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Challenges: Evolving and Automated Attacks

> Challenges:

» Evolving & automated attacks
» Complex infrastructures

Attacker Clients
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Goal: Automation and Learning

» Our Goal:

» Automate security tasks
» Adapt to changing attack methods

Attacker Clients
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Approach: Game Model & Reinforcement Learning

» QOur Approach:

» Model network attack and defense as
games.

» Use reinforcement learning to learn
policies.

» Incorporate learned policies in
self-learning systems.
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Use Case: Intrusion Prevention

» A Defender owns an infrastructure

» Consists of connected components

» Components run network services

» Defender defends the infrastructure
by monitoring and active defense

> An Attacker seeks to intrude on the
infrastructure

» Has a partial view of the
infrastructure

» Wants to compromise specific
components

P Attacks by reconnaissance,
exploitation and pivoting
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We formulate this use case as an Optimal Stopping problem




Background on Optimal Stopping Problems

» The General Problem:
> A Markov process (s;)._; is observed sequentially
> Two options per t: (i) continue to observe; or (ii) stop

» Find the optimal stopping time T*:

T—1
T —argmaxE. | > yIRE, +TIRE (1)
T t=1

where R2, & RS, are the stop/continue rewards



Background on Optimal Stopping Problems

> History:
» Studied in the 18th century to analyze a gambler's fortune
» Formalized by Abraham Wald in 1947!
> Since then it has been generalized and developed by (Chow?,
Shiryaev & Kolmogorov®, Bather*, Bertsekas®, etc.)
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Background on Optimal Stopping Problems

> Applications & Use Cases:
» Change detection®, selling decisions’, queue managements,
advertisement schedulingg, etc.
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Background on Optimal Stopping Problems

» Applications & Use Cases:

» Change detection?, selling decisions!!, queue managemen
advertisement scheduling®3, intrusion prevention'* etc.
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Formulating Intrusion Prevention as a Stopping Problem
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» Intrusion Prevention as Optimal Stopping Problem:



Formulating Intrusion Prevention as a Stopping Problem

Attcker
Episode
A

e

Clients

-
time-step t =1

» Intrusion Prevention as Optimal Stopping Problem:
» The system evolves in discrete time-steps.



Formulating Intrusion Prevention as a Stopping Problem
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» Intrusion Prevention as Optimal Stopping Problem:

» Defender observes the infrastructure (IDS, log files, etc.).



Formulating Intrusion Prevention as a Stopping Problem

Attcker Clients
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» Intrusion Prevention as Optimal Stopping Problem:

» An intrusion occurs at an unknown time.



Formulating Intrusion Prevention as a Stopping Problem

Attcker Clients
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Early stopping times
affect the intrusion

» Intrusion Prevention as Optimal Stopping Problem:

» The defender can make L stops.
» Each stop is associated with a defensive action
» The final stop shuts down the infrastructure.



Formulating Intrusion Prevention as a Stopping Problem

Episode
- . - T ~
time-step t = jIntrusion event lIntrusion ongoing
; | T oneer
Atttk
t=T

I
I
: Stopping times that

Early stopping times
affect the intrusion

» Intrusion Prevention as Optimal Stopping Problem:

» Based on the observations, when is it optimal to stop?



Formulating Intrusion Prevention as a Stopping Problem

Episode
- . - T ~
time-step t = jIntrusion event lIntrusion ongoing
; | T oneer
Atttk
t=T

I
I
: Stopping times that

Early stopping times
affect the intrusion

» Intrusion Prevention as Optimal Stopping Problem:

» We formalize this problem with a POMDP



A Partially Observed MDP Model for the Defender

> States:
> Intrusion state s; € {0,1}, terminal (.

t>1 intrusion starts t=2
I >0 Q=1 Iy >0

intrusion prevented
e <A

t > It + Tipn

episode ends final stop

=0



A Partially Observed MDP Model for the Defender

» Observations:
> Severe/Warning IDS Alerts (Ax, Ay),
Login attempts Az, stops remaining
I e{1,., L},
fxvz(Dx, Ay, Az|s;, I, t)



A Partially Observed MDP Model for the Defender

> Actions:
> “Stop” (S) and “Continue” (C)



A Partially Observed MDP Model for the Defender

> Rewards:

» Reward: security and service. Penalty:
false alarms and intrusions



A Partially Observed MDP Model for the Defender

Iy ~ Ge(p = 0.2)

» Transition probabilities:
» Bernoulli process (Q;)_; ~ Ber(p)
defines intrusion start I; ~ Ge(p) N
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intrusion start time ¢
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A Partially Observed MDP Model for the Defender

» Objective and Horizon:
> maxE,, [Z;‘”l r(se,ar)|, Tg



A Partially Observed MDP Model for the Defender

> States:
> Intrusion state s; € {0,1}, terminal (.

> Observatlons: /t = t intrusion starts /t z %
> Severe/Warning IDS Alerts (Ax, Ay), f Q=1 e
Login attempts Az, stops remaining
Il € {1, . L}, intrusion prevented
: <A
fxyz(Ax, Ay, Az|st, I, t) £2 k4 Tine - t> 1l + Tine

episode ends final stop

» Actions: Iy =0

> “Stop” (S) and “Continue” (C)
> Rewards:

» Reward: security and service. Penalty:
false alarms and intrusions
1.0

» Transition probabilities:
» Bernoulli process (Q;)_; ~ Ber(p
defines intrusion start I; ~ Ge(p) S

mn\l ion ¢ ( art time ¢

e(p=02)
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» Objective and Horizon:
> maxE,, [Z;‘”l r(se,ar)|, Tg



We analyze the optimal policy using optimal stopping theory




Threshold Properties of the Optimal Defender Policy

77t = Axt + Ay + Az
Ax = Severe IDS alerts at time t
Ay = Warning IDS alerts at time t
Az = Login attempts at time ¢t



Threshold Properties of the Optimal Defender Policy

mi(h) =S = h. >3 1=1

yl
| r > h,
0 51
77t = AXt + A)/t + Azt
Ax = Severe IDS alerts at time t

Ay = Warning IDS alerts at time t
Az = Login attempts at time t




Threshold Properties of the Optimal Defender Policy

mi(he) =S <= h. > B, 1€1,2

/~7t = Axt + Ay + Az
Ax = Severe IDS alerts at time t
Ay = Warning IDS alerts at time t
Az = Login attempts at time t



Threshold Properties of the Optimal Defender Policy

mi(h) =S < h.>pBf1€l,...,L

0 5L525f

/~7t = Axt + Ay + Az
Ax = Severe IDS alerts at time t
Ay = Warning IDS alerts at time t
Az = Login attempts at time t



Our Method for Finding Effective Security Strategies
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Our Method for Finding Effective Security Strategies
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Our Method for Finding Effective Security Strategies
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Our Method for Finding Effective Security Strategies
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Our Method for Finding Effective Security Strategies

3 (X3
?&?”?&'”? ™\ Reinforcement Learning &
?&?‘ ?&:‘? ,I Generalization
G O O
Policy Mapping Model Creation &

System ldentification

SIMULATION SYSTEM

™ Policy evaluation &
EMULATION SYSTEM

; Model estimation

b

Policy l T Selective

Implementation 7 Replication

REAL WORLD "
INFRASTRUCTURE

Automation &

|
@ Eﬁ Ei ; Self-learning systems

a)




The Target Infrastructure

> Topology:

> 30 Application Servers, 1 Gateway/IDS (Snort), 3 Clients, 1 Attacker,

1 Defender

» Services

> 3 SSH, 8 HTTP, 1 DNS, 1 Telnet, 2 FTP, 1 MongoDB, 2 SMTP, 2
Teamspeak 3, 22 SNMP, 12 IRC, 1 Elasticsearch, 12 NTP, 1 Samba,
19 PostgreSQL

» RCE Vulnerabilities

> 1 CVE-2010-0426, 1 CVE-2014-6271, 1 SQL Injection, 1
CVE-2015-3306, 1 CVE-2016-10033, 1 CVE-2015-5602, 1
CVE-2015-1427, 1 CVE-2017-7494

» 5 Brute-force vulnerabilities

» Operating Systems

> 23 Ubuntu-20, 1 Debian 9:2, 1 Debian Wheezy, 6 Debian Jessie, 1
Kali

Attacker Clients

alerts

==
Defender

Target infrastructure.




Emulating the Client Population

Client  Functions Application servers

1 HTTP, SSH, SNMP, ICMP  N», N3, Nyg, N1»

2 |RC, PostgreSQL, SNMP N31, /V13, N14, /\/157 N16
3 FTP, DNS, Telnet N1g, Noo, Ny

Table 1: Emulated client population; each client interacts with
application servers using a set of functions at short intervals.



Emulating the Defender’s Actions

I Action Command in the Emulation

3  Reset users deluser -remove-home <username>

2 Blacklist IPs iptables -A INPUT -s <ip> -j DROP
1 Block gateway iptables -A INPUT -i ethO -j DROP

Table 2: Commands used to implement the defender's stop actions in the
emulation.



Static Attackers to Emulate Intrusions

Time-steps t NOVICEATTACKER EXPERIENCEDATTACKER EXPERTATTACKER

1-l; ~ Ge(0.2) (Intrusion has not started) (Intrusion has not started) (Intrusion has not started)

le+1-It +6 RECON;, brute-force attacks (SSH,Telnet,FTP) RECON;, CVE-2017-7494 exploit on N, RECON3, CVE-2017-7494 exploit on Ng,
on N, Ny, Nio, login(Na, Na, Nyo), brute-force attack (SSH) on N, login(Na, Na),  login(Na), backdoor(Ng)
backdoor( Nz, Na, Nig) backdoor(Na, Ns), RECON, RECON3, SQL Injection on Nig

I +7-l +10  RECON;, CVE-2014-6271 on Ny, CVE-2014-6271 on Ny, login(Ni7) login(Nig), backdoor(Nyg),
login(Ny7), backdoor(Ny7) backdoor(Ny7), SSH brute-force attack on Ny  RECON3, CVE-2015-1427 on Nas

le+11-I; +14  SSH brute-force attack on Ny, login(Ni2) login(Ny2), CVE-2010-0426 exploit on Nyz, login(Nas), backdoor(Nas),
CVE-2010-0426 exploit on Niz, RECONy RECON2, SQL Injection on Nig RECON3, CVE-2017-7494 exploit on Ny7

Iy + 151, + 16 login(Ng), backdoor(Nsg) login(Na7), backdoor(Na7)

Iy +17-1: + 19 RECONz, CVE-2015-1427 on Ns, login(Nas)

Table 3: Attacker actions to emulate intrusions.



vs EXPERIENCED vs NovICcE

vs EXPERT

Learning Intrusion Prevention Policies through Optimal
Stopping

Episode length (steps) P[intrusion interrupted] Plearly stopping] Duration of intrusion
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Learning curves of training defender policies against static attackers,
L=3.



Threshold Properties of the
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Conclusions & Future Work

» Conclusions:

» We develop a method to find learn intrusion prevention
policies
» (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement
learning and (5) domain randomization and generalization.

» We formulate intrusion prevention as a multiple stopping
problem

> We present a POMDP model of the use case
> We apply the stopping theory to establish structural results of the optimal policy
» Our research plans:
» Extending the theoretical model

»  Relaxing simplifying assumptions (e.g. more dynamic defender actions)
> Active attacker

» Evaluation on real world infrastructures



