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Challenges: Evolving and Automated Attacks

» Challenges:

» Evolving & automated attacks
» Complex infrastructures
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Goal: Automation and Learning

» Our Goal:

» Automate security tasks
» Adapt to changing attack methods
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Approach: Game Model & Reinforcement Learning
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» Qur Approach:
» Formal models of network attack
and defense
» Use reinforcement learning to learn
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» Incorporate learned policies in

self-learning systems. @
Defender



Use Case: Intrusion Prevention

» A Defender owns an infrastructure

» Consists of connected components

» Components run network services

» Defender defends the infrastructure
by monitoring and active defense

> An Attacker seeks to intrude on the
infrastructure

» Has a partial view of the
infrastructure

» Wants to compromise specific
components

P Attacks by reconnaissance,
exploitation and pivoting

Attacker Clients
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We formulate this use case as an Optimal Stopping problem




Background on Optimal Stopping Problems

» The General Problem:
> A Markov process (s;)._; is observed sequentially
» Two options per t: (i) continue to observe; or (ii) stop
» Find the optimal stopping time T*:

7—1
7 = argmax E, Z’yFleSM + ’yT*lRfTST (1)
T t=1

where RS, & RE

o <., are the stop/continue rewards



Background on Optimal Stopping Problems

> History:
» Studied in the 18th century to analyze a gambler’s fortune
» Formalized by Abraham Wald in 19472
> Since then it has been generalized and developed by (Chow?,
Shiryaev & Kolmogorov*, Bather®, Bertsekas®, etc.)

SEQUENTIAL
ANALYSIS
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Background on Optimal Stopping Problems

» Applications & Use Cases:
» Change detection’, selling decisions®, queue managementg,
advertisement schedulinglo, etc.
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as Optimal Stopping Problem:



Formulating Intrusion Prevention as a Stopping Problem

Attcker
Episode
A

Clients

e

-
time-step t =1

» Intrusion Prevention as Optimal Stopping Problem:
» The system evolves in discrete time-steps.



Formulating Intrusion Prevention as a Stopping Problem
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» Intrusion Prevention as Optimal Stopping Problem:

» Defender observes the infrastructure (IDS, log files, etc.).



Formulating Intrusion Prevention as a Stopping Problem
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» Intrusion Prevention as Optimal Stopping Problem:

» An intrusion occurs at an unknown time.



Formulating Intrusion Prevention as a Stopping Problem
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» Intrusion Prevention as Optimal Stopping Problem:

» The defender can make L stops.
» Each stop is associated with a defensive action
» The final stop shuts down the infrastructure.



Formulating Intrusion Prevention as a Stopping Problem
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» Intrusion Prevention as Optimal Stopping Problem:

» Based on the observations, when is it optimal to stop?



Formulating Intrusion Prevention as a Stopping Problem
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» Intrusion Prevention as Optimal Stopping Problem:

» We formalize this problem with a POMDP



A Partially Observed MDP Model for the Defender

» States:

» Intrusion state s; € {0,1}, terminal (.

t>1 t>2

intrusion starts

Q=1

t >l + Tine
ntrusion succeeds



A Partially Observed MDP Model for the Defender

» Observations:

» Severe/Warning IDS Alerts (Ax, Ay),
Login attempts Az
fxyz(Ax, Ay, Az|s;, Iy, t)



A Partially Observed MDP Model for the Defender

> Actions:
> “Stop” (S) and “Continue” (C)



A Partially Observed MDP Model for the Defender

> Rewards:

» Reward: security and service. Penalty:
false alarms and intrusions



A Partially Observed MDP Model for the Defender

» Transition probabilities: o

» Bernoulli process (Q;)/_; ~ Ber(p)
defines intrusion start I; ~ Ge(p)

CDF,(t)
s

5 10 1
intrusion start time ¢

20

25




A Partially Observed MDP Model for the Defender

» Objective and Horizon:
> maxEq, S0 r(sea)], To



A Partially Observed MDP Model for the Defender

> States:
» Intrusion state s; € {0,1}, terminal (.
» Observations: t21 intrusion starts £ =2
» Severe/Warning IDS Alerts (Ax, Ay), %=1
Login attempts Az
fxyz(Ax, Ay, Az|s;, Iy, t)
> Actions:
> “Stop” (S) and “Continue” (C)
> Rewards:

t >l + Tine
ntrusion succeeds

» Reward: security and service. Penalty:
false alarms and intrusions

e(p =0.2)

> Transition probabilities:

» Bernoulli process (Q;)_; ~ Ber(p
defines intrusion start I; ~ Ge(p)

(DF,
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» Objective and Horizon: htrusion Mart time 7
T
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We analyze the optimal policy using optimal stopping theory




Belief States and Stopping Set

> Belief States:
» The belief state b; € B is defined as by(s:) = P[s¢|h:]
> b, is a sufficient statistic of s; based on
he = (p1,a1,01,...,3-1,0:) EH
» B is the unit (|S| — 1)-simplex



Belief States and Stopping Set

> Belief States:
» The belief state b, € B is defined as b;(s;) = P[s¢|h;]
> b, is a sufficient statistic of s; based on
ht = (pl, d1,01,...,d¢t—1, Ot) (S H
> B is the unit (|S| — 1)-simplex

B(3): 2-dimensional unit-simplex
(0,0,1)

(0.25,0.55,0.2)

025 { 055

B(2): 1-dimensional unit-simplex

(0.4,06)

0,1) (1,0,0) (0,1,0)



Belief States and Stopping Set

» Characterizing the Optimal Policy 7*:

» To characterize the optimal policy 7* we partition 3 based on
optimal actions.
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» Characterizing the Optimal Policy 7*:
» To characterize the optimal policy 7* we partition 3 based on
optimal actions.
» s, €{0,1}. b; has two components: b:(0) = P[s; = 0|h;] and
be(1) = P[s; = 1]hy]



Belief States and Stopping Set

» Characterizing the Optimal Policy 7*:

>

>

To characterize the optimal policy m* we partition 3 based on
optimal actions.

st € {0,1}. b; has two components: b;(0) = P[s; = 0]h;] and
bt(l) - H:D[St — 1|hf]

Since b(0) + b:(1) = 1, b; is completely characterized by
be(1), (b(0) =1 — b(1))

Hence, B is the unit interval [0, 1]



Belief States and Stopping Set

» Characterizing the Optimal Policy 7*:

> Stopping set . = {b(1) € [0,1] : 7*(b(1)) = S}
> Continue set ¢ = {b(1) € [0,1] : 7*(b(1)) = C}



Threshold Properties of the Optimal Defender Policy

~~

belief space B = [0, 1]
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Threshold Properties of the Optimal Defender Policy

action a
stopping set .
stop 1 e ™ (b(1))
i
continue set ¢ : threshold
A
continueQ -+ 1 >b(1)
0 o*

V"

belief space B = [0, 1]



Our Method for Finding Effective Security Strategies
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Our Method for Finding Effective Security Strategies
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Emulation System

Emulation

A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.



EmUIat|On SyStem Y Configuration Space

e e § e
172.18.61.0/24 172.18.19.0/24 172.18.4.0/24
Emulated Infrastructures

Emulation

A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

» The set of virtualized configurations define a
configuration space ¥ = (A, O, S, U, T, V).
> A specific emulation is based on a configuration o; € ¥.



From Emulation to Simulation: System Identification

Emulated Network
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From Emulation to Simulation: System Identification

Emulated Network Abstract Model

» Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.

» Defines the static parts a POMDP model.



From Emulation to Simulation: System Identification

Emulated Network Abstract Model POMDP Model
] ‘ ‘ (S8, A,P,R,~,0,Z)

Ej"i

2]
—

» Dynamics Model (P, Z) ldentified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

n(b, a, b)

M(b'|b,a) & ————
(b]b,2) >y n(s,a ')



System ldentification: Estimated Empirical Distributions
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Our Method for Finding Effective Security Strategies

T (]

?&?”?&' ? ™\ Reinforcement Learning &
?&?&?&gg? ) POMDP Model
oW OoW oW OW0

SIMULATION SYSTEM




Policy Optimization in the Simulation System

using Reinforcement Learning
Agent ’]
u Environment




Policy Optimization in the Simulation System
using Reinforcement Learning

> Goal:
> Approximate 7 = arg max, E {Z;l 7t_1rt+1}

ar

Environment
St+1




Policy Optimization in the Simulation System

using Reinforcement Learning

» Learning Algorithm:
» Represent 7w by 7y
» Define objective J(6) = E,, {Zz—zl Y (se, at)}
> Maximize J(6) by stochastic gradient ascent

VoJ(0) =E,,

Vg log g (als) A™ (s, a)}
—_—— ——

actor critic

Environment

ar



Policy Optimization in the Simulation System
using Reinforcement Learning

ar

Environment
St+1

> Method:

1.
2.

Simulate a series of POMDP episodes

Use episode outcomes and trajectories to estimate
VoJ(0)

Update policy 7 with stochastic gradient ascent
Continue until convergence



Our Method for Finding Effective Security Strategies

a ™\ Reinforcement Learning &

@g ‘@a’a@ ) POMDP Model

SIMULATION SYSTEM

¥,

\
I Model estimation
/

EMULATION SYSTEM

b

REAL WORLD ‘\I Automation &

Ll
INFRASTRUCTURE .‘E .‘E @ 8 @ / Self-learning systems

b




The Target Infrastructure

> Topology:
> 30 Application Servers, 1 Gateway/IDS (Snort), 3 Clients, 1 Attacker,
1 Defender
> Services

> 3 SSH, 8 HTTP, 1 DNS, 1 Telnet, 2 FTP, 1 MongoDB, 2 SMTP, 2
Teamspeak 3, 22 SNMP, 12 IRC, 1 Elasticsearch, 12 NTP, 1 Samba,

19 PostgreSQL

» RCE Vulnerabilities
| 1 CVE-2010-0426, 1 CVE-2014-6271, 1 SQL Injection, 1
CVE-2015-3306, 1 CVE-2016-10033, 1 CVE-2015-5602, 1
CVE-2015-1427, 1 CVE-2017-7494
» 5 Brute-force vulnerabilities

» Operating Systems
> 23 Ubuntu-20, 1 Debian 9:2, 1 Debian Wheezy, 6 Debian Jessie, 1
Kali

‘E

Defender

Target infrastructure.




Emulating the Client Population

Client  Functions Application servers

1 HTTP, SSH, SNMP, ICMP Ny, N3, Nig, Ni2

2 IRC, PostgreSQL, SNMP N31, Ni3, Nig, Nis, Nig
3 FTP, DNS, Telnet Nig, Noo, Ny

Table 1: Emulated client population; each client interacts with
application servers using a set of functions at short intervals.



Emulating the Defender’s Actions

Action Command in the Emulation

Stop iptables -A INPUT -i ethO -j DROP

Table 2: Command used to implement the defender's stop action.



Emulating the Attacker’s Actions

Time-steps t Actions

1-I; ~ Ge(0.2)  (Intrusion has not started)
I+ 1-1+7 RECON, brute-force attacks (SSH,Telnet,FTP)
on /\/27 N4, Nlo, Iogin(Ng, N4, Nlo),
badeOOI’(Nz, N4, NlO). RECON
Iy + 8- + 11 CVE-2014-6271 on Ni7, SSH brute-force attack on Njs,
Iogin (/\/177 N12), backdoor(N17, N12)
It +12-X +16 CVE-2010-0426 exploit on N2, RECON
SQL-Injection on Nig, login(Nig), backdoor(Nig)
It +17-1; +22 RECON, CVE-2015-1427 on Nas, login(/Nas)
RECON, CVE-2017-7494 exploit on Na7, login(No7)

Table 3: Attacker actions to emulate an intrusion.



Learning Intrusion Prevention Policies through Optimal

Stopping

200-_Reward per episode Episode length (steps) Plintrusion interrupted] | o Plearly stopping] Uninterrupted intrusion ¢
LofF=== .
8
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—m— Learned 7y vs NOISYATTACKER —e— Learned mg vs STEALTHYATTACKER t = 6 baseline —®— (x + y) > 1 baseline === Upper bound =*

Learning curves of training defender policies against static attackers.



Threshold Properties of the Learned Policies

soft
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Conclusions & Future Work

» Conclusions:

» We develop a method to find learn intrusion prevention
policies
> (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement
learning and (5) domain randomization and generalization.

» We formulate intrusion prevention as a optimal stopping
problem

> We present a POMDP model of the use case
> We apply the stopping theory to establish structural results of the optimal policy

» Our research plans:
» Extending the theoretical model

> Relaxing simplifying assumptions (e.g. more dynamic defender actions)
> Active attacker
> Multiple stops

» Evaluation on real world infrastructures



