

Self-Learning Systems for Cyber Security Kim Hammar & Rolf Stadler

kimham@kth.se, stadler@kth.se KTH Royal Institute of Technology

CDIS Spring Conference 2021 March 24, 2021

Challenges: Evolving and Automated Attacks

Challenges:

- Evolving & automated attacks
- Complex infrastructures

Goal: Automation and Learning

Challenges

- Evolving & automated attacks
- Complex infrastructures

Our Goal:

- Automate security tasks
- Adapt to changing attack methods

Approach: Game Model & Reinforcement Learning

- Challenges:
 - Evolving & automated attacks
 - Complex infrastructures
- Our Goal:
 - Automate security tasks
 - Adapt to changing attack methods

Our Approach:

- Model network attack and defense as games.
- Use reinforcement learning to learn policies.
- Incorporate learned policies in self-learning systems.

State of the Art

Game-Learning Programs:

- TD-Gammon, AlphaGo Zero¹, OpenAl Five etc.
 - \implies Impressive empirical results of *RL and self-play*

Attack Simulations:

 Automated threat modeling², automated intrusion detection etc.

Need for *automation* and better security tooling

- Mathematical Modeling:
 - ► Game theory³
 - Markov decision theory

 Many security operations involves strategic decision making

¹David Silver et al. "Mastering the game of Go without human knowledge". In: *Nature* 550 (Oct. 2017), pp. 354-. URL: http://dx.doi.org/10.1038/nature24270.

²Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. "A Meta Language for Threat Modeling and Attack Simulations". In: *Proceedings of the 13th International Conference on Availability, Reliability and Security.* ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. ISBN: 9781450366485. DOI: 10.1145/3230833.3232799. URL: https://doi.org/10.1145/3230833.3232799.

³Tansu Alpcan and Tamer Basar. *Network Security: A Decision and Game-Theoretic Approach*. 1st. USA: Cambridge University Press, 2010. ISBN: 0521119324.

State of the Art

Game-Learning Programs:

TD-Gammon, AlphaGo Zero⁴, OpenAl Five etc.

⇒ Impressive empirical results of *RL and self-play*

Attack Simulations:

 Automated threat modeling⁵, automated intrusion detection etc.

 $\blacktriangleright \implies \text{Need for automation} \text{ and better security tooling}$

Mathematical Modeling:

- ► Game theory⁶
- Markov decision theory

 Any security operations involves strategic decision making

⁵Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. "A Meta Language for Threat Modeling and Attack Simulations". In: Proceedings of the 13th International Conference on Availability, Reliability and Security. ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. ISBN: 9781450364485. DOI: 10.1145/3230833.3232799. URL: https://doi.org/10.1145/3230833.3232799.

^bTansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA: Cambridge University Press, 2010. ISBN: 0521119324.

⁴David Silver et al. "Mastering the game of Go without human knowledge". In: Nature 550 (Oct. 2017), pp. 354-. URL: http://dx.doi.org/10.1038/nature24270.

State of the Art

Game-Learning Programs:

▶ TD-Gammon, AlphaGo Zero⁷, OpenAl Five etc.

 \implies Impressive empirical results of *RL and self-play*

Attack Simulations:

 Automated threat modeling⁸, automated intrusion detection etc.

Need for *automation* and better security tooling

Mathematical Modeling:

- Game theory⁹
- Markov decision theory

 Many security operations involves strategic decision making

⁹Tansu Alpcan and Tamer Basar. *Network Security: A Decision and Game-Theoretic Approach*. 1st. USA: Cambridge University Press, 2010. ISBN: 0521119324.

⁷David Silver et al. "Mastering the game of Go without human knowledge". In: Nature 550 (Oct. 2017), pp. 354–. URL: http://dx.doi.org/10.1038/nature24270.

⁸Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. "A Meta Language for Threat Modeling and Attack Simulations". In: Proceedings of the 13th International Conference on Availability, Reliability and Security. ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. ISBN: 9781450364485. DOI: 10.1146/3230833.3232799. URL: https://doi.org/10.1145/3230833.3232799.

Our Work

Use Case: Intrusion Prevention

Our Method:

Emulating computer infrastructures

- System identification and model creation
- Reinforcement learning and generalization
- Results: Learning to Capture The Flag
- Conclusions and Future Work

Use Case: Intrusion Prevention

A Defender owns an infrastructure

Consists of connected components

- Components run network services
- Defender defends the infrastructure by monitoring and patching

An Attacker seeks to intrude on the infrastructure

- Has a partial view of the infrastructure
- Wants to compromise specific components
- Attacks by reconnaissance, exploitation and pivoting

Emulation System

Σ Configuration Space

Emulation

A cluster of machines that runs a virtualized infrastructure which replicates important functionality of target systems.

- The set of virtualized configurations define a configuration space Σ = ⟨A, O, S, U, T, V⟩.
- A specific emulation is based on a configuration $\sigma_i \in \Sigma$.

Emulation System

 Σ Configuration Space

Emulation

A cluster of machines that runs a virtualized infrastructure which replicates important functionality of target systems.

- The set of virtualized configurations define a configuration space Σ = (A, O, S, U, T, V).
- A specific emulation is based on a configuration $\sigma_i \in \Sigma$.

Emulation: Execution Times of Replicated Operations

- Fundamental issue: Computational methods for policy learning typically require samples on the order of 100k – 10M.
- $\blacktriangleright \implies$ Infeasible to optimize in the emulation system

From Emulation to Simulation: System Identification

- Abstract Model Based on Domain Knowledge: Models the set of controls, the objective function, and the features of the emulated network.
 - Defines the static parts a POMDP model.
- Dynamics Model (P, Z) Identified using System Identification: Algorithm based on random walks and maximum-likelihood estimation.

$$\mathcal{M}(b'|b,a) riangleq rac{n(b,a,b')}{\sum_{j'} n(s,a,j')}$$

From Emulation to Simulation: System Identification

- Abstract Model Based on Domain Knowledge: Models the set of controls, the objective function, and the features of the emulated network.
 - Defines the static parts a POMDP model.
- Dynamics Model (P, Z) Identified using System Identification: Algorithm based on random walks and maximum-likelihood estimation.

$$\mathcal{M}(b'|b,a) \triangleq rac{n(b,a,b')}{\sum_{j'} n(s,a,j')}$$

From Emulation to Simulation: System Identification

Abstract Model Based on Domain Knowledge: Models the set of controls, the objective function, and the features of the emulated network.

Defines the static parts a POMDP model.

Dynamics Model (P, Z) Identified using System Identification: Algorithm based on random walks and maximum-likelihood estimation.

$$\mathcal{M}(b'|b,a) riangleq rac{n(b,a,b')}{\sum_{j'} n(s,a,j')}$$

Policy Optimization in the Simulation System using Reinforcement Learning

Goal:

• Approximate
$$\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{T} \gamma^t r_{t+1} \right]$$

Learning Algorithm:

- **Represent** π by π_{θ}
- Define objective $J(\theta) = \mathbb{E}_{o \sim \rho^{\pi_{\theta}}, a \sim \pi_{\theta}}[R]$
- Maximize $J(\theta)$ by stochastic gradient ascent with gradient $\nabla_{\theta} l(\theta) = \mathbb{E}_{\theta} [\nabla_{\theta} \log \pi_{\theta}(\theta | \theta) A^{\pi_{\theta}}(\theta | \theta)]$

Domain-Specific Challenges:

- Partial observability
- Large state space $|S| = (w + 1)^{|N| \cdot m \cdot (m+1)}$
- Large action space $|\mathcal{A}| = |\mathcal{N}| \cdot (m+1)$
- Non-stationary Environment due to presence of adversary
- Generalization

Policy Optimization in the Simulation System using Reinforcement Learning

Goal:

• Approximate $\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t=0}^T \gamma^t r_{t+1} \right]$

Learning Algorithm:

- \blacktriangleright Represent π by π_{θ}
- Define objective $J(\theta) = \mathbb{E}_{\rho \sim \rho^{\pi_{\theta}}, a \sim \pi_{\theta}}[R]$
- Maximize $J(\theta)$ by stochastic gradient ascent with gradient)|

$$abla_{ heta} J(heta) = \mathbb{E}_{o \sim
ho^{\pi_{ heta}}, a \sim \pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(a|o) A^{\pi_{ heta}}(o,a) \right]$$

- Partial observability
- Large state space $|S| = (w+1)^{|\mathcal{N}| \cdot m \cdot (m+1)}$
- Large action space $|\mathcal{A}| = |\mathcal{N}| \cdot (m+1)$
- Non-stationary Environment due to presence of

Policy Optimization in the Simulation System using Reinforcement Learning

Goal:

• Approximate $\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{T} \gamma^t r_{t+1} \right]$

Learning Algorithm:

- **Represent** π by π_{θ}
- Define objective $J(\theta) = \mathbb{E}_{o \sim \rho^{\pi_{\theta}}, a \sim \pi_{\theta}}[R]$
- Maximize $J(\theta)$ by stochastic gradient ascent with gradient

 $abla_ heta J(heta) = \mathbb{E}_{o \sim
ho^{\pi_ heta}, a \sim \pi_ heta} \left[
abla_ heta \log \pi_ heta(a|o) A^{\pi_ heta}(o,a)
ight]$

Domain-Specific Challenges:

- Partial observability
- Large state space $|\mathcal{S}| = (w+1)^{|\mathcal{N}| \cdot m \cdot (m+1)}$
- Large action space $|\mathcal{A}| = |\mathcal{N}| \cdot (m+1)$
- Non-stationary Environment due to presence of adversary
- Generalization

Policy Optimization in the Simulation System using Reinforcement Learning

Finding Effective Security Strategies through Reinforcement Learning and Self-Play^a

^aKim Hammar and Rolf Stadler. "Finding Effective Security Strategies through Reinforcement Learning and Self-Play". In: International Conference on Network and Service Management (CNSM 2020) (CNSM 2020). Izmir, Turkey, Nov. 2020.

Learning Capture-the-Flag Strategies

Learning curves (train and eval) of our proposed method.

Evaluation infrastructure.

Learning Capture-the-Flag Strategies

Conclusions & Future Work

Conclusions:

- We develop a *method* to find effective strategies for intrusion prevention
 - (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement learning and (5) domain randomization and generalization.
- We show that self-learning can be successfully applied to network infrastructures.
 - Self-play reinforcement learning in Markov security game
- Key challenges: stable convergence, sample efficiency, complexity of emulations, large state and action spaces

Our research plans:

- Improving the system identification algorithm & generalization
- Evaluation on real world infrastructures