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Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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The Intrusion Prevention Problem
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When to take a defensive action?
Which action to take?
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A Brief History of Intrusion Prevention
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Our Approach for Learning Effective Security Strategies
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The Optimal Stopping Game
I Defender:

I Has a pre-defined ordered list of
defensive measures:

1. Revoke user certificates
2. Blacklist IPs
3. Drop traffic that generates IPS alerts of priority

1 − 4
4. Block gateway

I Defender’s strategy decides when to
take each action

I Attacker:

I Has a pre-defined randomized
intrusion sequence of reconnaissance
and exploit commands:

1. TCP-SYN scan
2. CVE-2017-7494
3. CVE-2015-3306
4. CVE-2015-5602
5. SSH brute-force
6. . . .

I Attacker’s strategy decides when to
start/stop an intrusion
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We analyze attacker/defender strategies using optimal stopping theory
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Optimal Stopping Formulation of Intrusion Prevention
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Defender

t = 1
t

I The attacker’s stopping times τ2,1 and τ2,2 determine the
times to start/stop the intrusion
I During the intrusion, the attacker follows a fixed intrusion

strategy
I The defender’s stopping times τ1,L, τ1,L−1, . . . determine the

times to take defensive actions
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Optimal Stopping Formulation of Intrusion Prevention

Attacker

Defender

t = 1
t = T

τ1,1 τ1,2 τ1,3

τ2,1

t

Prevented

Game episode
Intrusion

I The attacker’s stopping times τ2,1, τ2,2, . . . determine the
times to start/stop the intrusion
I During the intrusion, the attacker follows a fixed intrusion

strategy
I The defender’s stopping times τ1,1, τ1,2, . . . determine the

times to update the IPS configuration

We model this game as a zero-sum partially observed stochastic game
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Partially Observed Stochastic Game

I Players: N = {1, 2} (Defender=1)
I States: Intrusion st ∈ {0, 1}, terminal ∅.
I Observations:

I Number of IPS Alerts ot ∈ O, defender
stops remaining lt ∈ {1, .., L}, ot is
drawn from r.v. O ∼ fO(·|st)

I Actions:
I A1 = A2 = {S,C}

I Rewards:
I Defender reward: security and service.
I Attacker reward: negative of defender

reward.
I Transition probabilities:

I Follows from game dynamics.
I Horizon:

I ∞

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

a(2)
t = S

lt = 1
a(1)
t = S

pre
ve
nt
ed

w.
p
φ l t

or
sto

pp
ed

(a
(2

)
t

=
S)



9/27

Partially Observed Stochastic Game

I Players: N = {1, 2} (Defender=1)
I States: Intrusion st ∈ {0, 1}, terminal ∅.
I Observations:

I Number of IPS Alerts ot ∈ O, defender
stops remaining lt ∈ {1, .., L}, ot is
drawn from r.v. O ∼ fO(·|st)

I Actions:
I A1 = A2 = {S,C}

I Rewards:
I Defender reward: security and service.
I Attacker reward: negative of defender

reward.
I Transition probabilities:

I Follows from game dynamics.
I Horizon:

I ∞

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

a(2)
t = S

lt = 1
a(1)
t = S

pre
ve
nt
ed

w.
p
φ l t

or
sto

pp
ed

(a
(2

)
t

=
S)



9/27

Partially Observed Stochastic Game

I Players: N = {1, 2} (Defender=1)
I States: Intrusion st ∈ {0, 1}, terminal ∅.
I Observations:

I Number of IPS Alerts ot ∈ O, defender
stops remaining lt ∈ {1, .., L}, ot is
drawn from r.v. O ∼ fO(·|st)

I Actions:
I A1 = A2 = {S,C}

I Rewards:
I Defender reward: security and service.
I Attacker reward: negative of defender

reward.
I Transition probabilities:

I Follows from game dynamics.
I Horizon:

I ∞

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

a(2)
t = S

lt = 1
a(1)
t = S

pre
ve
nt
ed

w.
p
φ l t

or
sto

pp
ed

(a
(2

)
t

=
S)



9/27

Partially Observed Stochastic Game

I Players: N = {1, 2} (Defender=1)
I States: Intrusion st ∈ {0, 1}, terminal ∅.
I Observations:

I Number of IPS Alerts ot ∈ O, defender
stops remaining lt ∈ {1, .., L}, ot is
drawn from r.v. O ∼ fO(·|st)

I Actions:
I A1 = A2 = {S,C}

I Rewards:
I Defender reward: security and service.
I Attacker reward: negative of defender

reward.
I Transition probabilities:

I Follows from game dynamics.
I Horizon:

I ∞

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

a(2)
t = S

lt = 1
a(1)
t = S

pre
ve
nt
ed

w.
p
φ l t

or
sto

pp
ed

(a
(2

)
t

=
S)



9/27

Partially Observed Stochastic Game

I Players: N = {1, 2} (Defender=1)
I States: Intrusion st ∈ {0, 1}, terminal ∅.
I Observations:

I Number of IPS Alerts ot ∈ O, defender
stops remaining lt ∈ {1, .., L}, ot is
drawn from r.v. O ∼ fO(·|st)

I Actions:
I A1 = A2 = {S,C}

I Rewards:
I Defender reward: security and service.
I Attacker reward: negative of defender

reward.
I Transition probabilities:

I Follows from game dynamics.
I Horizon:

I ∞

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

a(2)
t = S

lt = 1
a(1)
t = S

pre
ve
nt
ed

w.
p
φ l t

or
sto

pp
ed

(a
(2

)
t

=
S)



9/27

Partially Observed Stochastic Game

I Players: N = {1, 2} (Defender=1)
I States: Intrusion st ∈ {0, 1}, terminal ∅.
I Observations:

I Number of IPS Alerts ot ∈ O, defender
stops remaining lt ∈ {1, .., L}, ot is
drawn from r.v. O ∼ fO(·|st)

I Actions:
I A1 = A2 = {S,C}

I Rewards:
I Defender reward: security and service.
I Attacker reward: negative of defender

reward.
I Transition probabilities:

I Follows from game dynamics.
I Horizon:

I ∞

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

a(2)
t = S

lt = 1
a(1)
t = S

pre
ve
nt
ed

w.
p
φ l t

or
sto

pp
ed

(a
(2

)
t

=
S)



9/27

Partially Observed Stochastic Game

I Players: N = {1, 2} (Defender=1)
I States: Intrusion st ∈ {0, 1}, terminal ∅.
I Observations:

I Number of IPS Alerts ot ∈ O, defender
stops remaining lt ∈ {1, .., L}, ot is
drawn from r.v. O ∼ fO(·|st)

I Actions:
I A1 = A2 = {S,C}

I Rewards:
I Defender reward: security and service.
I Attacker reward: negative of defender

reward.
I Transition probabilities:

I Follows from game dynamics.
I Horizon:

I ∞

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

a(2)
t = S

lt = 1
a(1)
t = S

pre
ve
nt
ed

w.
p
φ l t

or
sto

pp
ed

(a
(2

)
t

=
S)



9/27

Partially Observed Stochastic Game

I Players: N = {1, 2} (Defender=1)
I States: Intrusion st ∈ {0, 1}, terminal ∅.
I Observations:

I IPS Alerts ∆x1,t ,∆x2,t , . . . ,∆xM,t ,
defender stops remaining lt ∈ {1, .., L},
fX (∆x1, . . . ,∆xM |st)

I Actions:
I A1 = A2 = {S,C}

I Rewards:
I Defender reward: security and service.
I Attacker reward: negative of defender

reward.
I Transition probabilities:

I Follows from game dynamics.
I Horizon:

I ∞

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

a(2)
t = S

lt = 1
a(1)
t = S

pre
ve
nt
ed

w.
p
φ l t

or
sto

pp
ed

(a
(2

)
t

=
S)



10/27

One-Sided Partial Observability

I We assume that the attacker has perfect information. Only
the defender has partial information.

I The attacker’s view:
s1 s2 s3 . . . sn

o1 o2 o3 . . . o5

I The defender’s view:
s1 s2 s3 . . . sn

o1 o2 o3 . . . o5



10/27

One-Sided Partial Observability
I We assume that the attacker has perfect information. Only

the defender has partial information.

I The attacker’s view:
s1 s2 s3 . . . sn

o1 o2 o3 . . . o5

I The defender’s view:
s1 s2 s3 . . . sn

o1 o2 o3 . . . o5

I Makes it tractable to compute the defender’s belief
b(1)
t (st) = P[st |ht ] (avoid nested beliefs)
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Game Analysis
I Defender strategy is of the form: π1,l : B → ∆(A1)
I Attacker strategy is of the form: π2,l : S × B → ∆(A2)

I Defender and attacker objectives:

J1(π1,l , π2,l) = E(π1,l ,π2,l )

[ ∞∑
t=1

γt−1Rl(st , at)
]

J2(π1,l , π2,l) = −J1
I Best response correspondences:

B1(π2,l) = arg max
π1,l∈Π1

J1(π1,l , π2,l)

B2(π1,l) = arg max
π2,l∈Π2

J2(π1,l , π2,l)

I Nash equilibrium (π∗1,l , π∗2,l):

π∗1,l ∈ B1(π∗2,l) and π∗2,l ∈ B2(π∗1,l) (1)
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B1(π2,l) = arg max
π1,l∈Π1

J1(π1,l , π2,l)

B2(π1,l) = arg max
π2,l∈Π2

J2(π1,l , π2,l)

I Nash equilibrium (π∗1,l , π∗2,l):

π∗1,l ∈ B1(π∗2,l) and π∗2,l ∈ B2(π∗1,l) (3)
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Game Analysis
Theorem
Given the one-sided POSG Γ with L ≥ 1, the following holds.
(A) Γ has a mixed Nash equilibrium. Further, Γ has a pure Nash

equilibrium when s = 0 ⇐⇒ b(1) = 0.
(B) Given any attacker strategy π2,l ∈ Π2, if fO|s is totally positive

of order 2, there exist values α̃1 ≥ α̃2 ≥ . . . ≥ α̃L ∈ [0, 1] and
a defender best response strategy π̃1,l ∈ B1(π2,l) that satisfies:

π̃1,l(b(1)) = S ⇐⇒ b(1) ≥ α̃l l ∈ 1, . . . , L (4)

(C) Given a defender strategy π1,l ∈ Π1, where π1,l(S|b(1)) is
non-decreasing in b(1) and π1,l(S|1) = 1, there exist values
β̃0,1, β̃1,1, . . ., β̃0,L, β̃1,L ∈ [0, 1] and a best response strategy
π̃2,l ∈ B2(π1,l) of the attacker that satisfies:

π̃2,l(0, b(1)) = C ⇐⇒ π1,l(S|b(1)) ≥ β̃0,l (5)
π̃2,l(1, b(1)) = S ⇐⇒ π1,l(S|b(1)) ≥ β̃1,l (6)

for l ∈ 1, . . . , L.
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Structure of Best Response Strategies
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Our Method for Learning Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n
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Self-learning systems
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Emulating the Target Infrastructure
I Emulate hosts with docker containers
I Emulate IPS and vulnerabilities with

software
I Network isolation and traffic shaping

through NetEm in the Linux kernel
I Enforce resource constraints using

cgroups.
I Emulate client arrivals with Poisson

process
I Internal connections are full-duplex

& loss-less with bit capacities of 1000
Mbit/s

I External connections are full-duplex
with bit capacities of 100 Mbit/s &
0.1% packet loss in normal operation
and random bursts of 1% packet loss

Attacker Clients
. . .
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System Identification: Instantiating the Game Model based
on Data from the Emulation

f̂
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Probability distribution of # IPS alerts weighted by priority ot
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I We fit a Gaussian mixture distribution f̂O as an estimate of fO
in the target infrastructure

I For each state s, we obtain the conditional distribution f̂O|s
through expectation-maximization
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Our Reinforcement Learning Approach
I We learn a Nash equilibrium (π∗1,l ,θ(1) , π

∗
2,l ,θ(2)) through

fictitious self-play.
I In each iteration:

1. Learn a best response strategy of the defender by solving a
POMDP π̃1,l,θ(1) ∈ B1(π2,l,θ(2) ).

2. Learn a best response strategy of the attacker by solving an
MDP π̃2,l,θ(2) ∈ B2(π1,l,θ(1) ).

3. Store the best response strategies in two buffers Θ1,Θ2
4. Update strategies to be the average of the stored strategies

Strategy π2

Strategy π1

Strategy π′2

Strategy π′1

. . . Strategy π∗2

Strategy π∗1

Self-play process

(Pseudo-code is available in the paper)
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Our Reinforcement Learning Algorithm for Learning
Best-Response Threshold Strategies

I We use the structural result that threshold best response
strategies exist (Theorem 1) to design an efficient
reinforcement learning algorithm to learn best response
strategies.

I We seek to learn:
I L thresholds of the defender, α̃1,≥ α̃2, . . . ,≥ α̃L ∈ [0, 1]
I 2L thresholds of the attacker, β̃0,1, β̃1,1, . . . , β̃0,L, β̃1,L ∈ [0, 1]

I We learn these thresholds iteratively through Robbins and
Monro’s stochastic approximation algorithm.1

Monte-Caro
Simulation

Stochastic
Approximation

(RL)

θn+1
θ̂∗

Performance estimate
Ĵ(θn)

θ1

θn

1Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The Annals of Mathematical
Statistics 22.3 (1951), pp. 400 –407. doi: 10.1214/aoms/1177729586. url:
https://doi.org/10.1214/aoms/1177729586.

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586


20/27

Our Reinforcement Learning Algorithm for Learning
Best-Response Threshold Strategies

I We use the structural result that threshold best response
strategies exist (Theorem 1) to design an efficient
reinforcement learning algorithm to learn best response
strategies.

I We seek to learn:
I L thresholds of the defender, α̃1,≥ α̃2, . . . ,≥ α̃L ∈ [0, 1]
I 2L thresholds of the attacker, β̃1, β̃2, . . . , β̃L ∈ [0, 1]

I We learn these thresholds iteratively through Robbins and
Monro’s stochastic approximation algorithm.2

Monte-Caro
Simulation

Stochastic
Approximation

(RL)

θn+1
θ̂∗

Performance estimate
Ĵ(θn)

θ1

θn

2Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The Annals of Mathematical
Statistics 22.3 (1951), pp. 400 –407. doi: 10.1214/aoms/1177729586. url:
https://doi.org/10.1214/aoms/1177729586.

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586


20/27

Our Reinforcement Learning Algorithm for Learning
Best-Response Threshold Strategies

I We use the structural result that threshold best response
strategies exist (Theorem 1) to design an efficient
reinforcement learning algorithm to learn best response
strategies.

I We seek to learn:
I L thresholds of the defender, α̃1,≥ α̃2, . . . ,≥ α̃L ∈ [0, 1]
I 2L thresholds of the attacker, β̃1, β̃2, . . . , β̃L ∈ [0, 1]

I We learn these thresholds iteratively through Robbins and
Monro’s stochastic approximation algorithm.3

Monte-Caro
Simulation

Stochastic
Approximation

(RL)

θn+1
θ̂∗

Performance estimate
Ĵ(θn)

θ1

θn

3Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The Annals of Mathematical
Statistics 22.3 (1951), pp. 400 –407. doi: 10.1214/aoms/1177729586. url:
https://doi.org/10.1214/aoms/1177729586.

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586


21/27

Our Reinforcement Learning Algorithm: T-FP
1. We learn the thresholds through simulation.
2. For each iteration n ∈ {1, 2, . . .}, we perturb θ(i)

n to obtain
θ

(i)
n + cn∆n and θ(i)

n − cn∆n.
3. Then, we run two MDP or POMDP episodes
4. We then use the obtained episode outcomes Ĵi(θ(i)

n + cn∆n)
and Ĵi(θ(i)

n − cn∆n) to estimate ∇θ(i)Ji(θ(i)) using the
Simultaneous Perturbation Stochastic Approximation (SPSA)
gradient estimator4:(

∇̂
θ

(i)
n
Ji(θ(i)

n )
)
k

= Ĵi(θ(i)
n + cn∆n)− Ĵi(θ(i)

n − cn∆n)
2cn(∆n)k

5. Next, we use the estimated gradient and update the vector of
thresholds through the stochastic approximation update:

θ
(i)
n+1 = θ(i)

n + an∇̂θ(i)
n
Ji(θ(i)

n )

4James C. Spall. “Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient
Approximation”. In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL 37.3 (1992), pp. 332–341.
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n + cn∆n)
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n − cn∆n)
2cn(∆n)k

5. Next, we use the estimated gradient and update the vector of
thresholds through the stochastic approximation update:

θ
(i)
n+1 = θ(i)

n + an∇̂θ(i)
n
Ji(θ(i)

n )

4James C. Spall. “Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient
Approximation”. In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL 37.3 (1992), pp. 332–341.



21/27

Our Reinforcement Learning Algorithm: T-FP
1. We learn the thresholds through simulation.
2. For each iteration n ∈ {1, 2, . . .}, we perturb θ(i)

n to obtain
θ

(i)
n + cn∆n and θ(i)

n − cn∆n.
3. Then, we run two MDP or POMDP episodes
4. We then use the obtained episode outcomes Ĵi(θ(i)
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= Ĵi(θ(i)
n + cn∆n)− Ĵi(θ(i)
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Evaluation Results: Learning Nash Equilibrium Strategies
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# training iterations
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Intrusion length

(π1,l, π2,l) emulation (π1,l, π2,l) simulation Snort IPS ot ≥ 1 upper bound

Learning curves from the self-play process with T-FP; the red curve
show simulation results and the blue curves show emulation results; the
purple, orange, and black curves relate to baseline strategies; the curves
indicate the mean and the 95% confidence interval over four training
runs with different random seeds.
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Evaluation Results: Converge Rates
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Approximation error (gap)
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7.5

10.0

T-FP NFSP HSVI

Comparison between T-FP and two baseline algorithms: NFSP and
HSVI; the red curve relate to T-FP; the blue curve to NFSP; the purple
curve to HSVI; the left plot shows the approximate exploitability metric
and the right plot shows the HSVI approximation error5.

5Karel Horák, Branislav Bošanský, and Michal Pěchouček. “Heuristic Search Value Iteration for One-Sided
Partially Observable Stochastic Games”. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017).
url: https://ojs.aaai.org/index.php/AAAI/article/view/10597.

https://ojs.aaai.org/index.php/AAAI/article/view/10597


25/27

Evaluation Results: Inspection of Learned Strategies
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Probability of the stop action S by the learned equilibrium strategies in
function of b(1) and l ; the left and middle plots show the attacker’s
stopping probability when s = 0 and s = 1, respectively; the right plot
shows the defender’s stopping probability.
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Evaluation Results: Inspection of Learned Game Values
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The value function V̂ ∗l(b(1)) computed through the HSVI algorithm
with approximation error 4; the blue and red curves relate to l = 7 and
l = 1, respectively.
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Conclusions & Future Work

I Conclusions:

I We develop a method to automatically learn security strategies
I (1) emulation system; (2) system identification; (3) simulation system; and (4)

reinforcement learning.

I We apply the method to an intrusion prevention use case

I We formulate intrusion prevention as a stopping game
I We present a Partially Observed Stochastic Game of the use case
I We present a POMDP model of the defender’s problem
I We present a MDP model of the attacker’s problem
I We apply the stopping theory to establish structural results of the best response strategies

and existence of Nash equilibria.
I We show numerical results in realistic emulation environment
I We show that our method outperforms two state-of-the-art methods

I Our research plans:
I Extend the model (remove limiting assumptions)

I Less restrictions on defender


