Intrusion Prevention through Optimal Stopping
Invited Talk @Alan Turing Institute London

Kim Hammar & Rolf Stadler

kimham@kth.se & stadler@kth.se

Division of Network and Systems Engineering
KTH Royal Institute of Technology

Mar 25, 2022



Use Case: Intrusion Prevention

» A Defender owns an infrastructure

» Consists of connected components
» Components run network services
» Defender defends the infrastructure

by monitoring and active defense
> Has partial observability

> An Attacker seeks to intrude on the
infrastructure

» Has a partial view of the
infrastructure

» Wants to compromise specific
components

P Attacks by reconnaissance,
exploitation and pivoting
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The Intrusion Prevention Problem
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The Intrusion Prevention Problem

When to take a defensive action?
Which action_to take?
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A Brief History of Intrusion Prevention

Audit logs
and manual

detection/prevention

(1980s), Rule-based &
X Statistical
Internet , IDS/IPS
(1980s) | (2000s)
I I 1
I I 1
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T T >
1 1 1 |
1 1 1 |
' 1 1 |
ARPANET : Rule-based :
(1969) \ IDS/IPS !
' (1990s) !
Manual Research:
detection/ ML-based IDS
prevention RL-based IPS
(1980s) Control-based IPS

—— Reference points

Computational game theory IPS
(2010-present)

—— Intrusion prevention milestones
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Our Method for Finding Effective Security Strategies
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Our Method for Finding Effective Security Strategies
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Outline
» Use Case & Approach:
» Intrusion prevention
» System identification
» Reinforcement learning and optimal stopping



Outline

» Formal Model of The Use Case
» Intrusion prevention as an optimal stopping problem
» Partially observed Markov decision process



Outline

» Structure of 7*
» Existence of optimal multi-threshold policy 7}
» Stopping sets .} are connected and nested



Outline

» Reinforcement learning method
» Learning threshold policies & the policy gradient
» Emulated infrastructure



Outline

» Results & Conclusion
» Numerical evaluation results & Demo
» Conclusion & future work



Background: Optimal Stopping

> History:
» Studied in the 18th century to analyze a gambler’s fortune
> Formalized by Abraham Wald in 19471
> Since then it has been generalized and developed by (Chow?,
Shiryaev & Kolmogorov®, Bather*, Bertsekas®, etc.)

SEQUENTIAL

ANALYSIS

! Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.
2y, Chow, H. Robbins, and D. Siegmund. “Great expectations: The theory of optimal stopping”. In: 1971.

3Albert N. Shirayev. Optimal Stopping Rules. Reprint of russian edition from 1969. Springer-Verlag Berlin,
2007.

4 John Bather. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. USA
John Wiley and Sons, Inc., 2000. 1SBN: 0471976490.

5Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. |. Belmont, MA, USA: Athena
Scientific, 2005.



Background: Optimal Stopping

» The General Problem:
> A stochastic process (s;)/_; is observed sequentially
> Two options per t: (i) continue to observe; or (ii) stop

» Find the optimal stopping time T*:

T—1
T = arg max E. Z Vt_leCtsm + ’77-_17?"5;757 (1)
T t=1

where RS

>, & RE, are the stop/continue rewards



Background: Optimal Stopping

> Applications & Use Cases:

» Hypothesis testing®
> Change detection’,
» Selling decisions®,
» Queue management?,
» Industrial controli?,
»

Advertisement scheduling!!, etc.

6 Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.

7 Alexander G. Tartakovsky et al. “Detection of intrusions in information systems by sequential change-point
methods”. In: Statistical Methodology (2006). 1SsN: 1572-3127. DOI
https://doi.org/10.1016/j.stamet.2005.05.003. URL:
https://www.sciencedirect.com/science/article/pii/S1572312705000493.

BJacques du Toit and Goran Peskir. “Selling a stock at the ultimate maximum”. In: The Annals of Applied
Probability 19.3 (2009). 1ssN: 1050-5164. DoI: 10.1214/08-aap566. URL:
http://dx.doi.org/10.1214/08-AAP566.

9Arghyadip Roy et al. “Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision
Processes”. In: CoRR (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

10Maben Rabi and Karl H. Johansson. “Event-Triggered Strategies for Industrial Control over Wireless
Networks". In: Proceedings of the 4th Annual International Conference on Wireless Internet. WICON '08. Maui,
Hawaii, USA, 2008. 1SBN: 9789639799363.

Vikram Krishnamurthy, Anup Aprem, and Sujay Bhatt. “Multiple stopping time POMDPs: Structural results
& application in interactive advertising on social media”. In: Automatica 95 (2018), pp. 385-398. Issn:
0005-1098. DOI: https://doi.org/10.1016/j.automatica.2018.06.013. URL:
https://www.sciencedirect.com/science/article/pii/S0005109818303054.


https://doi.org/https://doi.org/10.1016/j.stamet.2005.05.003
https://www.sciencedirect.com/science/article/pii/S1572312705000493
https://doi.org/10.1214/08-aap566
http://dx.doi.org/10.1214/08-AAP566
http://arxiv.org/abs/1912.10325
1912.10325
https://doi.org/https://doi.org/10.1016/j.automatica.2018.06.013
https://www.sciencedirect.com/science/article/pii/S0005109818303054

Background: Optimal Stopping

> Applications & Use Cases:
Hypothesis testing!?
Change detection!3,
Selling decisions™,
Queue managemen
Industrial controlt®,
Advertisement scheduling,
Intrusion prevention'” etc.
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12 Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.

13 Alexander G. Tartakovsky et al. “Detection of intrusions in information systems by sequential change-point
methods”. In: Statistical Methodology (2006). 1ssN: 1572-3127. DOI
https://doi.org/10.1016/j.stamet.2005.05.003. URL:
https://www.sciencedirect.com/science/article/pii/S1572312705000493.

14Jacques du Toit and Goran Peskir. “Selling a stock at the ultimate maximum”. In: The Annals of Applied
Probability 19.3 (2009). 1ssn: 1050-5164. DOI: 10.1214/08-aap566. URL:
http://dx.doi.org/10.1214/08-AAP566.
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Networks". In: Proceedings of the 4th Annual International Conference on Wireless Internet. WICON '08. Maui,
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https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
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» Defender observes the infrastructure (IDS, log files, etc.).



Formulating Intrusion Prevention as a Stopping Problem

Episode
- . - T ~
time-step t = jIntrusion event lIntrusion ongoing
I
k41—t
| t=T
I
I
» The system evolves in discrete time-steps. Defencer

» Defender observes the infrastructure (IDS, log files, etc.).

> An intrusion occurs at an unknown time.



Formulating Intrusion Prevention as a Stopping Problem

Episode
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The system evolves in discrete time-steps.

Defender observes the infrastructure (IDS, log files, etc.).
An intrusion occurs at an unknown time.

The defender can make L stops.

Each stop is associated with a defensive action

The final stop shuts down the infrastructure.



Formulating Intrusion Prevention as a Stopping Problem

Episode
A : -~
time-step t = jIntrusion event lIntrusion ongoing
| ——A——
Atttk
| t=T
[ Voo
Early stopping times 1 Stopping times that

vVvvyVvYVYyyypy

affect the intrusion

The system evolves in discrete time-steps.

Defender observes the infrastructure (IDS, log files, etc.).
An intrusion occurs at an unknown time.

The defender can make L stops.

Each stop is associated with a defensive action

The final stop shuts down the infrastructure.

Based on the observations, when is it optimal to stop?



Intrusion Prevention through Optimal Stopping

Defensive action

l ‘Yes

Stochastic Ot 7 Stop?
system

T | No

Continue monitor

» The L — /th stopping time 7 is:
T =inf{t:t>71_1,a =S}, lel, ., L, 1141=0
» 7, is a random variable from sample space Q to N, which is

dependent on h;, = p1,a1,01,...,ar-1,0r and independent
of ar, 0741, ..



Intrusion Prevention through Optimal Stopping

We consider the class of stopping times
Te = {m < t|11 > 111} € Fk (Fkx =natural filtration on h;).

|
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Intrusion Prevention through Optimal Stopping

We consider the class of stopping times
Te = {7 < t|11 > 711} € Fk (Fkx =natural filtration on h;).

Given the observations:
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Intrusion Prevention through Optimal Stopping

We consider the class of stopping times
Te = {7 < t|11 > 7131} € Fk (Fk =natural filtration on h;).

o Given the observations:
t
t

, Find the optimal stopping times 7/, 7/ _,...:

L bt WM
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1
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l |
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The Defender’s Stop Actions
» Ingress traffic goes through deep packet inspection at gateway
» Gateway runs the Snort IDS/IPS and may drop packets
> At each stopping time, we update the IPS configuration
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The Defender’s Stop Actions

> Ingress traffic goes through deep packet inspection at gateway
» Gateway runs the Snort IDS/IPS and may drop packets

» At each stopping time, we update the IPS configuration

» Objective: find optimal ©* or Nash equilibrium

Clients
. e Infrastructure
IP packets
—3 0oo00—8&S—
]
] Drop
A
6 O Defender,m;
— O 00 ¢ Controls
Attacker, mo




Approaches to Solving Optimal Stopping Problems

Two main approaches:

» The Markovian approach

» Assume process is Markov
» Utilize Markov deision theory

» The martingale approach

» More general
» No Markov assumption
» Utilize martingale convergence theorems



The Markovian Approach to Optimal Stopping

» Model the problem as a MDP or POMDP

> A policy 7* that satisfies the Bellman-Wald equation is
optimal:

7*(s) = arg max [E [Rﬂ,E [RSC + ’yV*(s')} ] VseS
{56} [—m—
stop continue
» Solve by backward induction, dynamic programming, or
reinforcement learning



The Markovian Approach to Optimal Stopping

> Alternative optimality condition:

>

>
>
>

Theorem: V*(s) is the minimal excessive function which
majorizes RY.

Assume all rewards are received upon stopping: R?
V*(s) majorizes R? if V*(s) > R vsc S

V*(s) is excessive if V*(s) > >, PS.V*(s')Vse S



The Markovian Approach to Optimal Stopping

> Alternative optimality condition:

>

>
>
>

Theorem: V*(s) is the minimal excessive function which
majorizes RY.

Assume all rewards are received upon stopping: Rg’
V*(s) majorizes R? if V*(s) > R Vs € S

V*(s) is excessive if V*(s) > >, PS.V*(s')Vse S

A

— R — 3, PLV()
—V(s)

A\



The Martingale Approach to Optimal Stopping

> Model the state process as an arbitrary stochastic process

» The reward of the optimal stopping time is given by the
Snell envelope!®.

» Snell envelope: smallest supermartingale that
stochastically dominates the process

18) L. Snell. “Applications of martingale system theorems”. In: Transactions of the American Mathematical
Society 73 (1952), pp. 293-312.



We follow the Markovian approach and model the problem as a POMDP




A Partially Observed MDP Model for the Defender

> States:
» Intrusion state s; € {0,1}, terminal (.

t>1

t>2
Ik >0

intrusion starts >0

Q=1

final stop

intrusion prevented
Ik=0

=0



A Partially Observed MDP Model for the Defender

» Observations:

» Severe/Warning IDS Alerts (Ax, Ay),
Login attempts Az, stops remaining
I € {1,.., L}, fxyz(Ax, Ay, Az|s;)



A Partially Observed MDP Model for the Defender

> Actions:
> “Stop” (S) and “Continue” (C)



A Partially Observed MDP Model for the Defender

> Rewards:

» Reward: security and service. Penalty:
false alarms and intrusions



A Partially Observed MDP Model for the Defender

vy

Iy ~ Ge(p = 0.01)
.y . egeg . 1.
» Transition probabilities: _
> Bernoulli process (Q:)[_, ~ Ber(p)  &°
defines intrusion start I; ~ Ge(p) ,
: 50 100 150 200 250

intrusion start time ¢
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A Partially Observed MDP Model for the Defender

» Objective and Horizon:
> maxEq, S0 r(sea)], To



A Partially Observed MDP Model for the Defender

> States:
» Intrusion state s; € {0,1}, terminal (.
» Observations: /tit o /tif)
> Severe/Warning IDS Alerts (Ax,Ay), ntrusion starts
Login attempts Az, stops remaining
I € {1,.., L}, fxyz(Ax, Ay, Az|s;)
> Actions:
> “Stop” (S) and “Continue” (C)
> Rewards:

» Reward: security and service. Penalty:
false alarms and intrusions

intrusion prevented
=0

final stop
k=0

> Transition probabilities:

» Bernoulli process (Q;)/_; ~ Ber(p)
defines intrusion start I; ~ Ge(p)

CDFy,(t)

50 100 150 200 250 300

> Objective and Horizon; intrusion start time ¢
-
> maxE,, [Zt:‘z’l r(se;ae)|, To



We analyze the structure of 7* using POMDP & stopping theory




Outline

» Use Case & Approach:
» Intrusion prevention
» System identification
» Reinforcement learning and optimal stopping

» Formal Model of The Use Case

» Intrusion prevention as an optimal stopping problem
» Partially observed Markov decision process

» Structure of 7*
» Existence of optimal multi-threshold policy 7}
» Stopping sets .} are connected and nested



Background: POMDPs

Hidden Markov Model (HMM)

|
| - state " observation
| Stochastic s No ! o
: System BRI S o1sy I — :
! (Markov) ensor |,
|
|
|
|

POMDP Controller
action a; (Decision Maker)

belief
Bayesian by
—
Filter
- |

> POMDP: (S, A, P, . RZ. .,v,p1,T,0,Z2)
» Controlled hidden Markov model, states s; € S are hidden

» Agent observes history hy = (p1,a1,01,...,38t-1,0t) € H



Background: POMDPs

» s;: is Markov: P[sii1|st] = P[st+1]s1,-- -, St]



Background: POMDPs
» s;: is Markov: P[sii1|st] = P[st+1]s1,-- -, St]
> — 7*(a|h) = 7 (a¢|P[st|he]) = 7*(a¢|bt)



Background: POMDPs
» s;: is Markov: P[sii1|st] = P[st+1]s1,-- -, St]
> — W*(at‘ht) = W*(at“P)[St’ht]) = W*(at‘bt)
» Optimality (Bellman) Eq:

7*(b) € arg max Z b(s)RZ+~ Z Z(o,s',a)b(s)Pa, V*(b2)
acA

o,s,s’



Background: POMDPs

P[5t|ht] = P[5t|ot’ at—1, ht—l]

_ Plod|st, ar—1, he—1]P[st|ac—1, he 1] Bayes
P[Ot’at—la ht—l]

Z(o¢, St,ar-1) Zst—l P;tjllstp[st—l‘ht—l]
= ; Markov
Zs’ Zs Z(Ot7 s, atfl)P[Stfl‘htfl]

» P[s; 1|h:—1] with a;, o; is a sufficient statistic for s;
» b; = P[s;_1|h:_1]: belief state at time t
> b; computed recursively using the equation above



Background: POMDPs

B(3): 2-dimensional unit-simplex
(0,0,1)

B(2): 1-dimensional unit-simplex

(0.4,0.6)
0.4 0.6

(0.25,0.55,0.2)

025 |

0.55

—_— e

(1,0) (0,1) (1,0,0)

» b e B, Bis the unit (|S| — 1)-simplex

(0,1,0)



Background: POMDPs

B(3): 2-dimensional unit-simplex
e

Switching curve
Stopping set .7/ /)

e1 €2

» b e B, Bis the unit (|S| — 1)-simplex

» To characterize 7*, partition 5 based on 7*(a|b)
> e.g. stopping set .’ and continuation set ¢



Structural Result: Optimal Multi-Threshold Policy

Theorem
Given the intrusion prevention POMDP, the following holds:



Structural Result: Optimal Multi-Threshold Policy

Theorem

Given the intrusion prevention POMDP, the following holds:
1. 1 CSforl=2,...L.



Structural Result: Optimal Multi-Threshold Policy

Theorem
Given the intrusion prevention POMDP, the following holds:

2. If L =1, there exists an optimal threshold o* € [0, 1] and an
optimal policy of the form:

mi(b(1)) =S < b(1) = o (6)



Structural Result: Optimal Multi-Threshold Policy

Theorem
Given the intrusion prevention POMDP, the following holds:

3. If L > 1 and fxyyz is totally positive of order 2 (TP2), there
exists L optimal thresholds o;f € [0, 1] and an optimal policy
of the form:

mi(b(1)) =S < b(1) > o, I=1,...,L (9)

where o is decreasing in |.



Structural Result: Optimal Multi-Threshold Policy

~—

belief space B = [0, 1]



Structural Result: Optimal Multi-Threshold Policy

belief space B = [0, 1]



Structural Result: Optimal Multi-Threshold Policy

S
/—/%
5%
I — —b(1)
0 a3 o !

belief space B = [0, 1]



Structural Result: Optimal Multi-Threshold Policy

L
:,5/2
/—/%
5%
| | N h(1)
0 ap --- 0504 !
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» Use Case & Approach:
» Intrusion prevention
» System identification
» Reinforcement learning and optimal stopping

» Formal Model of The Use Case
» Intrusion prevention as an optimal stopping problem
» Partially observed Markov decision process

» Structure of 7*
» Existence of optimal multi-threshold policy 7}
» Stopping sets .} are connected and nested

» Reinforcement learning method
» Learning threshold policies & the policy gradient
» Emulated infrastructure



Our Reinforcement Learning Algorithm for Learning
Threshold Policies

> We use the structural result that an optimal threshold
policy exist (Theorem 1) to design an efficient
reinforcement learning algorithm.
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Our Reinforcement Learning Algorithm for Learning
Threshold Policies

> We use the structural result that an optimal threshold
policy exist (Theorem 1) to design an efficient
reinforcement learning algorithm.

» We seek to learn L thresholds: a7, a3,...,0]
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Our Reinforcement Learning Algorithm for Learning
Threshold Policies

> We learn these thresholds iteratively through Robbins and
Monro's stochastic approximation algorithm.??

Performance estimate

~ Stochastic
0 N M.onte—C_aro J(0n) Approximation nt1 g+
Simulation RL
0, (RL)

22Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method". In: The Annals of Mathematical
Statistics 22.3 (1951), pp. 400 —=407. poI: 10.1214/aoms/1177729586. URI
https://doi.org/10.1214/aoms/1177729586.


https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586

Our Reinforcement Learning Algorithm for Learning
Threshold Policies

1. Parameterize the policy m; y)by 6 € Rt



Our Reinforcement Learning Algorithm for Learning
Threshold Policies

2. The policy gradient

VGJ(H) = Eﬂ,ﬂ Z Vg |Og 7['/’9(315‘51-) Z ry
t=1 T=t

exists as long as 7 ¢ is differentiable.



Our Reinforcement Learning Algorithm for Learning
Threshold Policies

3. A pure threshold policy is not differentiable.



Our Reinforcement Learning Algorithm for Learning
Threshold Policies

4. To ensure differentiability and to constrain the thresholds to
be in [0, 1], we define g ; to be a smooth stochastic policy
that approximates a threshold policy:

) b1)(L — o(8))) ")
mio(S[b(1)) = (1 - (0(9/)(1—/3(1/))) )

where o(-) is the sigmoid function and o(6)) is the threshold.



Smooth Threshold Policy

1.0

0.8

0.6

0.4

0.2

0.0 T T
0.0 0.2 0.4 0.6 0.8 1.0

b(1)

oy —20\ 7
‘— (1+(w) ) —— Step function

a(0)7)(1-b(1))

22/30



Our Reinforcement Learning Algorithm for Learning
Threshold Policies

1. We learn the thresholds through simulation.




Our Reinforcement Learning Algorithm for Learning
Threshold Policies

2. For each iteration n € {1,2,...}, we perturb 6, to obtain
0, + cpnA, and 0, — c,A\,.




Our Reinforcement Learning Algorithm for Learning
Threshold Policies

3. Then, we simulate two POMDP episodes




Our Reinforcement Learning Algorithm for Learning
Threshold Policies

4. We then use the obtained episode outcomes 3(9,, + cnlAp)
and J(0, — caA,) to estimate VyJ(6) using the Simultaneous
Perturbation Stochastic Approximation (SPSA) gradient
estimator?3:

A jH,,+c,,A,, -] 0, — cn\,
(VenJ(Qn))k _ I ) —J( )

2Cn(A,,)k

23 James C. Spall. “Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient
Approximation”. In: I[EEE TRANSACTIONS ON AUTOMATIC CONTROL 37.3 (1992), pp. 332-341.



Our Reinforcement Learning Algorithm for Learning
Threshold Policies

5. Next, we use the estimated gradient and update the vector of
thresholds through the stochastic approximation update:

Oni1 = 0n+ anVy,J(0,)




To evaluate Policies Learned in Simulation we Run them in

the Emulation

SIMULATION SYSTEM
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Emulating the Target Infrastructure

» Emulate hosts with docker containers
» Emulate IDS and vulnerabilities with Attacker Clients

software ‘3 % o %

» Network isolation and traffic shaping
through NetEm in the Linux kernel

» Enforce resource constraints using
cgroups.

» Emulate client arrivals with Poisson
process

» Internal connections are full-duplex
& loss-less with bit capacities of 1000
Mbit/s

» External connections are full-duplex

with bit capacities of 100 Mbit/s & @
0.1% packet loss in normal operation Defender
and random bursts of 1% packet loss



Running a POMDP Episode in the Emulation

» A distributed system with
synchronized clocks

» We run software sensors on all
emulated hosts

» Sensors produce messages to a o O be ) 2
distributed queue (Kafka) :
» A stream processor (Spark) consume

messages from the queue and
computes statistics

» Actions are selected based on the
computed statistics and the policies

» Actions are sent to the emulation
using gRPC

» Actions are executed by running
commands on the hosts



Outline

» Use Case & Approach:
» Intrusion prevention
» System identification
» Reinforcement learning and optimal stopping

» Formal Model of The Use Case

» Intrusion prevention as an optimal stopping problem
» Partially observed Markov decision process

» Structure of 7*
» Existence of optimal multi-threshold policy 7}
» Stopping sets .} are connected and nested

» Reinforcement learning method
» Learning threshold policies & the policy gradient
» Emulated infrastructure

» Results & Conclusion
» Numerical evaluation results & Demo
» Conclusion & future work



Evaluation Results

Reward per episode Episode length (steps) P[intrusion interrupted] Plearly stopping] Duration of intrusion
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Evaluation Results

Reward per episode against NOVICE Reward per episode against EXPERIENCED Reward per episode against EXPERT
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Demo - A System for Interactive Examination of Learned
Security Policies

Client web browser

X

|

Policy Examination

&6 & ¢

P
Y53

Architecture of the system for examining learned security policies.



Conclusions & Future Work

» Conclusions:

» We develop a method to automatically learn security policies

» (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement
learning and (5) domain randomization and generalization.

> We apply the method to an intrusion prevention use case

» We formulate intrusion prevention as a multiple stopping
problem

We present a POMDP model of the use case

We apply the stopping theory to establish structural results of the optimal policy

We design a reinforcement learning algorithm that outperforms state-of-the-art on our use
case

> We show numerical results in realistic emulation environment

vYyy

» Qur research plans:
» Extending the model

P Active attacker: Partially Observed Stochastic Game, Equilibrium analysis
P Less restrictions on defender



