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Use Case: Intrusion Prevention

» A Defender owns an infrastructure

» Consists of connected components
» Components run network services
» Defender defends the infrastructure

by monitoring and active defense
> Has partial observability

> An Attacker seeks to intrude on the
infrastructure

» Has a partial view of the
infrastructure

» Wants to compromise specific
components

P Attacks by reconnaissance,
exploitation and pivoting

ffffff
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The Intrusion Prevention Problem
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The Intrusion Prevention Problem
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The Intrusion Prevention Problem

When to take a defensive action?
Which action_to take?
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A Brief History of Intrusion Prevention

Audit logs
and manual

detection/prevention

(1980s), Rule-based &
X Statistical
Internet , IDS/IPS
(1980s) | (2000s)
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ARPANET : Rule-based :
(1969) \ IDS/IPS !
' (1990s) !
Manual Research:
detection/ ML-based IDS
prevention RL-based IPS
(1980s) Control-based IPS

—— Reference points

Computational game theory IPS
(2010-present)
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Our Approach for Learning Effective Security Strategies
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Our Approach for Finding Effective Security Strategies
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The Optimal Stopping Game

» Defender:

» Has a pre-defined ordered list of
defensive measures:

1.
2.
3.

4.

Revoke user certificates

Blacklist IPs

Drop traffic that generates IPS alerts of priority
1—-4

Block gateway

» Defender's strategy decides when to
take each action

> Attacker:

» Has a pre-defined randomized
intrusion sequence of reconnaissance
and exploit commands:

1.

2
3.
4.
5. SSH brute-force
6.

TCP-SYN scan
CVE-2017-7494
CVE-2015-3306
CVE-2015-5602

> Attacker s strategy decides when to
start/stop an intrusion

Attacker Clients
A
v
5 mom
| alerts
Gatewa O
IE IPS

==
Defender




We analyze attacker/defender strategies using optimal stopping theory




Optimal Stopping Formulation of Intrusion Prevention
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Optimal Stopping Formulation of Intrusion Prevention

72,1
® Attacker
|
|
|
; > Defender
|
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Intrusion

» The attacker’s stopping times 721 and 7> determine the
times to start/stop the intrusion
» During the intrusion, the attacker follows a fixed intrusion
strategy



Optimal Stopping Formulation of Intrusion Prevention

2,1

® K Attacker

: Prevented |

T1,1 71,2713 :
—@ | , Defender
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t=1 1 | | I
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t=T
Intrusion

Game episode

» The attacker's stopping times 721 and 7> determine the
times to start/stop the intrusion
» During the intrusion, the attacker follows a fixed intrusion
strategy
» The defender’s stopping times 7y 1,71 -1, ... determine the
times to take defensive actions



We model this game as a zero-sum partially observed stochastic game




Partially Observed Stochastic Game

> Players: N = {1,2} (Defender=1)




Partially Observed Stochastic Game

> States: Intrusion s; € {0,1}, terminal (.




Partially Observed Stochastic Game

» Observations:
» Number of IPS Alerts o; € O, defender
stops remaining I, € {1,..,L}, o; is t>1 "
drawn from r.v. O ~ fo(-|st) /




Partially Observed Stochastic Game

> Actions:
> A=A, ={S,C}




Partially Observed Stochastic Game

> Rewards:
» Defender reward: security and service.
P Attacker reward: negative of defender
reward.




Partially Observed Stochastic Game

» Transition probabilities:
» Follows from game dynamics.



Partially Observed Stochastic Game
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Partially Observed Stochastic Game

> Players: N = {1,2} (Defender=1)
> States: Intrusion s; € {0,1}, terminal (.

» Observations:
> IPS Alerts Ax ¢, AXo ¢, - .., AXprz,
defender stops remaining I € {1,..,L}, +>1
fx(AXl,...,AXMlst) It >0
> Actions:
> A=A, ={S,C}
> Rewards:
» Defender reward: security and service.
P Attacker reward: negative of defender
reward.
» Transition probabilities:
» Follows from game dynamics.

» Horizon:
> oo



One-Sided Partial Observability

> We assume that the attacker has perfect information. Only
the defender has partial information.

» The attacker’'s view:

@A@A@A@A@
o =

» The defender’s view:

|
Il
|

| |

Il Il

| |
o] [ [=] [



One-Sided Partial Observability

» Makes it tractable to compute the defender’s belief
bgl)(St) = P[s¢|h¢] (avoid nested beliefs)
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Game Analysis

» Defender strategy is of the form: 71 : B — A(A1)
> Attacker strategy is of the form: mp;: S x B — A(Ap)

» Defender and attacker objectives:

Jl(ﬂ_l,/, 71'27/) = E(WL/JTQ’/) lz ’Yt_lR/(St, at)]

t=1
S(my 7o) = —h

> Best response correspondences:

Bi(mo,1) = arg max Ji(m1,1,m2,1)
m1,1€M

BQ(?TL/) = arg max Jg(ﬂ’l’/, 71’2’/)
ma,1E€M2

» Nash equilibrium (7], 75 )

71, € Bi(m,) and 73, € Ba(7y )



Game Analysis
Theorem
Given the one-sided POSG I with L > 1, the following holds.

(A) T has a mixed Nash equilibrium. Further, [ has a pure Nash
equilibrium when s =0 <= b(1) = 0.



Game Analysis

Theorem
Given the one-sided POSG I with L > 1, the following holds.

(B) Given any attacker strategy o € [Ny, if fo|s is totally positive
of order 2, there exist values a1 > G > ... > &y € [0,1] and
a defender best response strategy 7t1; € Bi(m2,) that satisfies:

#u(b(1)) =S < b1)>da lel,....L (7)



Game Analysis

Theorem
Given the one-sided POSG I with L > 1, the following holds.

(C) Given a defender strategy my € M1, where w1 (S|b(1)) is
non-decreasing in b(1) and 1 /(S|1) =1, there exist values

BO,la B1,1, -+ BoL, BrL € [0,1] and a best response strategy
7to,1 € Ba(m1,)) of the attacker that satisfies:
721(0,b(1)) = C <= m14(S|b(1)) > Fo, (11)
721(1,b(1)) = S <= m14(S|b(1)) > 1y (12)



Structure of Best Response Strategies




Structure of Best Response Strategies
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Structure of Best Response Strategies
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Structure of Best Response Strategies

(1)
oy
e
y2,7r2,/
5%
2,
f f f f —b(1)
0 Gp - o g 1
2 2
‘yo(,LilH,/ 1(L)7T1 !
2 2
yo(71)77r1,l yl(,l)ﬂn,/
— +>b(1)
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Our Method for Learning Effective Security Strategies
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Emulating the Target Infrastructure

» Emulate hosts with docker containers
» Emulate IPS and vulnerabilities with

software ‘3 % o %

» Network isolation and traffic shaping
through NetEm in the Linux kernel

» Enforce resource constraints using
cgroups.

» Emulate client arrivals with Poisson
process

» Internal connections are full-duplex
& loss-less with bit capacities of 1000
Mbit/s

» External connections are full-duplex

with bit capacities of 100 Mbit/s & @
0.1% packet loss in normal operation Defender
and random bursts of 1% packet loss



System ldentification: Instantiating the Game Model based
on Data from the Emulation

Probability distribution of # IPS alerts weighted by priority o,

fo(o:]0)

fo(ot]1)

B

T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
—— Fitted model @B Distribution s; = 0 @@ Distribution s, = 1

> We fit a Gaussian mixture distribution fo as an estimate of fo
in the target infrastructure

P> For each state s, we obtain the conditional distribution ?O|s
through expectation-maximization



Our Reinforcement Learning Approach

» We learn a Nash equilibrium (ﬂ-il,@(l)’ﬂ-zlﬁ&)) through
fictitious self-play.
P In each iteration:

1. Learn a best response strategy of the defender by solving a
POMDP 71.1"1’/’9(1) S B]_(ﬂ'z,/’g(z)).

2. Learn a best response strategy of the attacker by solving an
MDP 7?27179(2) S 82(71'1,/,9(1)).

3. Store the best response strategies in two buffers ©1,©;

4. Update strategies to be the average of the stored strategies

Self-play process
A

(2] (2] L2}
Strategy o Strategy 5 Strategy 3
_— —> e o o _—>

Strategy m1 Strategy 7} Strategy 77

(Pseudo-code is available in the paper)



Our Reinforcement Learning Algorithm for Learning
Best-Response Threshold Strategies

> We use the structural result that threshold best response
strategies exist (Theorem 1) to design an efficient
reinforcement learning algorithm to learn best response
strategies.
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Our Reinforcement Learning Algorithm for Learning
Best-Response Threshold Strategies

> We use the structural result that threshold best response
strategies exist (Theorem 1) to design an efficient
reinforcement learning algorithm to learn best response
strategies.

» We seek to learn:

» L thresholds of the defender, &1,> @o,...,> d; € [0,1]
» 2/ thresholds of the attacker, (31, 3>,. .. ,BL [0,1]



https://doi.org/10.1214/aoms/1177729586
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Our Reinforcement Learning Algorithm for Learning
Best-Response Threshold Strategies

> We learn these thresholds iteratively through Robbins and
Monro's stochastic approximation algorithm.3

Monte-Caro

(2
! Simulation

On

Performance estimate
J(6n)

Stochastic
Approximation
(RL)

5y

n+1

NS

3Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method". In: The Annals of Mathematical
Statistics 22.3 (1951), pp. 400 —=407. pOI: 10.1214/a0oms/1177729586. URI
https://doi.org/10.1214/aoms/1177729586.
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Our Reinforcement Learning Algorithm: T-FP
1. We learn the thresholds through simulation.




Our Reinforcement Learning Algorithm: T-FP

2. For each iteration n € {1,2,...}, we perturb 9,(1i) to obtain
0 + calry and 05 — oA,




Our Reinforcement Learning Algorithm: T-FP

3. Then, we run two MDP or POMDP episodes




Our Reinforcement Learning Algorithm: T-FP

4. We then use the obtained episode outcomes j,-(ﬁf,i) + cnlAp)
and :l,-(ﬁg,i) — ¢aA,) to estimate V) Ji(01)) using the
Simultaneous Perturbation Stochastic Approximation (SPSA)
gradient estimator*:

065 + catrn) = (6 — catr)
k o 2C,,(An)k

(602") (o )>

4James C. Spall. “Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient
Approximation”. In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL 37.3 (1992), pp. 332-341.



Our Reinforcement Learning Algorithm: T-FP

5. Next, we use the estimated gradient and update the vector of
thresholds through the stochastic approximation update:

o), =00 + a,ﬁeg,-) Ji(65)
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Evaluation Results: Learning Nash Equilibrium Strategies

Exploitability 5 Defender reward per episode Intrusion length

_____ 3 o //\&/

\
14 A 1
\ ¥
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
# training iterations # training iterations # training iterations
—e— (71,1, 72,) emulation —4— (71, w2 ;) simulation —e— Snort IPS 0¢ > 1 === upper bound

Learning curves from the self-play process with T-FP; the red curve
show simulation results and the blue curves show emulation results; the
purple, orange, and black curves relate to baseline strategies; the curves
indicate the mean and the 95% confidence interval over four training
runs with different random seeds.



Evaluation Results: Converge Rates

Exploitability Approximation error (gap)

10.0
7.5

55.0\57.5 60.0

0 . — T AR o . . . . .
0 10 20 30 40 50 60 O 10 20 30 40 50 60
running time (min) running time (min)

—+— T-FP —— NFSP —— HSVI

Comparison between T-FP and two baseline algorithms: NFSP and
HSVI; the red curve relate to T-FP; the blue curve to NFSP; the purple
curve to HSVI; the left plot shows the approximate exploitability metric

and the right plot shows the HSVI approximation error®.

5Karel Horak, Branislav Bosansky, and Michal Péchouéek. “Heuristic Search Value Iteration for One-Sided
Partially Observable Stochastic Games”. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017)
URL: https://ojs.aaai.org/index.php/AAAI/article/view/10597.


https://ojs.aaai.org/index.php/AAAI/article/view/10597

Evaluation Results: Inspection of Learned Strategies

. m2,1(S]0, m (S[b(1))) 72,1 (S[L, 71 (S[b(1))) 71,1 (S[b6(1))
‘3‘:-.
0.5 \k
0.0 T |\'_'T_
0.5 .
b(1) € B b(1) € B

— =7 l=4 ——1=1

Probability of the stop action S by the learned equilibrium strategies in
function of b(1) and /; the left and middle plots show the attacker's
stopping probability when s = 0 and s = 1, respectively; the right plot
shows the defender's stopping probability.



Evaluation Results: Inspection of Learned Game Values

—0.25¢,

The value function V*;(b(1)) computed through the HSVI algorithm
with approximation error 4; the blue and red curves relate to / = 7 and
I =1, respectively.



Conclusions & Future Work

» Conclusions:

» We develop a method to automatically learn security strategies

> (1) emulation system; (2) system identification; (3) simulation system; and (4)
reinforcement learning.

» We apply the method to an intrusion prevention use case

» We formulate intrusion prevention as a stopping game

We present a Partially Observed Stochastic Game of the use case

We present a POMDP model of the defender’s problem

We present a MDP model of the attacker's problem

We apply the stopping theory to establish structural results of the best response strategies
and existence of Nash equilibria.

We show numerical results in realistic emulation environment

We show that our method outperforms two state-of-the-art methods

\AAAA

vy

» Our research plans:
» Extend the model (remove limiting assumptions)

P Less restrictions on defender



