Kim Hammar

kimham@kth.se Division of Network and Systems Engineering KTH Royal Institute of Technology

May 31, 2024

Use Case: Intrusion Response

A defender owns an infrastructure

- Consists of connected components
- Components run network services
- Defender defends the infrastructure by monitoring and active defense
- Has partial observability
- An attacker seeks to intrude on the infrastructure
 - Has a partial view of the infrastructure
 - Wants to compromise specific components
 - Attacks by reconnaissance, exploitation and pivoting

Levels of security automation

No automation.

Manual detection Manual prevention. No alerts. No automatic responses. Lack of tools.

Operator assistance.

Manual prevention. Audit logs. Security tools.

Partial automation.

Manual detection. System has automated functions for detection/prevention but requires manual

Intrusion prevention systems.

High automation.

System automatically updates itself. Automated attack detection

updating and configuration. Automated attack mitigation. Intrusion detection systems.

Can we find effective security strategies through decision-theoretic methods?

Step 1: Emulation

- Emulate servers using virtual containers.
- Emulate connectivity using virtual networks.
- Emulate clients using traffic generators.
- Emulate attacker/defender using automation API.
- Source code: https:// github.com/Limmen/csle

Step 2: Data Collection

Distributions of IDS alarms during different types of intrusions.

- The first step in our framework is to collect data from the emulation system.
- We collect data both during normal operation and during attacks.

Step 3: Modeling

Intrusion response can be modeled in many ways

- As a parametric optimization problem
- As an optimal stopping problem
- As a dynamic program
- As a game
- etc.

Step 4: Optimization

- Different optimization techniques:
 - Dynamic programming
 - Reinforcement learning
 - Stochastic approximation
 - Regret minimization
 - Evolutionary computation
 - etc.

Conclusions

- We develop a *framework* to automatically learn security strategies.
- We apply the framework to an intrusion response use case.
- References and videos are available at: https://www.kth.se/cdis

