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Use Case: Intrusion Response

» A defender owns an infrastructure

» Consists of connected components
» Components run network services
Defender defends the infrastructure
by monitoring and active defense
» Has partial observability

v

> An attacker seeks to intrude on the
infrastructure

» Has a partial view of the
infrastructure

» Wants to compromise specific
components

P Attacks by reconnaissance,
exploitation and pivoting

Attacker Clients
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Automated Intrusion Response

Levels of security automation
= £ -
Wi

No automation. OQperator assistance. Partial automation.

Manual detection. Audit logs Manual configuration.

Manual prevention.  Manual detection.  Intrusion detection systems.
Lack of tools. Manual prevention. Intrusion prevention systems.

1980s 1990s 2000s-Now

High automation.
System automatically
updates itself.

Research



Can we find effective security strategies through decision-theoretic methods?




Our Framework for Automated Intrusion Response
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Our Framework for Automated Intrusion Response
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Our Framework for Automated Intrusion Response
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Our Framework for Automated Intrusion Response
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Creating a Digital Twin of the Target Infrastructure
Y Configuration Space

Tl | el | |0
172.18.61.0/24  172.18.19.0/24 172.18.4.0/24
Digital Twins

» Given an infrastructure configuration, our framework
automates the creation of a digital twin.

» The configuration space defines the class of infrastructures
that we can emulate.



Example Infrastructure Configuration

Attacker Clients

> 64 nodes
» 24 ovs switches
> 3 gateways

» 6 honeypots
>
>
>

8 application servers
4 administration servers
15 compute servers

» 11 vulnerabilities ! !
> CVE-2010-0426 | Sl ol
> CVE-2015-3306 ‘
> etc.

4'4

> Management

» 1 SDN controller
» 1 Kafka server
» 1 elastic server

L —
Defender



Emulating Physical Components

Containers

566

Our framework

Docker engine

Operating system

Physical server

> We emulate physical components with Docker containers
» Focus on linux-based systems

» Our framework provides the orchestration layer



Emulating Network Connectivity

MANAGEMENT NODE 1

Emulated IT infrastructure

MANAGEMENT NODE 2

Emulated IT infrastructure

Emulated IT infrastructure

IP network

> We emulate network connectivity on the same host using
network namespaces

» Connectivity across physical hosts is achieved using VXLAN
tunnels with Docker swarm



Emulating Network Conditions

Application processes

» Traffic shaping using NetEm %E@\;
oS
> Allows to configure: Tsizc/ip
» Delay ' l II
Queueing

» Capacity
» Packet Loss discipline ::::::Jetem config:
> Jitter SRR latency,
» Queueing delays Jitter, etc.
> etc. Device driver |

queue (FIFO) [

R




Emulating Clients

Client population
Arrival rate A . Q Q . Departure
Service time p

Q Q ©

Workflows (Markov processes)

» Homogeneous client population
» Clients arrive according to Po(\)
» Client service times Exp(u)

» Service dependencies (St)¢=12,.. ~ MC



Emulating The Attacker and The Defender

» API for automated
defender and attacker
actions

» Attacker actions:
» Exploits
» Reconnaissance
» Pivoting
> etc.

» Defender actions:

» Shut downs
Redirect
Isolate
Recover
Migrate
etc.

vvVvyyVvyy

MARKOV DECISION PROCESS
Optimized security policy
DiciTaL TwiIN

Emulated o .

actors
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Software framework
—  REST API |—] CLI —

I \
Python libraries

ii@‘@
e B

Metastore

Digital twins

» More details about the software framework
» Source code: https://github.com/Limmen/csle
» Documentation: http://limmen.dev/csle/

» Demo: https://www.youtube.com/watch?v=iE2KPmtIs2A
> [nstallation:

https://www.youtube.com/watch?v=1_g3sRJwwhc


https://github.com/Limmen/csle
http://limmen.dev/csle/
https://www.youtube.com/watch?v=iE2KPmtIs2A
https://www.youtube.com/watch?v=l_g3sRJwwhc
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System Model

Static attacker Dynamic attacker Dynamic attacker
Small set of responses Small set of responses  Large set of responses
,
Healthy Compromised

Crashed

Model
complexity

» Intrusion response can be modeled in many ways
» As a parametric optimization problem
» As an optimal stopping problem
» As a dynamic program
> As a game
> etc.



Related Work on Learning Automated Intrusion

Response
External validity
Goal
‘—».—».—».—».—». ()
Our work 2020-2023

Servin et al. 2008.
(Multi-agent RL for
. intrusion detection)
Georgia et al. 2000.
(Next generation
intrusion detection:
reinforcement learning)

Zhu et al. 2019.
(Adaptive
Honeypot engagement)

etc. 2022-2023
Xiao et al. 2021.
(RL approach to APT)

model
" complexity

Apruzzese et al. 2020.
Xu et al. 2005. (Deep RL to
(An RL approach to Malialis et al. 2013. evade botnets)
host-based (Decentralized
intrusion detection)

RL response to
DDoS attacks)



Intrusion Response through Optimal Stopping

» Suppose

» The attacker follows a fixed strategy (no adaptation)
» We only have one response action, e.g., block the gateway

» Formulate intrusion response as optimal stopping

Episode
Ve - A t -
time-step t = jIntrusion event {Intrusion ongoing
I/—/%
e F—t—"F—"+F—1t
t=T

|
|
: Stopping times that

Early stopping times
affect the intrusion



Intrusion Response from the Defender’'s Perspective
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Intrusion Response from the Defender’'s Perspective
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Intrusion Response from the Defender’'s Perspective
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Intrusion Response from the Defender’'s Perspective
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Intrusion Response from the Defender’'s Perspective
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Intrusion Response from the Defender’'s Perspective
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Intrusion Response from the Defender’'s Perspective
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Intrusion Response from the Defender’'s Perspective

When to take a defensive action?

Alerts
200

m |
5 ) /\/\/\ ﬂAN\ ANl /\IAJ\/\/\/\=

00 120 140 160 0 200 t




The Defender's Optimal Stopping Problem (1/3)

> Infrastructure is a discrete-time dynamical system (s;)._;
» Defender observes a noisy observation process (o;)._;
» Two options at each time t: (¢)ontinue and (&)stop

» Find the optimal stopping time T*:

T—1
7" € argmax E, [Z APIRE . 4 ’yTleGTST]
T

StSt+1
t=1

where RS, & RS, are the stop/continue rewards and 7 is

T=inf{t:t>0,a =6}

s bt LN

|
k
.




The Defender's Optimal Stopping Problem (2/3)

» Objective: stop the attack as soon as possible

> Let the state space be S = {H, C, (}}

Healthy Compromised




The Defender's Optimal Stopping Problem (3/3)

> Let the observation process (o;)/_; represent 1Ds alerts

CVE-2010-0126 CVE-2015-3306 CVE-2015-5602 CVE-2016-10033 CWE-89
ﬁ\ ’ )‘Hh\
~ \ A' \ i i
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
CVE-2017-T494 CVE-2014-6271 FTP brute force SSH brute force TELNET brute force
= 1, A = H\ =
0 2000 401)”7 6000 8000 0 2000 4000 6000 8000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 HVUU(; 15000 20000
O (@

B! intrusion Y no intrusion ===+ intrusion model normal operation model

> Estimate the observation distribution based on M samples
from the twin
> E.g., compute empirical distribution Z as estimate of Z

> Z —25 Z as M — oo (Glivenko-Cantelli theorem)



Optimal Stopping Strategy

» The defender can compute the belief

Belief

btép[st:(c‘b]_,O:[,@,...Ot]

> Stopping strategy: o

n(b) : [0,1] = {&, ¢}

Defender



Optimal Threshold Strategy

Theorem

There exists an optimal defender strategy of the form:

(b)) =6 < b>a"

a* €0,1]
i.e., the stopping set is . = [a*, 1]
5%
—
I T — b
0 o 1
N ~— 7/

belief space B = [0, 1]



Optimal Multiple Stopping

» Suppose the defender can take L > 1 response actions
» Find the optimal stopping times 7/, 7[_4,...,7{:

TL—].
(17)i=1,..,L € argmaxE, - l SRS, L+ SRS

TLyeeTL t=1 i L
T[__1—1
t—1pC T_1—1p&
Z VT Resn T Re, s, Tt
t=7;+1
T1—1
t—1pC T1—11p6
Z v R5t5t+1 + Y ,R’s-r1 s,-!|
t=mo+1

where 77 denotes the stopping time with / stops remaining.

bl N

TL L—1 L2

Ot




Optimal Multi-Threshold Strategy
Theorem
» Stopping sets are nested .1 C . for | =2,...L.

» If (ot)¢>1 is totally positive of order 2 (TP2), there exists an
optimal defender strategy of the form:

(b)) =6 < b>aqj,

I=1,...,L
where o € [0, 1] is decreasing in .
S
7
/_/%
55
I I — — b
0 aj - 050 1

belief space B = [0, 1]



Optimal Stopping Game

» Suppose the attacker is dynamic and decides when to start
and abort its intrusion.

™1

4 K Attacker

: Stopped :

T1,1 T1,2 T1,3 :
—® | T Defender

| | | | !

1 | 1 1 !

t=1 1 | | |

L Y ‘L | Y Y | Y t
I T T T T T T T
t=T
Intrusion

Game episode

» Find the optimal stopping times

maximize minimize E[J]
TD,15--TD,L TA,1,TA 2

where J is the defender’s objective.



Best-Response Multi-Threshold Strategies (1/2)

Theorem

» The defender’s best response is of the form:
7~1'D7/(b):(‘5<:>b25z/, I=1,...,L
» The attacker’s best response is of the form:

ﬁA,/(b) =C <— 77rD7/(6 | b)
ﬁA’/(b) =6 — 7"1"]:)7/(6 | b)



Best-Response Multi-Threshold Strategies (2/2)

(D)
Lo,
: D
L3,
o
57
;sz,/
Defender f f f f f
0 ay ap  0g
(A) (A)
Ly]H[,L,ﬂ'DJ yC,EZTDJ
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Attacker K —4 — }
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Efficient Computation of Best Responses

Algorithm 1: Threshold Optimization

1 Input: Objective function J, number of thresholds L,
parametric optimizer PO

2 Output: A approximate best response strategy 7y

3 Algorithm

4 | ©«[0,1]t

5 For each 6 € ©, define my(b;) as

A |6 if by >0;
o mo(be) = {Qﬁ otherwise
J@ < Eﬂ-e [J]
7AT9 — PO(@, Jg)
return 7y

» Examples of parameteric optimization algorithmns: CEM, BO,
CMA-ES, DE, SPSA, etc.



Threshold-Fictitious Play to Approximate an Equilibrium

7 € Ba(mp) )y € Ba(mp)

#ip € Bp(7a) 7} € Bp(mh)

Fictitious play: iterative averaging of best responses.

P> Learn best response strategies iteratively
P Average best responses to approximate the equilibrium



Comparison against State-of-the-art Algorithms

Reward per episode against NOVICE Reward per episode against EXPERIENCED Reward per episode against EXPERT

N & Y
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
training time (min) training time (min) training time (min)
~#— PPO —— THRESHOLDSPSA —e— Shiryaev’s Algorithm (a = 0.75) HSVI === upper bound
Approximate exploitability Approximation error (gap)
44 7501 10.0 \
7.5
5004
o 55.0N87.5 60.0
250
o - - . . . 0 - : : : :
0 10 20 30 40 50 60 0 10 20 30 40 50 60
running time (min) running time (min)

—4+— T-FP —— NFSP —— HSVI



Learning Curves in Simulation and Digital Twin
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Episode length (steps)

Plearly stopping]

Duration of intrusion

Reward per episode
4

Plintrusion interrupted]

; e

104
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0.59 5
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20 60
training time (min)

—e— g, simulation —s— 7, emulation —+— (Az 4 Ay) > 1 baseline —— Snort IPS

o

20 0 60
training time (min)

Defender reward per episode

60

20 0
training time (min)

20
training time (min)

upper bound

Int length

20 60
training time (min)

3
2.5
2 0.
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—5. R
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# training iterations
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—— (T105 T20)

# training iterations
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Stopping is about timing; now we consider timing + action selection




General Intrusion Response Game

» Suppose the defender and the attacker
can take L actions per node

Defender



General Intrusion Response Game

» Suppose the defender and the attacker
can take L actions per node

» G = ({gw}UV,E): directed tree
representing the virtual infrastructure

» V: set of virtual nodes

» &£: set of node dependencies

» Z: set of zones

Defender



State Space

» Each i € V has a state
zZ I R
Vit = (Vt(,i)a Vt(,i)a Vt(,i ))
~ N——
D A



State Space

» Each i € V has a state

(zy @O  ([R)
Vit = (Vt,i » Ve is Ve )
~— ——

D A

> System state sy = (V¢,j)icy ~ St



State Space

» Each i € V has a state

(zy @O  ([R)
Vit = (Vt,i » Ve is Ve )
~—

D A

> System state sy = (V¢,j)icy ~ St

» Markovian time-homogeneous
dynamics:

se1~ f(- | St, At)

A= (AgA), AgD)) are the actions.



Observations

Attcker Clients
v « e .

» IDPSs inspect network traffic and
generate alert vectors:

A vV
Ot = (OL]_, .. .,0t7lv‘> € N(‘) |

)

0;,; is the number of alerts related to
node i € V at time-step t. :

M
Defender



Observations

Attcker Clients
v « e .

» IDPSs inspect network traffic and
generate alert vectors:

A vV
Ot = (OL]_, .. .,0t7lv‘> € N(‘) |

)

0;,; is the number of alerts related to
node i € V at time-step t. :

» 0; = (01,1,---,0)y|) is a realization
of the random vector O; with joint
distribution Z

M
Defender



Distributions of # alerts weighted by priority Zo,(0; | Si", A{") per node i € V
Z

probability

250 500 750 25 750 250 500 750 2 L 0 £ 5 250 0 250 500
[} (@} o (@ o o [}

I 10 intrusion FEEE intrusion



The (General) Intrusion Response Problem

maximizereny, minimizer, eny By ) [

E(rp,ra) denotes the expectation of the random vectors
(St,0¢, At)teqa,.., 7y When following the strategy profile (7p, )



The Curse of Dimensionality

» Solving the game is computationally intractable. The state,
action, and observation spaces of the game grow
exponentially with |V|.

105 -
—— |S]
10° —— [0
P
104
vvvvvvvvvv 2 .

VI

Growth of |S|, |O], and |A;| in function of the number of nodes |V



We tackle the scability challenge with decomposition
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Scalable Learning through Decomposition

V| =10
T T

—_
o
T

]l —— linear
—a— measured

Speedup S,
(=2}
T

# parallel processes n

Speedup of best response computation for the decomposed game; T,
denotes the completion time with n processes; the speedup is calculated
as S, = %; the error bars indicate standard deviations from 3
measuremnents.



Learning Equilibrium Strategies

Approximate exploitability 5 10 Defender utility per episode

[t 4 2 —

\ ~ 0.5
k =04
S \
U1, . — . . — 0.0 : . . - .
0 20 40 60 80 100 0 20 40 60 80 100
running time (h) running time (h)
—=— DFSP simulation —— DFsP digital twin ----- upper bound 0;4 > 0 —— random defense

Learning curves obtained during training of DFSP to find optimal
(equilibrium) strategies in the intrusion response game; red and blue
curves relate to dfsp; black, orange and green curves relate to baselines.



Comparison with NFSP

Approximate exploitability

—e—e—s

0 10 20 30 40 50 60 70 80
running time (h)

—*— DFSP —— NFSP

Learning curves obtained during training of DFSP and NFSP to find
optimal (equilibrium) strategies in the intrusion response game; the red
curve relate to dfsp and the purple curve relate to NFSP; all curves
show simulation results.



Conclusions

» We develop a framework to

automatically learn security strategies.

> We apply the framework to an
intrusion response use case.

> We derive properties of optimal
security strategies.

> We evaluate strategies on a digital
twin.

» Questions — demonstration
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