
Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,

Model Predictive Control, Discrete Optimization, Applications
Arizona State University

Course CSE 691, Spring 2025

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html1

Dr. Kim Hammar (khammar1@asu.edu), Prof. Dimitri P. Bertsekas
(dimitrib@mit.edu), and Dr. Yuchao Li (yuchaoli@asu.edu)

Guest Lecture
Approximation in Value Space using Aggregation,
with Applications to POMDPs and Cybersecurity

1Dimitri P. Bertsekas. A Course in Reinforcement Learning. 2nd edition. Athena Scientific, 2025.
Kim Hammar Approximation by Aggregation 2 April, 2025 1 / 39

Aggregation is A Form of Problem Simplification

Original problem Simplified problem Simplified solution

x1 x2 . . .

y1 y2 . . .

z1 z2 . . .

x y

z

x y

z
u = 1

u = 0u = 2
Aggregation

The Aggregation Methodology
1 Combine groups of similar states into aggregate states.
2 Formulate an aggregate dynamic programming problem based on these states.
3 Solve the aggregate problem using some computational method.
4 Use the solution to the aggregate problem to compute a cost function approximation

for the original problem.

Kim Hammar Approximation by Aggregation 2 April, 2025 2 / 39

Aggregation is A Form of Problem Simplification

Original problem Simplified problem Simplified solution

x1 x2 . . .

y1 y2 . . .

z1 z2 . . .

x y

z

x y

z
u = 1

u = 0u = 2
Aggregation

The Aggregation Methodology
1 Combine groups of similar states into aggregate states.
2 Formulate an aggregate dynamic programming problem based on these states.
3 Solve the aggregate problem using some computational method.
4 Use the solution to the aggregate problem to compute a cost function approximation

for the original problem.

Kim Hammar Approximation by Aggregation 2 April, 2025 2 / 39

Aggregation is A Form of Problem Simplification

Original problem Simplified problem Simplified solution

x1 x2 . . .

y1 y2 . . .

z1 z2 . . .

x y

z

x y

z
u = 1

u = 0u = 2
Aggregation

The Aggregation Methodology
1 Combine groups of similar states into aggregate states.
2 Formulate an aggregate dynamic programming problem based on these states.
3 Solve the aggregate problem using some computational method.
4 Use the solution to the aggregate problem to compute a cost function approximation

for the original problem.

Kim Hammar Approximation by Aggregation 2 April, 2025 2 / 39

Aggregation is A Form of Problem Simplification

Original problem Simplified problem Simplified solution

x1 x2 . . .

y1 y2 . . .

z1 z2 . . .

x y

z

x y

z
u = 1

u = 0u = 2
Aggregation

The Aggregation Methodology
1 Combine groups of similar states into aggregate states.
2 Formulate an aggregate dynamic programming problem based on these states.
3 Solve the aggregate problem using some computational method.
4 Use the solution to the aggregate problem to compute a cost function approximation

for the original problem.

Kim Hammar Approximation by Aggregation 2 April, 2025 2 / 39

Outline

1 Aggregation with Representative States

2 Example: Aggregation with Representative States for POMDPs

3 General Aggregation Methodology

4 Case study: Aggregation for Cybersecurity

Kim Hammar Approximation by Aggregation 2 April, 2025 3 / 39

Outline

1 Aggregation with Representative States

2 Example: Aggregation with Representative States for POMDPs

3 General Aggregation Methodology

4 Case study: Aggregation for Cybersecurity

Kim Hammar Approximation by Aggregation 2 April, 2025 3 / 39

Outline

1 Aggregation with Representative States

2 Example: Aggregation with Representative States for POMDPs

3 General Aggregation Methodology

4 Case study: Aggregation for Cybersecurity

Kim Hammar Approximation by Aggregation 2 April, 2025 3 / 39

Outline

1 Aggregation with Representative States

2 Example: Aggregation with Representative States for POMDPs

3 General Aggregation Methodology

4 Case study: Aggregation for Cybersecurity

Kim Hammar Approximation by Aggregation 2 April, 2025 3 / 39

Reminder on Notation

State space: X = {1, . . . , n}, states are denoted by i , j.
Control constraint set: U(i).
Cost of transitioning from state i to j given control u: g(i , u, j).
Cost-to-go from state i : J(i).
Discount factor: α.
Probability of transitioning from state i to j given control u: pij(u).

▶ Equivalent formulation: xk+1 = f (xk , uk , wk).

i j
pij(u), g(i , u, j)

Kim Hammar Approximation by Aggregation 2 April, 2025 4 / 39

Representative States

Introduce a subset A of the original states 1, . . . , n, called representative states.
We use i , j to denote original states and x , y to denote representative states. min

u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States Critic Actor Approximate PI Range of Weighted Projections

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

Kim Hammar Approximation by Aggregation 2 April, 2025 5 / 39

Aggregation Probabilities

For each state i we define aggregation probabilities {ϕix | x ∈ A}.
Intuitively, ϕix expresses similarity between states i and x , where ϕxx = 1.

j2 j3 y1 y2 y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

x j1 j j3 y1 y2 y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

x j1 j2 j3 y1 y2 y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

x j1 j2 j y1 y2 y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

x j1 j2 j3 y1 y2 y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

x j1 j2 j3 y1 y y3

⇤ |⇥| (1 ⇤)|⇥| l(1 ⇤)⇥| ⇤⇥ O A B C |1 ⇤⇥|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
(�)
µ (⇥r)

Tµ(⇥r) ⇥r = �T
(�)
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ �TJ J̄ T J̄ �T J̄

Value Iterate T (⇥rk) = g + �P⇥rk Projection on S ⇥rk ⇥rk+1

Solution of J̃µ = �Tµ(J̃µ) ⇤ = 0 ⇤ = 1 0 < ⇤ < 1

Route to Queue 2
h�(n) ⇤� ⇤µ ⇤ hµ,�(n) = (⇤µ ⇤)Nµ(n)
n 1 (n 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ�(i + 1) µ µ p

1 0 ⌅j(u), pjk(u) ⌅k(u), pki(u) J�(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias �Jµ Slope J̃µ =
⇥rµ

Transition diagram and costs under policy {µ⇥, µ⇥, . . .} M q(µ)

c + E
z

⇤
J�

�
pf0(z)

pf0(z) + (1 p)f1(z)

⇥⌅

Cost = 0 Cost = 1

⇥i(u)pij(u)
⇥

⇥j(u)pjk(u)
⇥

⇥k(u)pki(u)
⇥

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u)

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u)

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u)

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x oarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy Aggregation Probabilities Relate to

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

S1 S2 S3 Sℓ Sm−1 Sm

Sx1 Sxℓ Sxm x1 xℓ xm r∗
x1 r∗

xℓ r∗
xm Footprint Sets J̃(i) J̃(j) =

∑
y∈A φjyr∗

y

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

n∑

i=1

pxj(u)φjy ĝ(x, u) =

n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J∗(i) Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy φjy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy wit Aggregation Probabilities Relate to Rm r∗
m−1 r∗

m

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

1

S1 S2 S3 Sℓ Sm−1 Sm

Sx1 Sxℓ Sxm x1 xℓ xm r∗
x1 r∗

xℓ r∗
xm Footprint Sets J̃(i) J̃(j) =

∑
y∈A φjyr∗

y

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

n∑

i=1

pxj(u)φjy ĝ(x, u) =

n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J∗(i) Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy φjy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to Rm r∗
m−1 r∗

m

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

1

S1 S2 S3 Sℓ Sm−1 Sm

Sx1 Sxℓ Sxm x1 xℓ xm r∗
x1 r∗

xℓ r∗
xm Footprint Sets J̃(i) J̃(j) =

∑
y∈A φjyr∗

y

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

n∑

i=1

pxj(u)φjy ĝ(x, u) =

n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J∗(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy φjy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to Rm r∗
m−1 r∗

m

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

1

Kim Hammar Approximation by Aggregation 2 April, 2025 6 / 39

Dynamics of the Aggregate System

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j , . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y ∈ S, u ∈ U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and φjy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to φjy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy , ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x ∈ S, u ∈ U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
∑

y∈S

φjyQ̂(y, u), j = 1, . . . , n, u ∈ U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y ∈ S (the vector {φjy | j = 1, . . . , n}), and the
corresponding coefficients that w the basis functions are the Q-factors
of the aggregate problem Q̂(y, u y S, u ∈ U .

Let us now apply Q-learnin the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} ⊂ S × U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities φjky. Then
the Q-factor of (xk, uk) is updated using a stepsize γk > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 − γk)Q̂k(x, u) + γk(FkQ̂k)(x, u), ∀ (x, u), (6.92)

ĝ(x, u) =
n⌥

i=1

dxi

n⌥

j=1

pij(u)g(i, u, j)

, g(i, u, j)
atrix ⇥ y1 y2 y3 System Space State i µ(i, r) µ(·, r) Policy

Q̃µ(i, u, r) J̃µ(i, r) G(r) Transition Matrix P (r) Controller Control

Evaluate Approximate Cost Steady-State Distribution ⌅(r) Average
Cost ⇥(r)

⇧j1y1 ⇧j1y2 ⇧j1y3 j1 j2 j3 y1 y2 y3 Original State Space

⇥ =

�
⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⇥
⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

1 2 3 4 5 6 7 8 9 x1 x2 x3 x4

⇤ |�| (1 ⇤)|�| l(1 ⇤)�| ⇤� O A B C |1 ⇤�|
Asynchronous Initial state Decision µ(i) x Initial state f(x, u,w)

Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ �Jµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation ⇥r = �T
()
µ (⇥r)

Tµ(⇥r) ⇥r = �T
()
µ (⇥r)

�Jµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projection Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy Aggregation Probabilities

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy Aggregation robabilities

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy Aggregatio Probabilities

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =
n∑

i=1

pxj(u)φjy ĝ(x, u) =
n∑

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections Original States States (Fine Grid) Original State Space

dxi = 0 for i /∈ Ix φjy = 1 for j ∈ Iy

x pxj1(u) pxj2(u) pxj3(u) φj1y1 φj1y2 φj1y3 φjy with Aggregation Probabilities Relate to

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

1

Kim Hammar Approximation by Aggregation 2 April, 2025 7 / 39

Formulating the Aggregate Dynamic Programming Problem

State space: A (the set of representative states).
Control constraint set: U(i) (the original control constraint set).
Transition probabilities and costs

p̂xy (u) =
n∑

i=1

pxi(u)ϕji , for all representative states (x , y) and controls u,

ĝ(x , u) =
n∑

i=1

pxi (u)g(x , u, i), for all representative states x and controls u.

i j

x y
Representative states

p̂xy (u), ĝ(x , u)

Original system states
pij(u), g(i , u, j)

x = i ϕjy

Kim Hammar Approximation by Aggregation 2 April, 2025 8 / 39

Formulating the Aggregate Dynamic Programming Problem

State space: A (the set of representative states).
Control constraint set: U(i) (the original control constraint set).
Transition probabilities and costs

p̂xy (u) =
n∑

i=1

pxi(u)ϕji , for all representative states (x , y) and controls u,

ĝ(x , u) =
n∑

i=1

pxi (u)g(x , u, i), for all representative states x and controls u.

i j

x y
Representative states

p̂xy (u), ĝ(x , u)

Original system states
pij(u), g(i , u, j)

x = i ϕjy

Kim Hammar Approximation by Aggregation 2 April, 2025 8 / 39

Formulating the Aggregate Dynamic Programming Problem

State space: A (the set of representative states).
Control constraint set: U(i) (the original control constraint set).
Transition probabilities and costs

p̂xy (u) =
n∑

i=1

pxi(u)ϕji , for all representative states (x , y) and controls u,

ĝ(x , u) =
n∑

i=1

pxi (u)g(x , u, i), for all representative states x and controls u.

i j

x y
Representative states

p̂xy (u), ĝ(x , u)

Original system states
pij(u), g(i , u, j)

x = i ϕjy

Kim Hammar Approximation by Aggregation 2 April, 2025 8 / 39

Formulating the Aggregate Dynamic Programming Problem

State space: A (the set of representative states).
Control constraint set: U(i) (the original control constraint set).
Transition probabilities and costs

p̂xy (u) =
n∑

i=1

pxi(u)ϕji , for all representative states (x , y) and controls u,

ĝ(x , u) =
n∑

i=1

pxi (u)g(x , u, i), for all representative states x and controls u.

i j

x y
Representative states

p̂xy (u), ĝ(x , u)

Original system states
pij(u), g(i , u, j)

x = i ϕjy

Kim Hammar Approximation by Aggregation 2 April, 2025 8 / 39

Solving the Aggregate Dynamic Programming Problem

The aggregate problem can be solved “exactly” using dynamic
programming/simulation.
The optimal cost from a representative state x in this problem is denoted by r∗

x .

x

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

States i

Cost

Representative states

Kim Hammar Approximation by Aggregation 2 April, 2025 9 / 39

Cost Difference Between the Aggregate and Original Problems

The aggregate cost function r∗
x is only defined for representative states x ∈ A.

The optimal cost function J∗(i) is defined for the entire state space i = 1, . . . , n.
For a representative state x , we generally have r∗

x ̸= J∗(x).

y

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

J∗(i)

States i

Cost

Representative states

Kim Hammar Approximation by Aggregation 2 April, 2025 10 / 39

Cost Difference Between the Aggregate and Original Problems

The aggregate cost function r∗
x is only defined for representative states x ∈ A.

The optimal cost function J∗(i) is defined for the entire state space i = 1, . . . , n.
For a representative state x , we generally have r∗

x ̸= J∗(x).

j

What is the cost for j?
Can interpolate from r∗

x and r∗
x′ .

x

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

J∗(i)

States i

Cost

Representative states

Kim Hammar Approximation by Aggregation 2 April, 2025 10 / 39

Using the Aggregate Solution to Approximate the Original Problem

We obtain an approximate cost function J̃ for the original problem via interpolation:

J̃(i) =
∑
x∈A

ϕix r∗
x , i = 1, . . . , n.

Using this cost function, we can obtain a one-step lookahead policy:

µ(i) ∈ arg min
u∈U(i)

{
n∑

j=1

pij(u)
(
g(i , u, j) + αJ̃(j)

)}
, i = 1, . . . , n.

x

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

J∗(i)
J̃(i)

States i

Cost

Representative states

Kim Hammar Approximation by Aggregation 2 April, 2025 11 / 39

Using the Aggregate Solution to Approximate the Original Problem

We obtain an approximate cost function J̃ for the original problem via interpolation:

J̃(i) =
∑
x∈A

ϕix r∗
x , i = 1, . . . , n.

Using this cost function, we can obtain a one-step lookahead policy:

µ(i) ∈ arg min
u∈U(i)

{
n∑

j=1

pij(u)
(
g(i , u, j) + αJ̃(j)

)}
, i = 1, . . . , n.

x

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

J∗(i)
J̃(i)

States i

Cost

Representative states

Kim Hammar Approximation by Aggregation 2 April, 2025 11 / 39

Using the Aggregate Solution to Approximate the Original Problem

Approximating the Original Problem
We obtain an approximate cost function J̃ for the original problem via interpolation:

J̃(j) =
∑
y∈A

ϕjy r∗
y , j = 1, . . . , n.

Using this cost function, we can obtain a one-step lookahead policy:

µ(i) ∈ arg min
u∈U

{
n∑

j=1

pij(u)
(
g(i , u, j) + αJ̃(j)

)}
, i = 1, . . . , n.

x

r∗
x

x ′

r∗
x′

x ′′

r∗
x′′

J∗(i)
J̃(i)

States i

Cost

Representative states

What is the difference between the approximation J̃ and the optimal cost function J∗?

Kim Hammar Approximation by Aggregation 2 April, 2025 11 / 39

Hard Aggregation

Consider the case where ϕjy = 0 for all representative states x except one.
Let Sx denote the set of states that aggregate to the representative state x .

▶ i.e., the footprint of x , where {1, . . . , n} =
⋃

x∈A Sx .

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States Critic Actor Approximate PI Range of Weighted Projections

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

Footprint set of x (example)

x

Kim Hammar Approximation by Aggregation 2 April, 2025 12 / 39

Hard Aggregation

Consider the case where ϕjy = 0 for all representative states x except one.
Let Sx denote the set of states that aggregate to the representative state x .

▶ i.e., the footprint of x , where {1, . . . , n} =
⋃

x∈A Sx .

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States Critic Actor Approximate PI Range of Weighted Projections

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States (Coarse Grid) Critic Actor Approximate PI

Range of Weighted Projections States (Fine Grid)

Sample Q-Factor βs
k = gs

k + J̃k+1(xs
k+1) J̃k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (ϵ + 2αδ)/(1 − α)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) − Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

1

Footprint set of x (example)

x

Kim Hammar Approximation by Aggregation 2 April, 2025 12 / 39

Structure of the Cost Function Approximation

In the case of hard aggregation, J̃(i)=
∑

x∈A ϕix r∗
x = r∗

y for all i ∈ Sy .

Hence, J̃ is piecewise constant.

r∗
x

r∗
x′

r∗
x′′

J∗(i)
J̃(i)

States i

Cost

Sx Sx′ Sx′′

Kim Hammar Approximation by Aggregation 2 April, 2025 13 / 39

Structure of the Cost Function Approximation

In the case of hard aggregation, J̃(i)=
∑

x∈A ϕix r∗
x = r∗

y for all i ∈ Sy .

Hence, J̃ is piecewise constant.

r∗
x

r∗
x′

r∗
x′′

J∗(i)
J̃(i)

States i

Cost

Sx Sx′ Sx′′

Kim Hammar Approximation by Aggregation 2 April, 2025 13 / 39

Structure of the Cost Function Approximation

In the case of hard aggregation, J̃(i)=
∑

x∈A ϕix r∗
x = r∗

y for all i ∈ Sy .

Hence, J̃ is piecewise constant.

r∗
x

r∗
x′

r∗
x′′

J∗(i)
J̃(i)

States i

Cost

Sx Sx′ Sx′′

Kim Hammar Approximation by Aggregation 2 April, 2025 13 / 39

Approximation Error Bound in the Case of Hard Aggregation

Let ϵ be the maximum variation of J∗ within a footprint set Sx , i.e.,

ϵ = max
x∈A

max
i,j∈Sx

|J∗(i) − J∗(j)|.

We refer to the difference |J∗(i) − J̃(i)| as the approximation error .
This error is bounded as

|J∗(i) − J̃(i)| ≤ ϵ

1 − α
i = 1, . . . , n.

Takeway: choose the footprint sets so that ϵ is small.

J∗(i)
J̃(i)

States i

Cost

ϵ1
ϵ2

ϵ3

ϵ = max{ϵ1, ϵ2, ϵ3}

Kim Hammar Approximation by Aggregation 2 April, 2025 14 / 39

Approximation Error Bound in the Case of Hard Aggregation

Let ϵ be the maximum variation of J∗ within a footprint set Sx , i.e.,

ϵ = max
x∈A

max
i,j∈Sx

|J∗(i) − J∗(j)|.

We refer to the difference |J∗(i) − J̃(i)| as the approximation error .
This error is bounded as

|J∗(i) − J̃(i)| ≤ ϵ

1 − α
i = 1, . . . , n.

Takeway: choose the footprint sets so that ϵ is small.

J∗(i)
J̃(i)

States i

Cost

ϵ1
ϵ2

ϵ3

ϵ = max{ϵ1, ϵ2, ϵ3}

Kim Hammar Approximation by Aggregation 2 April, 2025 14 / 39

Outline

1 Aggregation with Representative States

2 Example: Aggregation with Representative States for POMDPs

3 General Aggregation Methodology

4 Case study: Aggregation for Cybersecurity

Kim Hammar Approximation by Aggregation 2 April, 2025 14 / 39

Recap of Partially Observed Markov Decision Problems (POMDPs)

State space X = {1, . . . , n}, observation space Z , and control constraint set U(i).
Each state transition (i , j) generates a cost g(i , u, j);
and an observation z with probability p(z | j, u).
Let b(i) denote the conditional probability that the state is i , given the history.
The belief state is defined as b =

(
b(1), b(2), . . . , b(n)

)
.

The belief b is updated using a belief estimator F (b, u, z).
Goal: Find a policy as a function of b that minimizes the cost.

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller k

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State k Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State k Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyry bk Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y b Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

zk bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

zk+1 bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

zk+1 bk+1 = Fk(bk, uk, zk+1) Cost ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

TµJ Approximate Policy Evaluation for µ Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

E↵ective Terminal Cost Approximation Observation

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

1

Kim Hammar Approximation by Aggregation 2 April, 2025 15 / 39

Recap of Partially Observed Markov Decision Problems (POMDPs)

State space X = {1, . . . , n}, observation space Z , and control constraint set U(i).
Each state transition (i , j) generates a cost g(i , u, j);
and an observation z with probability p(z | j, u).
Let b(i) denote the conditional probability that the state is i , given the history.
The belief state is defined as b =

(
b(1), b(2), . . . , b(n)

)
.

The belief b is updated using a belief estimator F (b, u, z).
Goal: Find a policy as a function of b that minimizes the cost.

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller k

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State k Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State k Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyry bk Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y b Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

zk bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

zk+1 bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

zk+1 bk+1 = Fk(bk, uk, zk+1) Cost ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

TµJ Approximate Policy Evaluation for µ Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

E↵ective Terminal Cost Approximation Observation

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

1

Kim Hammar Approximation by Aggregation 2 April, 2025 15 / 39

Recap of Partially Observed Markov Decision Problems (POMDPs)

State space X = {1, . . . , n}, observation space Z , and control constraint set U(i).
Each state transition (i , j) generates a cost g(i , u, j);
and an observation z with probability p(z | j, u).
Let b(i) denote the conditional probability that the state is i , given the history.
The belief state is defined as b =

(
b(1), b(2), . . . , b(n)

)
.

The belief b is updated using a belief estimator F (b, u, z).
Goal: Find a policy as a function of b that minimizes the cost.

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller k

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State k Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State k Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyry bk Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y b Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

zk bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

zk+1 bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

zk+1 bk+1 = Fk(bk, uk, zk+1) Cost ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

TµJ Approximate Policy Evaluation for µ Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

E↵ective Terminal Cost Approximation Observation

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

1

Kim Hammar Approximation by Aggregation 2 April, 2025 15 / 39

Recap of Partially Observed Markov Decision Problems (POMDPs)

State space X = {1, . . . , n}, observation space Z , and control constraint set U(i).
Each state transition (i , j) generates a cost g(i , u, j);
and an observation z with probability p(z | j, u).
Let b(i) denote the conditional probability that the state is i , given the history.
The belief state is defined as b =

(
b(1), b(2), . . . , b(n)

)
.

The belief b is updated using a belief estimator F (b, u, z).
Goal: Find a policy as a function of b that minimizes the cost.

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller k

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State k Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State k Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyry bk Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps Φr∗
λ

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 ik b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y b Control uk = µk(bk)

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S" Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy Selective Depth Rollout Policy µ

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space t+k t−k

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

zk bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

zk+1 bk+1 = Fk(bk, uk, zk+1) ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

zk+1 bk+1 = Fk(bk, uk, zk+1) Cost ĝk(bk, uk)

SC ` Stages Riccati Equation Iterates P P0 P1 P2 �2 1
2P

P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k wk

Spider 1 Spider 2 Fly 1 Fly 2 n 1 n n + 1 n 2 0 1 2

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n 1 n p11 p12 p1n p1(n 1) p2(n 1)

...

p22 p2n p2(n 1) p2(n 1) p(n 1)(n 1) p(n 1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1 pd pw 1 pw

0 0 1 0 0 1 1.5 0.5 1 1 0.5 1.5 0 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Optimal Cost Approximation

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

1

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

TµJ Approximate Policy Evaluation for µ Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

The system can be kept at the origin at zero cost by some control i.e.,

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

1

E↵ective Terminal Cost Approximation Observation

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

1

Kim Hammar Approximation by Aggregation 2 April, 2025 15 / 39

The Belief Space

The belief b resides in the belief space B, i.e., the n − 1 dimensional unit simplex.
For example, if the states are {0, 1}, then b ∈ [0, 1].

(b) 2-dimensional unit simplex.

0.25 0.55

0.2

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(0.25, 0.55, 0.2)

(a) 1-dimensional unit simplex.
(1, 0) (0, 1)

0.4 0.6

(0.4, 0.6)

Kim Hammar Approximation by Aggregation 2 April, 2025 16 / 39

Aggregation of the Belief Space into Representative Beliefs

We can obtain representative beliefs via uniform discretization of the belief space:

A =

{
b | b ∈ B, b(i) = ki

ρ
,

n∑
i=1

ki = ρ, ki ∈ {0, . . . , ρ}

}
,

where ρ serves as the discretization resolution.

Discretization resolution ρ = 1

B

Discretization resolution ρ = 5

B

Discretization resolution ρ = 10

B

Kim Hammar Approximation by Aggregation 2 April, 2025 17 / 39

Hard Aggregation of the Belief Space

We can implement hard aggregation via the nearest neighbor mapping:

ϕby = 1 if and only if y is the nearest neighbor of b, where b ∈ B and y ∈ A.

Discretization resolution ρ = 1

B

Discretization resolution ρ = 5

B

Discretization resolution ρ = 10

B

Kim Hammar Approximation by Aggregation 2 April, 2025 18 / 39

Example POMDP: Rocksample (4,3)

Problem: rover exploration on Mars to find “good” rocks with high scientific value.
There are 3 rocks on a 4 × 4 grid. The rover does not know which rocks are good.
The controls (north, south, east, west) moves the rover (at cost 0.1).
The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost −10 for sampling a good rock).
Control “check-l” applies a sensor to check the quality of rock l (at cost 1).
Accuracy of the sensor decreases exponentially with Euclidean distance to the rock.
The rover stops the mission by moving to the right, yielding an exit-cost of −10.

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5

exit

rock 1

rock 3

rock 2

Kim Hammar Approximation by Aggregation 2 April, 2025 19 / 39

Example POMDP: Rocksample (4,3)

Problem: rover exploration on Mars to find “good” rocks with high scientific value.
There are 3 rocks on a 4 × 4 grid. The rover does not know which rocks are good.
The controls (north, south, east, west) moves the rover (at cost 0.1).
The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost −10 for sampling a good rock).
Control “check-l” applies a sensor to check the quality of rock l (at cost 1).
Accuracy of the sensor decreases exponentially with Euclidean distance to the rock.
The rover stops the mission by moving to the right, yielding an exit-cost of −10.

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5

exit

rock 1

rock 3

rock 2

Kim Hammar Approximation by Aggregation 2 April, 2025 19 / 39

Example POMDP: Rocksample (4,3)

Problem: rover exploration on Mars to find “good” rocks with high scientific value.
There are 3 rocks on a 4 × 4 grid. The rover does not know which rocks are good.
The controls (north, south, east, west) moves the rover (at cost 0.1).
The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost −10 for sampling a good rock).
Control “check-l” applies a sensor to check the quality of rock l (at cost 1).
Accuracy of the sensor decreases exponentially with Euclidean distance to the rock.
The rover stops the mission by moving to the right, yielding an exit-cost of −10.

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5

exit

rock 1

rock 3

rock 2

Kim Hammar Approximation by Aggregation 2 April, 2025 19 / 39

Example POMDP: Rocksample (4,3)

Problem: rover exploration on Mars to find “good” rocks with high scientific value.
There are 3 rocks on a 4 × 4 grid. The rover does not know which rocks are good.
The controls (north, south, east, west) moves the rover (at cost 0.1).
The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost −10 for sampling a good rock).
Control “check-l” applies a sensor to check the quality of rock l (at cost 1).
Accuracy of the sensor decreases exponentially with Euclidean distance to the rock.
The rover stops the mission by moving to the right, yielding an exit-cost of −10.

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5

exit

rock 1

rock 3

rock 2

Kim Hammar Approximation by Aggregation 2 April, 2025 19 / 39

Example POMDP: Rocksample (4,3)

Problem: rover exploration on Mars to find “good” rocks with high scientific value.
There are 3 rocks on a 4 × 4 grid. The rover does not know which rocks are good.
The controls (north, south, east, west) moves the rover (at cost 0.1).
The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost −10 for sampling a good rock).
Control “check-l” applies a sensor to check the quality of rock l (at cost 1).
Accuracy of the sensor decreases exponentially with Euclidean distance to the rock.
The rover stops the mission by moving to the right, yielding an exit-cost of −10.

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5

exit

rock 1

rock 3

rock 2

Kim Hammar Approximation by Aggregation 2 April, 2025 19 / 39

Example POMDP: Rocksample (4,3)

Problem: rover exploration on Mars to find “good” rocks with high scientific value.
There are 3 rocks on a 4 × 4 grid. The rover does not know which rocks are good.
The controls (north, south, east, west) moves the rover (at cost 0.1).
The control “sampling” determines the rock quality at the rover position (cost 10
for sampling a bad rock and cost −10 for sampling a good rock).
Control “check-l” applies a sensor to check the quality of rock l (at cost 1).
Accuracy of the sensor decreases exponentially with Euclidean distance to the rock.
The rover stops the mission by moving to the right, yielding an exit-cost of −10.

good

bad

bad

Rocksample (4, 3)

exit

rock 1

rock 3

rock 2

Kim Hammar Approximation by Aggregation 2 April, 2025 19 / 39

Approximating Rocksample (4,3) via Representative Aggregation

The Rocksample (4,3) POMDP has a 127-dimensional belief space.
We discretize the belief space with three different resolutions:

▶ ρ = 1 leads to an aggregate problem with 128 representative beliefs.
▶ ρ = 2 leads to an aggregate problem with 8256 representative beliefs.
▶ ρ = 3 leads to an aggregate problem with 357760 representative beliefs.

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5

exit

rock 1

rock 3

rock 2

Kim Hammar Approximation by Aggregation 2 April, 2025 20 / 39

Approximating Rocksample (4,3) via Representative Aggregation

The Rocksample (4,3) POMDP has a 127-dimensional belief space.
We discretize the belief space with three different resolutions:

▶ ρ = 1 leads to an aggregate problem with 128 representative beliefs.
▶ ρ = 2 leads to an aggregate problem with 8256 representative beliefs.
▶ ρ = 3 leads to an aggregate problem with 357760 representative beliefs.

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5

exit

rock 1

rock 3

rock 2

The representative beliefs define an aggregate dynamic programming problem,
which we solve using value iteration to obtain J̃ . We then use J̃ to obtain a
one-step lookahead policy as

µ(b) ∈ arg min
u∈U(i)

{
ĝ(b, u) + α

∑
z∈Z

p̂(z | b, u)J̃(F (b, u, z))

}
, b ∈ B.

Aggregation Methodology

Kim Hammar Approximation by Aggregation 2 April, 2025 20 / 39

Animation Setup

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5
exit

rock 1

rock 3

rock 2

Kim Hammar Approximation by Aggregation 2 April, 2025 20 / 39

Animation Setup

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5
exit

rock 1

rock 3

rock 2

Kim Hammar Approximation by Aggregation 2 April, 2025 20 / 39

Animation Setup

good

bad

bad

Rocksample (4, 3)

b(good) = 0.5

b(good) = 0.5

b(good) = 0.5
exit

rock 1

rock 3

rock 2

Kim Hammar Approximation by Aggregation 2 April, 2025 20 / 39

Animation of Control Policy Based on Aggregation with ρ = 1

Kim Hammar Approximation by Aggregation 2 April, 2025 20 / 39

Animation of Control Policy Based on Aggregation with ρ = 2

Kim Hammar Approximation by Aggregation 2 April, 2025 20 / 39

Animation of Control Policy Based on Aggregation with ρ = 3

Kim Hammar Approximation by Aggregation 2 April, 2025 20 / 39

Computational Trade-Offs

The animations show that performance improves with the discretization resolution ρ.
This is not surprising. One can show that limρ→∞∥J∗ − J̃∥ = 0.
However, the computational complexity increases with the resolution ρ.

1 2 3 4 5 6 7 8

101

102

103

n = 2 n = 4 n = 8|A|

Discretization resolution ρ

Kim Hammar Approximation by Aggregation 2 April, 2025 21 / 39

Computational Trade-Offs

The animations show that performance improves with the discretization resolution ρ.
This is not surprising. One can show that limρ→∞∥J∗ − J̃∥ = 0.
However, the computational complexity increases with the resolution ρ.

1 2 3 4 5 6 7 8

101

102

103

n = 2 n = 4 n = 8|A|

Discretization resolution ρ

Kim Hammar Approximation by Aggregation 2 April, 2025 21 / 39

Computational Trade-Offs

The animations show that performance improves with the discretization resolution ρ.
This is not surprising. One can show that limρ→∞∥J∗ − J̃∥ = 0.
However, the computational complexity increases with the resolution ρ.

1 2 3 4 5 6 7 8

101

102

103

n = 2 n = 4 n = 8|A|

Discretization resolution ρ

Kim Hammar Approximation by Aggregation 2 April, 2025 21 / 39

Computational Trade-Offs

The animations show that performance improves with the discretization resolution ρ.
This is not surprising. One can show that limρ→∞∥J∗ − J̃∥ = 0.
However, the computational complexity increases with the resolution ρ.

1 2 3 4 5 6 7 8

101

102

103

n = 2 n = 4 n = 8|A|

Discretization resolution ρ

Kim Hammar Approximation by Aggregation 2 April, 2025 21 / 39

Comparison Between Aggregation and Other POMDP Methods

POMDP States n Observations |Z | Controls |U| Discount factor α

RS (4,4) 257 2 9 0.95
RS (5,5) 801 2 10 0.95
RS (5,7) 3201 2 12 0.95
RS (7,8) 12545 2 13 0.95
RS (10,10) 102401 2 15 0.95

Table: POMDPs used for the experimental evaluation.

Method Aggregation Point-based Heuristic search Policy-based Exact DP

Our method ✓

IP ✓

PBVI ✓

SARSOP ✓

POMCP ✓

HSVI ✓

AdaOPS ✓

R-DESPOT ✓

POMCPOW ✓

PPO ✓

PPG ✓

Table: Methods used for the experimental evaluation; all methods are based on approximation
schemes except IP, which uses exact dynamic programming.

Kim Hammar Approximation by Aggregation 2 April, 2025 22 / 39

Comparison Between Aggregation and Other POMDP Methods

Method
POMDP RS (4,4) RS (5,5) RS (5,7) RS (7,8) RS (10, 10)

Aggregation -17.15/2.4 -18.12/125.5 -17.51/189.1 -14.71/202 -11.59/500
IP N/A N/A N/A N/A N/A
PBVI -8.24/300 -9.05/300 N/A N/A N/A
SARSOP -17.92/10−2 -19.24/58.5 N/A N/A N/A
POMCP -8.64/1.6 -8.80/1.6 -9.81/1.6 -9.46/1.6 -8.98/1.6
HSVI -17.92/10−2 -19.24/6.2 -24.69/721.3 N/A N/A
PPO -8.57/300 -8.15/300 -8.76/300 -7.35/300 -4.59/1000
PPG -8.57/300 -8.24/300 -8.76/300 -7.35/300 -4.41/1000
AdaOPS -16.95/1.6 -17.39/1.6 -16.14/1.6 -15.99/1.6 -15.29/1.6
R-DESPOT -12.07/1.6 -12.09/1.6 -12.00/1.6 -13.14/1.6 -10.41/1.6
POMCPOW -8.60/1.6 -8.47/1.6 -8.26/1.6 -8.14/1.6 -7.88/1.6

Table: Evaluation results on the benchmark POMDPs; the first number in each cell is the total
discounted cost; the second is the compute time in minutes (online methods were given 1 second
planning time per control); cells with N/A indicate cases where a result could not be obtained for
computational reasons. RS(m,l) stands for an instance of Rocksample with an m × m grid and l
rocks.

Kim Hammar Approximation by Aggregation 2 April, 2025 22 / 39

A Fifteen-Minute Break

Digest the first half of the lecture.
The next half will cover

▶ General aggregation; and
▶ a case study of using aggregation for network security.

Kim Hammar Approximation by Aggregation 2 April, 2025 22 / 39

Outline

1 Aggregation with Representative States

2 Example: Aggregation with Representative States for POMDPs

3 General Aggregation Methodology

4 Case study: Aggregation for Cybersecurity

Kim Hammar Approximation by Aggregation 2 April, 2025 22 / 39

General Aggregation: Replace Representative States with Subsets

Introduce a finite set of aggregate states A.
Each aggregate state x ∈ A is associated with a disjoint subset Ix ⊂ {1, . . . , n}.

Aggregate states AState space {1, . . . , n}

x

i

Ix

Why is aggregation with rep. states a special case of general aggregation?

Question

Kim Hammar Approximation by Aggregation 2 April, 2025 23 / 39

General Aggregation: Replace Representative States with Subsets

Introduce a finite set of aggregate states A.
Each aggregate state x ∈ A is associated with a disjoint subset Ix ⊂ {1, . . . , n}.

Aggregate states AState space {1, . . . , n}

x

i

Ix

Why is aggregation with rep. states a special case of general aggregation?

Question

Kim Hammar Approximation by Aggregation 2 April, 2025 23 / 39

General Aggregation: Replace Representative States with Subsets

Introduce a finite set of aggregate states A.
Each aggregate state x ∈ A is associated with a disjoint subset Ix ⊂ {1, . . . , n}.

Aggregate states AState space {1, . . . , n}

x

i

Ix

Why is aggregation with rep. states a special case of general aggregation?

Question

If each Ix contains a single state, we obtain the representative states framework.

Answer

Kim Hammar Approximation by Aggregation 2 April, 2025 23 / 39

Aggregation Probabilities

State space {1, . . . , n}

ϕjx

aggregate state

state

x

ji
pij(u)

For each state j ∈ {1, . . . , n}, we associate
aggregation probabilities {ϕjx | x ∈ A}, where ϕjx = 1 for all j ∈ Ix .

Kim Hammar Approximation by Aggregation 2 April, 2025 24 / 39

Disaggregation Probabilities

Aggregate states AState space {1, . . . , n}

x

i j

dxi

dxjIx

For every aggregate state x ∈ A, we associate
disaggregation probabilities {dxi | i = 1, . . . , n}, where dxi = 0 for all i ̸∈ Ix .

Kim Hammar Approximation by Aggregation 2 April, 2025 24 / 39

Dynamic System of General Aggregation

Similar to the earlier case, the aggregation leads to a dynamic system.
This system can be understood through the following transition diagram.

i j

x y
Aggregate states

Original states
pij(u), g(i , u, j)

dxi ϕjy

Kim Hammar Approximation by Aggregation 2 April, 2025 25 / 39

Dynamic System of General Aggregation

Similar to the earlier case, the aggregation leads to a dynamic system.
This system can be understood through the following transition diagram.

i j

x y
Aggregate states

Original states
pij(u), g(i , u, j)

dxi ϕjy

How to select the aggregate states?

Kim Hammar Approximation by Aggregation 2 April, 2025 25 / 39

Feature-Based Aggregation

Suppose that we have a feature mapping F (i) that maps states into feature vectors.
The mapping F can be obtained using engineering intuition or deep learning.
We can then form the aggregate states Ix by grouping states with similar features.

Aggregate states AFeature space FState space {1, . . . , n}

x
features

i

Kim Hammar Approximation by Aggregation 2 April, 2025 26 / 39

Feature-Based Aggregation

Suppose that we have a feature mapping F (i) that maps states into feature vectors.
The mapping F can be obtained using engineering intuition or deep learning.
We can then form the aggregate states Ix by grouping states with similar features.

Aggregate states AFeature space FState space {1, . . . , n}

x
features

i

Kim Hammar Approximation by Aggregation 2 April, 2025 26 / 39

Outline

1 Aggregation with Representative States

2 Example: Aggregation with Representative States for POMDPs

3 General Aggregation Methodology

4 Case study: Aggregation for Cybersecurity

Kim Hammar Approximation by Aggregation 2 April, 2025 26 / 39

Traditional/Current Network Security Operations

Kim Hammar Approximation by Aggregation 2 April, 2025 26 / 39

Adaptive Control Methodology for Network Security Operations

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...
...

...
...

...

Emulation System

Target System

System Identification
Policy Mapping

µ

Selective
Replication

Policy
Implementation µ

Simulation System
POMDP Model &
Approximate DP

Policy Evaluation &
Model Estimation

Automated Security

Kim Hammar Approximation by Aggregation 2 April, 2025 27 / 39

Adaptive Control Methodology for Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...
...

...
...

...

Emulation System

Target System

System Identification
Policy Mapping

µ

Selective
Replication

Policy
Implementation µ

Simulation System
POMDP Model &
Approximate DP

Policy Evaluation &
Model Estimation

Automated Security

Kim Hammar Approximation by Aggregation 2 April, 2025 27 / 39

Adaptive Control Methodology for Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...
...

...
...

...

Emulation System

Target System

System Identification
Policy Mapping

µ

Selective
Replication

Policy
Implementation µ

Simulation System
POMDP Model &
Approximate DP

Policy Evaluation &
Model Estimation

Automated Security

Kim Hammar Approximation by Aggregation 2 April, 2025 27 / 39

Adaptive Control Methodology for Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...
...

...
...

...

Emulation System

Target System

System Identification
Policy Mapping

µ

Selective
Replication

Policy
Implementation µ

Simulation System
POMDP Model &
Approximate DP

Policy Evaluation &
Model Estimation

Automated Security

Kim Hammar Approximation by Aggregation 2 April, 2025 27 / 39

Adaptive Control Methodology for Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...
...

...
...

...

Emulation System

Target System

System Identification
Policy Mapping

µ

Selective
Replication

Policy
Implementation µ

Simulation System
POMDP Model &
Approximate DP

Policy Evaluation &
Model Estimation

Automated Security

Kim Hammar Approximation by Aggregation 2 April, 2025 27 / 39

Adaptive Control Methodology for Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...
...

...
...

...

Emulation System

Target System

System Identification
Policy Mapping

µ

Selective
Replication

Policy
Implementation µ

Simulation System

Automated Security

Policy Evaluation &
Model Estimation

POMDP Model &
Approximate DP

Kim Hammar Approximation by Aggregation 2 April, 2025 27 / 39

Adaptive Control Methodology for Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...
...

...
...

...

Emulation System

Target System

System Identification
Policy Mapping

µ

Selective
Replication

Policy
Implementation µ

Simulation System
POMDP Model &
Approximate DP

Policy Evaluation &
Model Estimation

Automated Security

Kim Hammar Approximation by Aggregation 2 April, 2025 27 / 39

Adaptive Control Methodology for Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...
...

...
...

...

Emulation System

Target System

System Identification
Policy Mapping

µ

Selective
Replication

Policy
Implementation µ

Simulation System
POMDP Model &
Approximate DP

Policy Evaluation &
Model Estimation

Automated Security

Kim Hammar Approximation by Aggregation 2 April, 2025 27 / 39

Problem: Finding an Effective Network Security Policy

Kim Hammar Approximation by Aggregation 2 April, 2025 28 / 39

Problem: Finding an Effective Network Security Policy

Kim Hammar Approximation by Aggregation 2 April, 2025 28 / 39

Problem: Finding an Effective Network Security Policy

measurementssecurity controls µ

Kim Hammar Approximation by Aggregation 2 April, 2025 28 / 39

Problem: Finding an Effective Network Security Policy

measurements zksecurity controls uk µ

state xk

Mathematically, the problem can be formulated as a pomdp.
Hidden states: the security status of each network component.
For example, xk = (xk,1, . . . , xk,M), where

▶ M is the number of components.
▶ xk,i = 1 if component i is compromised at stage k, 0 otherwise.

Kim Hammar Approximation by Aggregation 2 April, 2025 28 / 39

Observations

0 2000 4000 6000 8000
Number of security alerts zk

P
ro

b
ab

il
it

y

Exploit of cve-2015-5602

0 2000 4000 6000 8000

Exploit of cve-2016-10033

network intrusion

Number of security alerts zk

normal operation

The system emits observations in the form of logs, performance metrics, and alerts.
These observations give partial information about the security of the system.

Kim Hammar Approximation by Aggregation 2 April, 2025 29 / 39

Controls

Old path

New path

Honeypot Server

Defender
Revoke certificates

Blacklist IP

. . .

Replicated system

Client interface

Request

Se
rv

ic
e

Consensus protocol

Flow control
By redirecting traffic, the defender

can isolate malicious behavior.

Access control
By adjusting resource permissions,

defenders can prevent attackers
from compromising critical assets.

Replication control
Replication can ensure that multiple
replicas of services remain available
even when some are compromised.

Kim Hammar Approximation by Aggregation 2 April, 2025 30 / 39

Cost

Operational cost

Attack event
Time

Recovery time
Response time

Survivability

Tolerance

Lo
ss

Se
rv

ic
e/

se
cu

rit
y

The defender wants to minimize the impact of potential attacks.
At the same time, the defender wants to maintain operational services to clients.

Kim Hammar Approximation by Aggregation 2 April, 2025 31 / 39

Example POMDP in The Context of Network Security

Networked system with M components.
Each component can be in two states: 1 (compromised) or 0 (safe).
Each component logs security alerts z in real-time.
Two controls per component: 1 (recovery) and 0 (wait).
Compromised components and unnecessary recoveries incur costs.

. . .
zk,1 zk,2 zk,Muk,1 uk,2 uk,M

µ

xk,1 = 1 xk,2 = 0 xk,M = 0

Kim Hammar Approximation by Aggregation 2 April, 2025 32 / 39

Example POMDP in The Context of Network Security

Networked system with M components.
Each component can be in two states: 1 (compromised) or 0 (safe).
Each component logs security alerts z in real-time.
Two controls per component: 1 (recovery) and 0 (wait).
Compromised components and unnecessary recoveries incur costs.

. . .
zk,1 zk,2 zk,Muk,1 uk,2 uk,M

µ

xk,1 = 1 xk,2 = 0 xk,M = 0

Kim Hammar Approximation by Aggregation 2 April, 2025 32 / 39

Example POMDP in The Context of Network Security

Networked system with M components.
Each component can be in two states: 1 (compromised) or 0 (safe).
Each component logs security alerts z in real-time.
Two controls per component: 1 (recovery) and 0 (wait).
Compromised components and unnecessary recoveries incur costs.

. . .
zk,1 zk,2 zk,Muk,1 uk,2 uk,M

µ

xk,1 = 1 xk,2 = 0 xk,M = 0

Kim Hammar Approximation by Aggregation 2 April, 2025 32 / 39

Example POMDP in The Context of Network Security

Networked system with M components.
Each component can be in two states: 1 (compromised) or 0 (safe).
Each component logs security alerts z in real-time.
Two controls per component: 1 (recovery) and 0 (wait).
Compromised components and unnecessary recoveries incur costs.

. . .
zk,1 zk,2 zk,Muk,1 uk,2 uk,M

µ

xk,1 = 1 xk,2 = 0 xk,M = 0

Kim Hammar Approximation by Aggregation 2 April, 2025 32 / 39

Example POMDP in The Context of Network Security

Networked system with M components.
Each component can be in two states: 1 (compromised) or 0 (safe).
Each component logs security alerts z in real-time.
Two controls per component: 1 (recovery) and 0 (wait).
Compromised components and unnecessary recoveries incur costs.

. . .
zk,1 zk,2 zk,Muk,1 uk,2 uk,M

µ

xk,1 = 1 xk,2 = 0 xk,M = 0

Kim Hammar Approximation by Aggregation 2 April, 2025 32 / 39

Challenge: Curse of Dimensionality

2 4 6 8 10 12 14
101

5 · 103

104 state space size n
observation space size |Z |

M: number of system components. (Assuming 4 observations per component.)

Problem complexity grows exponentially with the system size.

Scalability challenge

Kim Hammar Approximation by Aggregation 2 April, 2025 33 / 39

Approximating Large-Scale POMDPs via Aggregation

For the networked systems that we consider, the number of (hidden) states is in the
order of 1050.
We manage the computational complexity using feature-based aggregation.

Aggregate feature belief spaceFeature space FState space X

x

i

Kim Hammar Approximation by Aggregation 2 April, 2025 34 / 39

Approximating Large-Scale POMDPs via Aggregation

For the networked systems that we consider, the number of (hidden) states is in the
order of 1050.
We manage the computational complexity using feature-based aggregation.

Aggregate feature belief spaceFeature space FState space X

x

i

Kim Hammar Approximation by Aggregation 2 April, 2025 34 / 39

Designing Features for Aggregation

Consider the infrastructure to the right.

It comprises 64 components.

Each component has a binary state:
▶ State 1 means compromised.
▶ State 0 means safe.

=⇒ 264 states.

=⇒ (264 − 1)-dimensional belief space.

Kim Hammar Approximation by Aggregation 2 April, 2025 35 / 39

Designing Features for Aggregation

Consider the infrastructure to the right.

It comprises 64 components.

Each component has a binary state:
▶ State 1 means compromised.
▶ State 0 means safe.

=⇒ 264 states.

=⇒ (264 − 1)-dimensional belief space.

Kim Hammar Approximation by Aggregation 2 April, 2025 35 / 39

Designing Features for Aggregation

We manage the complexity using
feature-based aggregation.

Introduce a set of features F .

For example,
F = {Infrastructure-compromised}.

Then we only have 2 feature
combinations:

1 Safe
2 Compromised

=⇒ 1-dimensional belief space.

Kim Hammar Approximation by Aggregation 2 April, 2025 35 / 39

Designing Features for Aggregation

Finer aggregations can be obtained by
segmenting the network into zones.

Let Zone-k represent the compromised
state of zone k.

If F = {Zone-1, Zone-2, Zone-3}.

Then we have 8 feature combinations.

Zone 1

Zone 2

Zone 3

Kim Hammar Approximation by Aggregation 2 April, 2025 35 / 39

Designing Features for Aggregation

If F = {Zone-1, Zone-2, Zone-3, Zone-4}.

Then we have 16 feature combinations.

etc.

Discretize the belief space over features into
≈ 200, 000 representative beliefs.

=⇒ Solve the aggregate problem to obtain
the cost-function approximation J̃ .

Use J̃ to define a policy µ, e.g., a one-step
lookahead policy.

Zone 1 Zone 2

Zone 3

Zone 4

Aggregation allows to control the trade-off between computational cost and performance.

Kim Hammar Approximation by Aggregation 2 April, 2025 35 / 39

Animation: Security Policy Obtained From Aggregation

Zone 1 Zone 2

Zone 3

Zone 4

b(1) = x b(1) = x

b(1) = x

b(1) = x

Time step=x, Cost: y, Avg. cost per time step = y,
Control:

Kim Hammar Approximation by Aggregation 2 April, 2025 35 / 39

Animation: Security Policy Obtained From Aggregation

Zone 1 Zone 2

Zone 3

Zone 4

b(1) = x b(1) = x

b(1) = x

b(1) = x

Time step=x, Cost: y, Avg. cost per time step = y,
Control:

Kim Hammar Approximation by Aggregation 2 April, 2025 35 / 39

Animation: Security Policy Obtained From Aggregation

Kim Hammar Approximation by Aggregation 2 April, 2025 35 / 39

Combining Aggregation with Rollout for On-line Policy Adaptation

networked system

System
metrics

zk

State xk

Adapted security policy

Control uk

Belief bk

Base policy µ, cost J̃

rollout particle filter
µ̃

(1) Evaluation of the base
policy through rollouts

(2) Policy adaption through
lookahead optimization

Particle
Probability

Belief space

Aggregate belief space

Optimization offline
online

Kim Hammar Approximation by Aggregation 2 April, 2025 36 / 39

Experimental Results On A Standard Benchmark Security Problem

Method Offline/Online compute (min/s) State estimation Cost

aggregation 8.5/0.01 particle filter 61.72 ± 3.96

ppo 1000/0.01 latest observation 341 ± 133
ppo 1000/0.01 particle filter 326 ± 116

ppg 1000/0.01 latest observation 328 ± 178
ppg 1000/0.01 particle filter 312 ± 163

dqn 1000/0.01 latest observation 516 ± 291
dqn 1000/0.01 particle filter 492 ± 204

ppo+action pruning 300/0.01 latest observation 57.45 ± 2.44
ppo+action pruning 300/0.01 particle filter 56.45 ± 2.81

pomcp 0/15 particle filter 53.08 ± 3.78
pomcp 0/30 particle filter 53.18 ± 3.42

aggregation+rollout 8.5/14.80 particle filter 37.89 ± 1.54

Numbers indicate the mean and the standard deviation from 1000 evaluations. We use 427500
representative beliefs, lookahead horizon ℓ = 2, and truncated rollout with horizon m = 20.

Kim Hammar Approximation by Aggregation 2 April, 2025 37 / 39

Conclusion

Aggregation provides a general methodology for approximate dynamic programming.

1 Combine groups of similar states into aggregate states.
2 Formulate an aggregate dynamic programming problem.
3 Solve the aggregate problem using some computational method.
4 Use the aggregate solution to approximate a solution to the original problem.

Original problem Simplified problem Simplified solution

x1 x2 . . .

y1 y2 . . .

z1 z2 . . .

x y

z

x y

z
u = 1

u = 0u = 2
Aggregation

Kim Hammar Approximation by Aggregation 2 April, 2025 38 / 39

About the Next Lecture

Dynamic programming for mini-max problems
Rollout and approximation in value space for mini-max problems
A meta algorithm for computer chess based on reinforcement learning.

Please review Section 2.12 of the “Course in RL" textbook.

Recommended videolecture (Computer chess with model predictive control and
reinforcement learning) at https://www.youtube.com/watch?v=88LDkHaf1sU.

Kim Hammar Approximation by Aggregation 2 April, 2025 39 / 39

About the Next Lecture

Dynamic programming for mini-max problems
Rollout and approximation in value space for mini-max problems
A meta algorithm for computer chess based on reinforcement learning.

Please review Section 2.12 of the “Course in RL" textbook.

Recommended videolecture (Computer chess with model predictive control and
reinforcement learning) at https://www.youtube.com/watch?v=88LDkHaf1sU.

Kim Hammar Approximation by Aggregation 2 April, 2025 39 / 39

About the Next Lecture

Dynamic programming for mini-max problems
Rollout and approximation in value space for mini-max problems
A meta algorithm for computer chess based on reinforcement learning.

Please review Section 2.12 of the “Course in RL" textbook.

Recommended videolecture (Computer chess with model predictive control and
reinforcement learning) at https://www.youtube.com/watch?v=88LDkHaf1sU.

Kim Hammar Approximation by Aggregation 2 April, 2025 39 / 39

