification
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Adaptive Control Methodology for Network Security
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Adaptive Control Methodology for Network Security
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Adaptive Control Methodology for Network Security
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Adaptive Control Methodology for Network Security
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Problem: Finding an Effective Network Security Policy
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Problem: Finding an Effective Network Security Policy
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Problem: Finding an Effective Network Security Policy

measurements
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Problem: Finding an Effective Network Security Policy

security controls uy measurements zy

o

.‘ .‘ state xx C

L S &
Re—a—8—=

@ Mathematically, the problem can be formulated as a POMDP.

@ Hidden states: the security status of each network component.
o For example, xx = (xk1,- .-, Xkm), where

M is the number of components.
Xi,j = 1 if component i is compromised at stage k, O otherwise.
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Exploit of cvE-2016-10033

Probability

0 2000 4000 6000 8000 0 2000 4000 6000 8000
Number of security alerts zx Number of security alerts z

I network intrusion THZI normal operation

@ The system emits observations in the form of logs, performance metrics, and alerts. J

@ These observations give partial information about the security of the system.
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Controls

Old path -=-->
Flow control

By redirecting traffic, the defender
can isolate malicious behavior.

New path ——>

Server

Access control
By adjusting resource permissions,
defenders can prevent attackers
from compromising critical assets.

Replication control
Replication can ensure that multiple
replicas of services remain available
even when some are compromised.

__J -  J
Service

[ Consensus protocol
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Cost

>

Operational cost

L EES R ENRE

Loss

Survivability

T -
i X > Recovery time
Tolerance |: Response time

Service/security

= Time

Attack event

@ The defender wants to minimize the impact of potential attacks.
@ At the same time, the defender wants to maintain operational services to clients.
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Example POMDP in The Context of Network Security

o Networked system with M components.

Kim Hammar
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Example POMDP in The Context of Network Security

o Networked system with M components.

@ Each component can be in two states: 1 (compromised) or 0 (safe).
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Example POMDP in The Context of Network Security

o Networked system with M components.
@ Each component can be in two states: 1 (compromised) or 0 (safe).

@ Each component logs security alerts z in real-time.
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Example POMDP in The Context of Network Security

o Networked system with M components.
@ Each component can be in two states: 1 (compromised) or 0 (safe).
@ Each component logs security alerts z in real-time.

@ Two controls per component: 1 (recovery) and 0 (wait).
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Example POMDP in The Context of Network Security

Networked system with M components.

Each component can be in two states: 1 (compromised) or 0 (safe).

Each component logs security alerts z in real-time.

Two controls per component: 1 (recovery) and 0 (wait).

Compromised components and unnecessary recoveries incur costs.
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Challenge: Curse of Dimensionality

104 —— state space size n

—a&— observation space size |Z|

5.10°

2 4 6 8 10 12 14

M: number of system components. (Assuming 4 observations per component.)

101 Aot docrdercdreds

Scalability challenge)

Problem complexity grows exponentially with the system size.
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Approximating Large-Scale POMDPs via Aggregation

@ For the networked systems that we consider, the number of (hidden) states is in the
order of 10°°.

o We manage the computational complexity using feature-based aggregation.
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Approximating Large-Scale POMDPs via Aggregation

@ For the networked systems that we consider, the number of (hidden) states is in the
order of 10°°.

o We manage the computational complexity using feature-based aggregation.

— ° e o o o
X
o e o o o
! e o o o o o
State space X Feature space F Aggregate feature belief space
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Designing Features for Aggregation

o Consider the infrastructure to the right.

@ It comprises 64 components.

= () =/ e
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Designing Features for Aggregation

Consider the infrastructure to the right.

@ It comprises 64 components.

@ Each component has a binary state:

> State 1 means compromised.
> State 0 means safe.

= () =/ e

= 2% states.

o = (2% — 1)-dimensional belief space.
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Designing Features for Aggregation

@ We manage the complexity using
feature-based aggregation.

@ Introduce a set of features F.

@ For example,
F = {Infrastructure-compromised}.

@ Then we only have 2 feature
combinations:

Q@ Safe
@ Compromised

@ — 1-dimensional belief space.
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Designing Features for Aggregation

Finer aggregations can be obtained by
segmenting the network into zones.

=
o Let Zone-k represent the compromised one 2
one
state of zone k.
Zone 1
o If F = {Zone-1, Zone-2, Zone-3}. —
Zone 3

@ Then we have 8 feature combinations.
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Designing Features for Aggregation

o If F ={Zone-1, Zone-2, Zone-3, Zone-4}.

Then we have 16 feature combinations.

@ etc
Zone 1 Zone 2
o Discretize the belief space over features into Zenels
~ 200, 000 representative beliefs.
@ — Solve the aggregate problem to obtain ‘ T )

the cost-function approximation J.

Use J to define a policy p, e.g., a one-step
lookahead policy.

Aggregation allows to control the trade-off between computational cost and performance.J
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Animation: Security Policy Obtained From Aggregation

NG
— |

Zone 1 Zone 2
b(1) = x b(1) = x Zone 3
b(1) = x
—
Zone 4
b(1) = x

Time step=x, Cost: y, Avg. cost per time step =y,
Control:
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Animation: Security Policy Obtained From Aggregation
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Time step=x, Cost: y, Avg. cost per time step =y,
Control:
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Animation: Security Policy Obtained From Aggregation
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Combining Aggregation with Rollout for On-line Policy Adaptation

NETWORKED SYSTEM

Control ux

System
metrics
Zk

. Adapted security policy

(1) Evaluation of the base
policy through rollouts

—— Probability
O Particle

(2) Policy adaption through
lookahead optimization

L OFFLINE
. Optimization

Aggregate belief space

Belief space

Kim Hammar
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Experimental Results On A Standard Benchmark Security Problem

Method Offline/Online compute (min/s)  State estimation Cost
AGGREGATION 8.5/0.01 PARTICLE FILTER 61.72 £ 3.96
PPO 1000/0.01 LATEST OBSERVATION 341 £133
PPO 1000/0.01 PARTICLE FILTER 326 =116
PPG 1000/0.01 LATEST OBSERVATION 328+ 178
PPG 1000/0.01 PARTICLE FILTER 312 £ 163
DQN 1000/0.01 LATEST OBSERVATION 516 + 291
DQN 1000,/0.01 PARTICLE FILTER 492 £ 204
PPO-+ACTION PRUNING 300,/0.01 LATEST OBSERVATION  57.45 +2.44
PPO+ACTION PRUNING 300/0.01 PARTICLE FILTER 56.45 £+ 2.81
POMCP 0/15 PARTICLE FILTER 53.08 £3.78
POMCP 0/30 PARTICLE FILTER 53.18 £ 3.42
AGGREGATION+ROLLOUT 8.5/14.80 PARTICLE FILTER 37.89 £ 1.54

Numbers indicate the mean and the standard deviation from 1000 evaluations. We use 427500
representative beliefs, lookahead horizon ¢ = 2, and truncated rollout with horizon m = 20.
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Conclusion

o Aggregation provides a general methodology for approximate dynamic programming.

© Combine groups of similar states into aggregate states.

@ Formulate an aggregate dynamic programming problem.

© Solve the aggregate problem using some computational method.

@ Use the aggregate solution to approximate a solution to the original problem.

Original problem Simplified problem Simplified solution

Aggregation
——

Kim Hammar Approximation by Aggregation 2 April, 2025



About the Next Lecture

@ Dynamic programming for mini-max problems
@ Rollout and approximation in value space for mini-max problems

@ A meta algorithm for computer chess based on reinforcement learning.
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About the Next Lecture

@ Dynamic programming for mini-max problems
@ Rollout and approximation in value space for mini-max problems

@ A meta algorithm for computer chess based on reinforcement learning.

Please review Section 2.12 of the “Course in RL" textbook.
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About the Next Lecture

@ Dynamic programming for mini-max problems
@ Rollout and approximation in value space for mini-max problems

@ A meta algorithm for computer chess based on reinforcement learning.

Please review Section 2.12 of the “Course in RL" textbook.

Recommended videolecture (Computer chess with model predictive control and
reinforcement learning) at https://www.youtube.com/watch?v=88LDkHaf1sU. J
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