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Use Case: Intrusion Detection

» Defender = IDS:

» System Operator with task of
detecting intrusions

> IT Infrastructure:

» Consist of a set of components (also
called “subsystems”).

» The infrastructure is equipped with a
network of sensors

> Sensors report anomalies/alerts to
the defender

» Each component has a set of
vulnerabilities

> Attacker:
» Can attack vulnerable components
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System Model

> Infrastructure components
(Subsystems)

> T = {tl, to,... tmax}

» Vulnerabilities
> I: {Ilal27~-~,/max}

> Attacks
> A=TxT
> Sensors
> S = {517527 v 75max}
» Each sensor reports “alarm” or “no
alarm”.

» Each sensor s; € S corresponds to a
vulnerabilitiy ; € Z

N

QE alerts

==
Defender




Example Infrastructure: One Subsystem, One Sensor and
One Vulnerability

» Infrastructure components

(Subsystems) Attacker
> T ={t;} (]
» Vulnerabilities Gatewa
> 7T =1/
{ 1} Subsystem t;
Sensor s;
» Attacks Vulnerability /1

alerts

> A={a=(t1,h)}

-l
» Sensors Defender



Finite Extensive-Form Game Model
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» Players: N = {Attacker, Defender, Nature} = {1, 2,3}
> Action sets:
> A; = {Attack, Continue}, Ay = {Alert — Defend, Alert —
Continue, No Alert — Defender, No Alert — Continue, },
Az = {Alert,No Alert}
> Nature’s pre-defined strategy:

> f(Alert|Attack) = 2, f(Alert|Continue) = }

(0,0)
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Finite Extensive-Form Game Model
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Extensive & Strategic Form of the Finite Game Model

Extensive Form:
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Extensive Form:

Extensive & Strategic Form of the Finite Game Model

Attacker

attack

continue
Nature
2
alert, 3

Nature
Defender.1

Defender.2
defend / “\continue  defend /©  “\continue  defend /" "~ continue
(=5,5) (10, —15) (=5,5) (10, -15) (5,—-10) (0,0) (0,-5) (0,0)
Strategic Form:
DC DD CcD ccC
5 25

073 _5’5 y T 3 ma_ls 2

5 710 5 .20 o 10 g ()

3)7 3 3773 y T 3 )

—> No pure Nash equilibrium



Unique Mixed Nash Equilibrium Computed using
Lemke-Howson's Algorithm

Attacker

continue, 1

1
attack, 5 5

Nature

2

alert, 5
Defender.1

defend,
0.86

continue, defend, e, - - e N ez continue,
0.14
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Mixed Nash equilibrium (s;,s3) € A(A1) x A(Az):

> si(Attack) = £, sj(Continue) = 2

> s5(Defend|Alert) = 0.86, s;(Continue|Alert) = 0.14,
s (Defend|No Alert) = 0, s3(Continue|No Alert) = 1.



Limitations of the Finite Game Model

Attacker

continue, L

1
attack, § 5

Nature
2
alert, 3

continue,

defend, - e L N e = continue,
0 ;

(-5.5) (10, -15) (-5.5) (10,-15)  (5.-10) (0,0) (0,-5) (0,0)

Limitations:
» Hard to analyze for large systems (scalability)
» Hard to define all of the parameters in the model

» Equilibria depend greatly on the payoff-values, are they
realistic?

» Does mixed equilibria make sense?



Alternative model: continuous-kernel game
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> Attacker Action Space: A; = Rﬁmax instead of
Al - {317 cee 7Amax}

» Defender Action Space: A; = ]Rfm“ instead of
A2 = {317 R Dmax}



Continuous-Kernel Game Model (1/3)

> Attacker Action Space: A; = Rﬁ”’ax instead of
Ar = {a1,...,Amax ), pure strategy a* € A;

» Defender Action Space: A; = Rfmx instead of
Ay = {a1,..., Dmax}, pure strategy aP € A,

» Nature/(Sensor Network) Action Space:
> 43 = Rf‘rm““”"”x instead of As = {alert, no alert} x A, = P
> Pj represent the alert-weight that nature put on attack j when
attack i occurred.

» P = | if the sensors are perfect.
> Attack detection metric: dq(i) =

APii
max p
> Py

For notational convenience, define:

p— {pi,j =—pi; ifi=j (5)

pi.j = Pi;j otherwise
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Continuous-Kernel Game Model (2/3)

» Defender cost of being attacked: ¢ € RAma

» Attacker gain of successful attack: ¢ € RAma

» Vulnerability matrix: Q € RAm*Amax djagonal matrix that
models degree of vulnerability per attack

> Defense matrix: @ € {0, 1}Am>*Pmax where Q;; = 1 if
defense detects the attack and 0 otherwise.

» Cost of defender actions: o € Rfmax

> Cost of attacker actions: € R’i""’x

» False alarm weight: v, defines how much to penalize false
alarms



Continuous-Kernel Game Model (3/3)

» Objective: Minimize costs rather than maximize utilities
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Continuous-Kernel Game Model (3/3)

» Objective: Minimize costs rather than maximize utilities

» Defender Cost Function:

JP(a*,a” P) = (10)
(@) " PQaP + (aP) " diag(a)al + cP(Qa* — QaP)
false alarm cost of defense cost of attack

» Attacker Cost Function:

JA(a*, aP, P) = (11)
— (@) "PQaP + (a*)" diag(p)a* + c*(Qa" — Qa*)

detected cost of attack gain of attack




Continuous-Kernel Game Model (3/3)

» Summary: Continuous-kernel general-sum game with convex
cost functions.
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Equilibrium Analysis (1/3)

» Since JA, JP are strictly convex, the best-response
correspondences are obtained from the first order conditions:
Vao(JP(a%,a” P)) =0 (18)
V.o(v(a?)TPQaP + (aP)" diag(a)a® + cP(Qa* — QaP)) =0
1(a*)TPQ + (aP)7 (2diag(a)) - PQ@ =0

— Brp(a®, P) = {cPQ(2diag(a)) ™! — y(2diag(a)) 1 QT PT a*
and, analogously for the attacker:
Vaa(JP(a% a% P)) =0 (19)
—vPQa" + (a*)" (2diag(8)) — ¢*Q =0
a” = (2diag(B)) *c*Q + v(2diag(8)) 1 PQa"

= Bra(a”, P) = {(2diag()) ' c"Q +~(2diag(5)) ' PQa"}



Equilibrium Analysis (2/3)
» For notational convenience, define

0°(c”Q.a) £[(c°Q)1/(201). .. .. (" Q)p,,./(20p,,.)]
04(c*Q. 8) £ [(c"Q)1/(281), -, (" Q) A, / (2B )]

> Then we can write the best response functions as:

Brp(a®, P) = [0P — ~v(diag(22)) QTP a"|*
Bra(a®, P) = [0* + ~(diag(28)) ' PQa"]"



Equilibrium Analysis (3/3)

» The set of Nash equilibria is
{(a*,aP) | a" e Bra(aP, P),aP e Brp(a®, P)} (21)

» How large is this set? What do the elements of this set look
like?



Main Contribution of the Paper

Theorem

There exists a unique NE. Further, if:

7 < (22)
min; 6P max; 64
max;(diag(2a)) "1 QT PTHA™ max;(diag(283))~1(—P)Q#P

min

Then the unique NE (aP*, a**) satisfy aP* > 0 and a** > 0 and
is given by:

= (I+2)7'[0" + 1(diag(25))'PQO°]  (23)
aP* = (1 + 2)7AP — (diag(22))1QTPTHA]  (24)

‘ivhereZé’Y2( iag(25))~ IPQ(d/ag(Z )
2 12(diag(20)) "L QT P (diag(25))*

T and

)1
PQ.



Rosen's Existence Theorem?3

Theorem (Pure Nash Equilibrium Existence for
Continuous-Kernel Games)

For each player i € N, let A; be a compact and convex subset of a
finite-dimensional Euclidean space, and the cost functional

J' 1 AL x ... x Ay — R be jointly continuous in all its arguments
and strictly convex in aj for every a; € A;,j € N,j # i. Then, the
associated N-person nonzero-sum game admits a Nash equilibrium
in pure strategies.

2T Basar and G.J. Olsder. Dynamic Noncooperative Game Theory. Classics in Applied Mathematics. Society
for Industrial and Applied Mathematics, 1999. 1SBN: 9780898714296. URI
https://books.google.se/books?id=k10F5AxmJ1YC.

3). B. Rosen. “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games". In
Econometrica 33.3 (1965), pp. 520-534. 1ssN: 00129682, 14680262. URL:
http://www.jstor.org/stable/1911749.


https://books.google.se/books?id=k1oF5AxmJlYC
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Proof of Theorem 1, Existence

» Existence of Pure NE:

>

>

A2, AP are convex subsets of a Euclidean space

JA, JP are jointly continuous in all their arguments and strictly

convex in a?, aP respectively,

A% AP are not compact.

However, JP(a#,aP, P) and JA(a*, aP, P) grow unbounded
as |a| —» oo

= by Rosen’s existence theorem, the game has a pure Nash
equilibrium.



Rosen’s Uniqueness Theorem (1/3) - Pseudo-gradient*

Definition (Pseudo-Gradient g(a) and Pseudo-Gradient
Operator V)

Let V be the pseudo-gradient operator, defined through its
application on the cost vector J as:

O.él(a)
8J2a!a!
@J 2 8?2 = g(a) (25)

6J|N|(a)
83“\”

4J. B. Rosen. “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games”. In
Econometrica 33.3 (1965), pp. 520-534. 1ssN: 00129682, 14680262. URL:
http://www.jstor.org/stable/1911749.
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Proof Preliminaries (2/3) - Pseudo-Hessian®

Definition (Pseudo-Hessian)

Let G(a) be the Jacobian of the pseudo-gradient g(a) with respect
to a (also called pseudo-Hessian):

02 J1(a) 8% J1(a) 8% J1(a)
0a? 0a10ay Tt Oadapy
Ga)2| - : (26)
82./“\”(8) B2J|N|(a) 62J|N|(a)
aa|N|6al 83“\”832 o 8a|2N|

Definition (Symmetrized Pseudo-Hessian)

Let G(a) be the Jacobian of the pseudo-gradient g(a) with respect
to a, i.e. the pseudo-Hessian, then the symmetrized pseudo-hessian
is defined as:

G(a) £ G(a) + G(a)" (27)


http://www.jstor.org/stable/1911749

Proof Preliminaries (3/3) - Rosen’s Uniqueness Theorem®

Theorem (Unique Pure Nash Equilibrium Existence for
Continuous-Kernel Games)

If the symmetrized pseudo-Hessian G(a) is positive definite, the
pure equilibrium of a continuous-kernel game with strictly convex
cost functions is unique.

6). B. Rosen. “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games". In
Econometrica 33.3 (1965), pp. 520-534. 1ssN: 00129682, 14680262. URL:
http://www.jstor.org/stable/1911749.


http://www.jstor.org/stable/1911749

Proof of Theorem 1, Uniqueness

The pseudo-gradient is:
T J(a) = (’Y(aA)tP@h + (@) T 2a) — (@)1 ... ("/(aA)th)Dmax + (aD)T(2aDmax) — (cDO)DmaX
—(vPQaP) + (a7 (281) — (*@)1 ... —(YPQaP)an, + (@) (2Banmay) — (P @Ay
(28)



Proof of Theorem 1, Uniqueness

The pseudo-gradient is:

(@) PQ)1 + (@) 201) — (P Q)

V(@) = —(vPQaP); + (a7 (281) — (¢ @)

The pseudo-hessian is:

[201 0 0
0 . 0
0 0 2ap,,,,
Ga)=| — — —
—yPQ

(@) PQ)p,,, + (@) 2ap,,,, ) = (PQ)pp,,

—(vPQa") ..

+ (@) (2B ) = (A @)y

(20)
| _

| YPQ

|

| - — — (30)
| 2061 0 0

0o .0

| 0 0 264,

)



Proof of Theorem 1, Uniqueness

The pseudo-gradient is:

S J(a) = (@ TPQ) + (a°) T (21) — (P@1 ... (7@ PQ)p,,,, + (a°)T (2ap,,,) — (P @)Dy,
T L -(PQEP) + (@M T(281) — (PQ1 .. —(PQaP)an,, + (@) (2Bama) — (€A @) apay
(31)

The pseudo-hessian is:

a1 0 0 | T
0 - 0o | YPQ
0 0 2ap,,. |
Gla)=|— — - = = =] (3
| 281 0 0
—PQ | o : 0
I | 0 0 2Ba,,..

Clearly, G(a) = G(a) + G(a)T = 4diag([c, B]"), which is positive
definite.



Proof of Theorem 1, Uniqueness

The pseudo-gradient is:

(@) TPQ)L + (a°)T(2a1) — (@)1 ... (@) PQ) oy + (a°) T (20p,0) — (P @)Dy
—(vPQaP) + (a")T(261) — (@1 ... —(vPRaP)a,, + (@) (2Bamm) — (A Q) Amn
(33)

VJi(a) =

The pseudo-hessian is:

a7 0 0 | T
0 - 0 | YPQ
O O 2aDmax ’
Gla)=|— — - | = — — (34)
| 261 0 0
—PQ |0 : 0
|z |0 0  2Ba,,.]

Clearly, G(a) = G(a) + G(a)T = 4diag([a, B]), which is positive
definite. Thus, by Rosen’s Uniqueness theorem, the NE is unique



Proof of Theorem 1, Analytical Characterization of NE

Recall the Best Response Functions:
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Bra(a®, P) = [0 + y(diag(25)) ' PQa"]"
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Proof of Theorem 1, Analytical Characterization of NE
Recall the Best Response Functions:
Brp(a*, P) = [0° — y(diag(2a)) ' QT PTa"|"
Bra(a®, P) = [0" +~(diag(25)) ' PQa"]*

Substitute a® in Bry(a®, P) with Brp(a®, P), we then obtain
the fixed point equation:

a* = Bra(Brp(a™, P), P)
= [0" +(diag(26)) ' PQ[O° — 7(diag(22)) ' QT PTa™ ||+
Solving for a** and similarly for aP* yields:

a™ = (14 2)7Y0" + y(diag(28))"1PQAP]  (35)
aP = (1 + 2)7'AP — y(diag(20))*QTPTH*  (36)



Conclusion

» Topic:

» The paper provides a game theoretic analysis of intrusion
detection

» Contributions:

» A finite extensive form non-cooperative game model

» A infinite continuous-kernel strategic non-cooperative game
model

» Existence and uniqueness proof of NE

» Repeated game simulation



Discussion

» General questions/Comments?

> Are there other existence/uniqueness theorems that
could have been used?

» Are cyber attacks continuous?
» The continuous-kernel model provide a richer analytical
analysis
» But, does it make sense in practice?

» Which Model makes most sense:

» Finite game model with NE in mixed strategies
» Infinite game model with NE in pure strategies



