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Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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The Intrusion Prevention Problem
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When to take a defensive action?
Which action to take?
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A Brief History of Intrusion Prevention
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(1980s)



4/30

A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)

Manual
detection/
prevention
(1980s)

Reference points
Intrusion prevention milestones



4/30

A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)

Manual
detection/
prevention
(1980s)

Audit logs
and manual
detection/prevention
(1980s)

Reference points
Intrusion prevention milestones



4/30

A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)

Manual
detection/
prevention
(1980s)

Audit logs
and manual
detection/prevention
(1980s)

Rule-based
IDS/IPS
(1990s)

Reference points
Intrusion prevention milestones



4/30

A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)

Manual
detection/
prevention
(1980s)

Audit logs
and manual
detection/prevention
(1980s)

Rule-based
IDS/IPS
(1990s)

Rule-based &
Statistical
IDS/IPS
(2000s)

Reference points
Intrusion prevention milestones



4/30

A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)

Manual
detection/
prevention
(1980s)

Audit logs
and manual
detection/prevention
(1980s)

Rule-based
IDS/IPS
(1990s)

Rule-based &
Statistical
IDS/IPS
(2000s)

Research:
ML-based IDS
RL-based IPS
Control-based IPS
Computational game theory IPS
(2010-present)Reference points

Intrusion prevention milestones
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Our Method for Learning Effective Security Strategies
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Outline
I Use Case & Approach:

I Intrusion prevention
I System identification
I Reinforcement learning and optimal stopping

I Formal Model of The Use Case
I Intrusion prevention as an optimal stopping problem
I Partially observed Markov decision process

I Structure of π∗
I Existence of optimal multi-threshold policy π∗l
I Stopping sets Sl are connected and nested

I Reinforcement learning method
I Learning threshold policies & the policy gradient
I Emulated infrastructure

I Results & Conclusion
I Numerical evaluation results & Demo
I Conclusion & future work
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Background: Optimal Stopping

I History:
I Studied in the 18th century to analyze a gambler’s fortune
I Formalized by Abraham Wald in 19471
I Since then it has been generalized and developed by (Chow2,

Shiryaev & Kolmogorov3, Bather4, Bertsekas5, etc.)

1Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.
2Y. Chow, H. Robbins, and D. Siegmund. “Great expectations: The theory of optimal stopping”. In: 1971.
3Albert N. Shirayev. Optimal Stopping Rules. Reprint of russian edition from 1969. Springer-Verlag Berlin,

2007.
4John Bather. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. USA:

John Wiley and Sons, Inc., 2000. isbn: 0471976490.
5Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena

Scientific, 2005.
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Background: Optimal Stopping

I The General Problem:

I A stochastic process (st)T
t=1 is observed sequentially

I Two options per t: (i) continue to observe; or (ii) stop

I Find the optimal stopping time τ∗:

τ∗ = arg max
τ

Eτ

[
τ−1∑
t=1

γt−1RC
st st+1

+ γτ−1RS
sτ sτ

]
(1)

where RS
ss′ & RC

ss′ are the stop/continue rewards
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Background: Optimal Stopping
I Applications & Use Cases:

I Hypothesis testing6
I Change detection7,
I Selling decisions8,
I Queue management9,
I Industrial control10,
I Advertisement scheduling11, etc.

6Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.
7Alexander G. Tartakovsky et al. “Detection of intrusions in information systems by sequential change-point

methods”. In: Statistical Methodology (2006). issn: 1572-3127. doi:
https://doi.org/10.1016/j.stamet.2005.05.003. url:
https://www.sciencedirect.com/science/article/pii/S1572312705000493.

8Jacques du Toit and Goran Peskir. “Selling a stock at the ultimate maximum”. In: The Annals of Applied
Probability 19.3 (2009). issn: 1050-5164. doi: 10.1214/08-aap566. url:
http://dx.doi.org/10.1214/08-AAP566.

9Arghyadip Roy et al. “Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision
Processes”. In: CoRR (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

10Maben Rabi and Karl H. Johansson. “Event-Triggered Strategies for Industrial Control over Wireless
Networks”. In: Proceedings of the 4th Annual International Conference on Wireless Internet. WICON ’08. Maui,
Hawaii, USA, 2008. isbn: 9789639799363.

11Vikram Krishnamurthy, Anup Aprem, and Sujay Bhatt. “Multiple stopping time POMDPs: Structural results
& application in interactive advertising on social media”. In: Automatica 95 (2018), pp. 385–398. issn:
0005-1098. doi: https://doi.org/10.1016/j.automatica.2018.06.013. url:
https://www.sciencedirect.com/science/article/pii/S0005109818303054.

https://doi.org/https://doi.org/10.1016/j.stamet.2005.05.003
https://www.sciencedirect.com/science/article/pii/S1572312705000493
https://doi.org/10.1214/08-aap566
http://dx.doi.org/10.1214/08-AAP566
http://arxiv.org/abs/1912.10325
1912.10325
https://doi.org/https://doi.org/10.1016/j.automatica.2018.06.013
https://www.sciencedirect.com/science/article/pii/S0005109818303054
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Background: Optimal Stopping
I Applications & Use Cases:

I Hypothesis testing12
I Change detection13,
I Selling decisions14,
I Queue management15,
I Industrial control16,
I Advertisement scheduling,
I Intrusion prevention17 etc.

12Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.
13Alexander G. Tartakovsky et al. “Detection of intrusions in information systems by sequential change-point

methods”. In: Statistical Methodology (2006). issn: 1572-3127. doi:
https://doi.org/10.1016/j.stamet.2005.05.003. url:
https://www.sciencedirect.com/science/article/pii/S1572312705000493.

14Jacques du Toit and Goran Peskir. “Selling a stock at the ultimate maximum”. In: The Annals of Applied
Probability 19.3 (2009). issn: 1050-5164. doi: 10.1214/08-aap566. url:
http://dx.doi.org/10.1214/08-AAP566.

15Arghyadip Roy et al. “Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision
Processes”. In: CoRR (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

16Maben Rabi and Karl H. Johansson. “Event-Triggered Strategies for Industrial Control over Wireless
Networks”. In: Proceedings of the 4th Annual International Conference on Wireless Internet. WICON ’08. Maui,
Hawaii, USA, 2008. isbn: 9789639799363.

17Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

https://doi.org/https://doi.org/10.1016/j.stamet.2005.05.003
https://www.sciencedirect.com/science/article/pii/S1572312705000493
https://doi.org/10.1214/08-aap566
http://dx.doi.org/10.1214/08-AAP566
http://arxiv.org/abs/1912.10325
1912.10325
https://arxiv.org/abs/2111.00289
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Formulating Intrusion Prevention as a Stopping Problem
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I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?



9/30

Formulating Intrusion Prevention as a Stopping Problem

time-step t = 1

t
t = T

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?



9/30

Formulating Intrusion Prevention as a Stopping Problem

time-step t = 1

t
t = T

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?



9/30

Formulating Intrusion Prevention as a Stopping Problem

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?



9/30

Formulating Intrusion Prevention as a Stopping Problem

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
affect the intrusion

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?



9/30

Formulating Intrusion Prevention as a Stopping Problem

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
affect the intrusion

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?



9/30

Intrusion Prevention through Optimal Stopping

Stochastic
system π: Stop?

Yes

No
Continue monitor

Defensive action

ot

I The L− lth stopping time τl is:

τl = inf{t : t > τl−1, at = S}, l ∈ 1, .., L, τL+1 = 0

I τl is a random variable from sample space Ω to N, which is
dependent on hτl = ρ1, a1, o1, . . . , aτl−1, oτl and independent
of aτl , oτl +1, . . .
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Intrusion Prevention through Optimal Stopping

We consider the class of stopping times
Tt = {τl ≤ t|τl > τl−1} ∈ Fk (Fk =natural filtration on ht).

1 2 . . .
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Intrusion Prevention through Optimal Stopping
We consider the class of stopping times
Tt = {τl ≤ t|τl > τl+1} ∈ Fk (Fk =natural filtration on ht).

1 2 . . .

Given the observations:

t

ot

Find the optimal stopping times τ∗L , τ∗L−1, . . .:

t

ot

τ∗L τ∗L−1 τ∗L−2 . . .
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The Defender’s Stop Actions
I Ingress traffic goes through deep packet inspection at gateway
I Gateway runs the Snort IDS/IPS and may drop packets
I At each stopping time, we update the IPS configuration

Attacker, π2
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The Defender’s Stop Actions
I Ingress traffic goes through deep packet inspection at gateway
I Gateway runs the Snort IDS/IPS and may drop packets
I At each stopping time, we update the IPS configuration
I Objective: find optimal π∗ or Nash equilibrium

Attacker, π2

. . .
Clients

IP packets

Infrastructure

Defender,π1
Controls

Reads

IPS

Drop

rules ht
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Approaches to Solving Optimal Stopping Problems

Two main approaches:

I The Markovian approach

I Assume process is Markov
I Utilize Markov deision theory

I The martingale approach

I More general
I No Markov assumption
I Utilize martingale convergence theorems
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The Markovian Approach to Optimal Stopping
I Model the problem as a MDP or POMDP
I A policy π∗ that satisfies the Bellman-Wald equation is

optimal:

π∗(s) = arg max
{S,C}

[
E
[
RS

s

]
︸ ︷︷ ︸

stop

,E
[
RC

s + γV ∗(s ′)
]

︸ ︷︷ ︸
continue

]
∀s ∈ S

I Solve by backward induction, dynamic programming, or
reinforcement learning

I Alternative optimality condition:
I Theorem: V ∗(s) is the minimal excessive function which

majorizes R∅s .
I Assume all rewards are received upon stopping: R∅s
I V ∗(s) majorizes R∅s if V ∗(s) ≥ R∅s ∀s ∈ S
I V ∗(s) is excessive if V ∗(s) ≥

∑
s′ PC

s′sV ∗(s ′) ∀s ∈ S
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The Markovian Approach to Optimal Stopping
I Alternative optimality condition:

I Theorem: V ∗(s) is the minimal excessive function which
majorizes R∅s .

I Assume all rewards are received upon stopping: R∅s
I V ∗(s) majorizes R∅s if V ∗(s) ≥ R∅s ∀s ∈ S
I V ∗(s) is excessive if V ∗(s) ≥

∑
s′ PC

s′sV ∗(s ′) ∀s ∈ S

s

R∅s
∑

s′
PC
ss′V

∗(s′)
V ∗(s)
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The Martingale Approach to Optimal Stopping

I Model the state process as an arbitrary stochastic process

I The reward of the optimal stopping time is given by the
Snell envelope18.

I Snell envelope: smallest supermartingale that
stochastically dominates the process

18J. L. Snell. “Applications of martingale system theorems”. In: Transactions of the American Mathematical
Society 73 (1952), pp. 293–312.
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The Martingale Approach to Optimal Stopping

I Model the state process as an arbitrary stochastic process

I The reward of the optimal stopping time is given by the
Snell envelope19.

I Snell envelope: smallest supermartingale that
stochastically dominates the process

We follow the Markovian approach and model the problem as a POMDP

19J. L. Snell. “Applications of martingale system theorems”. In: Transactions of the American Mathematical
Society 73 (1952), pp. 293–312.
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A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
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Background: POMDPs

Stochastic
System
(Markov)

Noisy
Sensor

Bayesian
Filter

POMDP Controller
(Decision Maker)action at

observation
ot

Hidden Markov Model (HMM)

state
st

belief
bt

I POMDP: 〈S,A,Pat
st ,st+1 ,R

at
st ,st+1 , γ, ρ1,T ,O,Z〉

I Controlled hidden Markov model, states st ∈ S are hidden
I Agent observes history ht = (ρ1, a1, o1, . . . , at−1, ot) ∈ H
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Background: POMDPs
I st is Markov: P [st+1|st ] = P [st+1|s1, . . . , st ]
I =⇒ π∗(at |ht) = π∗(at |P[st |ht ]) = π∗(at |bt)
I Optimality (Bellman) Eq:

π∗(b) ∈ arg max
a∈A

[∑
s

b(s)Ra
s + γ

∑
o,s,s′
Z(o, s ′, a)b(s)Pa

ss′V ∗(bo
a )
]

I

P[st |ht ] = P[st |ot , at−1, ht−1]

= P[ot |st , at−1, ht−1]P[st |at−1, ht−1]
P[ot |at−1, ht−1] Bayes

=
Z(ot , st , at−1)

∑
st−1 P

at−1
st−1stP[st−1|ht−1]∑

s′
∑

s Z(ot , s ′, at−1)P[st−1|ht−1] Markov

I P[st−1|ht−1] with at , ot is a sufficient statistic for st
I bt , P[st−1|ht−1]: belief state at time t
I bt computed recursively using the equation above
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Background: POMDPs

B(3): 2-dimensional unit-simplex

0.25 0.55

0.2

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(0.25, 0.55, 0.2)

B(2): 1-dimensional unit-simplex

(1, 0) (0, 1)

0.4 0.6
(0.4, 0.6)

I b ∈ B, B is the unit (|S| − 1)-simplex

I To characterize π∗, partition B based on π∗(a|b)
I e.g. stopping set S and continuation set C
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Structural Result: Optimal Multi-Threshold Policy

Theorem
Given the intrusion prevention POMDP, the following holds:
1. Sl−1 ⊆ Sl for l = 2, . . . L.
2. If L = 1, there exists an optimal threshold α∗ ∈ [0, 1] and an

optimal policy of the form:

π∗L(b(1)) = S ⇐⇒ b(1) ≥ α∗ (2)

3. If L ≥ 1 and fXYZ is totally positive of order 2 (TP2), there
exists L optimal thresholds α∗l ∈ [0, 1] and an optimal policy
of the form:

π∗l (b(1)) = S ⇐⇒ b(1) ≥ α∗l , l = 1, . . . , L (3)

where α∗l is decreasing in l .
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Our Reinforcement Learning Algorithm for Learning
Threshold Policies

I We use the structural result that an optimal threshold
policy exist (Theorem 1) to design an efficient
reinforcement learning algorithm.

I We seek to learn L thresholds: α∗1, α∗2, . . . , α∗L
I We learn these thresholds iteratively through Robbins and

Monro’s stochastic approximation algorithm.20

Monte-Caro
Simulation

Stochastic
Approximation

(RL)

θn+1
θ̂∗

Performance estimate
Ĵ(θn)

θ1

θn

20Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The Annals of Mathematical
Statistics 22.3 (1951), pp. 400 –407. doi: 10.1214/aoms/1177729586. url:
https://doi.org/10.1214/aoms/1177729586.

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
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Our Reinforcement Learning Algorithm for Learning
Threshold Policies

1. Parameterize the policy πl ,θ(1)by θ ∈ RL

2. The policy gradient

∇θJ(θ) = Eπl,θ

[ ∞∑
t=1
∇θ log πl ,θ(at |st)

∞∑
τ=t

rt
]

exists as long as πl ,θ is differentiable.
3. A pure threshold policy is not differentiable.
4. To ensure differentiability and to constrain the thresholds to

be in [0, 1], we define πθ,l to be a smooth stochastic policy
that approximates a threshold policy:

πi ,θ
(
S|b(1)

)
=
(
1 +

(b(1)(1− σ(θl ))
σ(θl )(1− b(1))

)−20)−1

where σ(·) is the sigmoid function and σ(θl ) is the threshold.
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Smooth Threshold Policy
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Our Reinforcement Learning Algorithm for Learning
Threshold Policies

1. We learn the thresholds through simulation.
2. For each iteration n ∈ {1, 2, . . .}, we perturb θn to obtain
θn + cn∆n and θn − cn∆n.

3. Then, we simulate two POMDP episodes
4. We then use the obtained episode outcomes Ĵ(θn + cn∆n)

and Ĵ(θn − cn∆n) to estimate ∇θJ(θ) using the Simultaneous
Perturbation Stochastic Approximation (SPSA) gradient
estimator23:(

∇̂θnJ(θn)
)

k
= Ĵ(θn + cn∆n)− Ĵ(θn − cn∆n)

2cn(∆n)k

5. Next, we use the estimated gradient and update the vector of
thresholds through the stochastic approximation update:
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and Ĵ(θn − cn∆n) to estimate ∇θJ(θ) using the Simultaneous
Perturbation Stochastic Approximation (SPSA) gradient
estimator23:(

∇̂θnJ(θn)
)

k
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= Ĵ(θn + cn∆n)− Ĵ(θn − cn∆n)
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To evaluate Policies Learned in Simulation we Run them in
the Emulation

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems
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Emulating the Target Infrastructure
I Emulate hosts with docker containers
I Emulate IDS and vulnerabilities with

software
I Network isolation and traffic shaping

through NetEm in the Linux kernel
I Enforce resource constraints using

cgroups.
I Emulate client arrivals with Poisson

process
I Internal connections are full-duplex

& loss-less with bit capacities of 1000
Mbit/s

I External connections are full-duplex
with bit capacities of 100 Mbit/s &
0.1% packet loss in normal operation
and random bursts of 1% packet loss

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway
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Running a POMDP Episode in the Emulation

I A distributed system with
synchronized clocks

I We run software sensors on all
emulated hosts

I Sensors produce messages to a
distributed queue (Kafka)

I A stream processor (Spark) consumes
messages from the queue and
computes statistics

I Actions are selected based on the
computed statistics and the policies

I Actions are sent to the emulation
using gRPC

I Actions are executed by running
commands on the hosts

ot atbt

ht

πl ,θ

st
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Outline
I Use Case & Approach:

I Intrusion prevention
I System identification
I Reinforcement learning and optimal stopping

I Formal Model of The Use Case
I Intrusion prevention as an optimal stopping problem
I Partially observed Markov decision process

I Structure of π∗
I Existence of optimal multi-threshold policy π∗l
I Stopping sets Sl are connected and nested

I Reinforcement learning method
I Learning threshold policies & the policy gradient
I Emulated infrastructure

I Results & Conclusion
I Numerical evaluation results & Demo
I Conclusion & future work
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Evaluation Results
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Evaluation Results
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Demo - A System for Interactive Examination of Learned
Security Policies

Client web browser

Policy Examination

JavaScript frontend

Flask HTTP server

PostgreSQL

Traces Policy πθ
Emulation Simulation

s1,1 s1,2 . . . s1,n

s2,1 s2,2 . . . s2,n

... ... ... ...

Architecture of the system for examining learned security policies.
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Conclusions & Future Work

I Conclusions:

I We develop a method to automatically learn security policies
I (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement

learning and (5) domain randomization and generalization.

I We apply the method to an intrusion prevention use case

I We formulate intrusion prevention as a multiple stopping
problem

I We present a POMDP model of the use case
I We apply the stopping theory to establish structural results of the optimal policy
I We design a reinforcement learning algorithm that outperforms state-of-the-art on our use

case
I We show numerical results in realistic emulation environment

I Our research plans:
I Extending the model

I Active attacker: Partially Observed Stochastic Game, Equilibrium analysis
I Less restrictions on defender


