
1/54

Learning Optimal Intrusion Responses for
IT Infrastructures via Decomposition

Visit to Princeton University

Kim Hammar

kimham@kth.se
Division of Network and Systems Engineering

KTH Royal Institute of Technology

May 17, 2023



2/54

Use Case: Intrusion Response

I A defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting

Attacker Clients
. . .

Defender

1 IPS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31



3/54

Automated Intrusion Response: Current Landscape

Levels of security automation

No automation.
Manual detection.
Manual prevention.

No alerts.
No automatic responses.

Lack of tools.

1980s 1990s 2000s-Now Research

Operator assistance.
Manual detection.
Manual prevention.

Audit logs.
Security tools.

Partial automation.
System has automated functions

for detection/prevention
but requires manual

updating and configuration.
Intrusion detection systems.
Intrusion prevention systems.

High automation.
System automatically

updates itself.
Automated attack detection.
Automated attack mitigation.



4/54

Can we use decision theory and learning-based methods to
automatically find effective security strategies?1

πΣ Σ

security
objective

feedback

controlinput

target
system

security
indicators

disturbance

1Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM 2020). Izmir, Turkey, 2020,
Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In:
International Conference on Network and Service Management (CNSM 2021). Izmir, Turkey, 2021, Kim Hammar
and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on Network and
Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781, Kim Hammar and
Rolf Stadler. Learning Near-Optimal Intrusion Responses Against Dynamic Attackers. 2023. doi:
10.48550/ARXIV.2301.06085. url: https://arxiv.org/abs/2301.06085.

https://doi.org/10.1109/TNSM.2022.3176781
https://doi.org/10.48550/ARXIV.2301.06085
https://arxiv.org/abs/2301.06085


5/54

Our Framework for Automated Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



5/54

Our Framework for Automated Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



5/54

Our Framework for Automated Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



5/54

Our Framework for Automated Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



5/54

Our Framework for Automated Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



5/54

Our Framework for Automated Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



5/54

Our Framework for Automated Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



5/54

Our Framework for Automated Network Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



6/54

Creating a Digital Twin of the Target Infrastructure

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



6/54

Theoretical Analysis and Learning of Defender Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



7/54

Creating a Digital Twin of the Target Infrastructure
I An infrastructure is

defined by its
configuration.

I Set of configurations
supported by our
framework can be
seen as a
configuration space

I The configuration
space defines the
class of
infrastructures for
which we can create
digital twins.

Σ Configuration Space
σi

** *

172.18.4.0/24172.18.19.0/24172.18.61.0/24
Digital Twins

R1 R1 R1



8/54

The Target Infrastructure
I 64 nodes. 24 ovs switches, 3

gateways. 6 honeypots. 8 application
servers. 4 administration servers. 15
compute servers.

I Topology shown to the right

I 11 vulnerabilities (cve-2010-0426,
cve-2015-3306, cve-2015-5602, etc.)

I 4 zones: dmz, r&d zone, admin
zone, quarantine zone

I 9 workflows

I Management: 1 sdn controller, 1
Kafka server, 1 elastic server.

r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64



9/54

Emulating Physical Components

I We emulate physical components with
Docker containers

I Focus on linux-based systems

I The containers include everything
needed to emulate the host: a runtime
system, code, system tools, system
libraries, and configurations.

I Examples of containers: IDPS
container, client container, attacker
container, CVE-2015-1427 container,
Open vSwitch containers etc.

Containers

Physical server

Operating system

Docker engine

CSLE



10/54

Emulating Network Connectivity

Management node 1
Emulated IT infrastructure

Management node 2
Emulated IT infrastructure

Management node n
Emulated IT infrastructure

VXLAN VXLAN . . . VXLAN

IP network

I We emulate network connectivity on the same host using
network namespaces.

I Connectivity across physical hosts is achieved using VXLAN
tunnels with Docker swarm.



11/54

Emulating Network Conditions

I We do traffic shaping using
NetEm in the Linux kernel

I Emulate internal
connections are full-duplex
& loss-less with bit
capacities of 1000 Mbit/s

I Emulate external
connections are full-duplex
with bit capacities of 100
Mbit/s & 0.1% packet loss
in normal operation and
random bursts of 1% packet
loss

User space

. . .
Application processes

Kernel

TCP/UDP

IP/Ethernet/802.11

OS
TCP/IP
stack

Queueing
discipline

Device driver
queue (FIFO)

NIC

Netem config:
latency,

jitter, etc.

Sockets



12/54

Emulating Actors

I We emulate client arrivals
with Poisson processes

I We emulate client
interactions with load
generators

I Attackers are emulated by
automated programs that
select actions from a
pre-defined set

I Defender actions are
emulated through a custom
gRPC API.

Markov Decision Process

s1,1 s1,2 s1,3 . . . s1,4

s2,1 s2,2 s2,3 . . . s2,4

Digital Twin
. . .

Virtual
network

Virtual
devices

Emulated
services

Emulated
actors

IT Infrastructure
Configuration

& change events

System traces

Verified security policy

Optimized security policy



13/54

System Identification

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



14/54

Outline
I Use Case & Digital Twin

I Use case: intrusion response
I Digital twin for data collection & evaluation

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work



14/54

Outline
I Use Case & Digital Twin

I Use case: intrusion response
I Digital twin for data collection & evaluation

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work



14/54

Outline
I Use Case & Digital Twin

I Use case: intrusion response
I Digital twin for data collection & evaluation

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work



14/54

Outline
I Use Case & Digital Twin

I Use case: intrusion response
I Digital twin for data collection & evaluation

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work



14/54

Outline
I Use Case & Digital Twin

I Use case: intrusion response
I Digital twin for data collection & evaluation

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work



15/54

System Model

I G = 〈{gw} ∪ V, E〉: directed graph
representing the virtual infrastructure

I V: finite set of virtual components.

I E : finite set of component
dependencies.

I Z: finite set of zones.
r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64



15/54

System Model

I G = 〈{gw} ∪ V, E〉: directed graph
representing the virtual infrastructure

I V: finite set of virtual components.

I E : finite set of component
dependencies.

I Z: finite set of zones.
r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64



15/54

System Model

I G = 〈{gw} ∪ V, E〉: directed graph
representing the virtual infrastructure

I V: finite set of virtual components.

I E : finite set of component
dependencies.

I Z: finite set of zones.
r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64



16/54

State Model

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i )i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t ) are the actions.

s1 s2 s3

s4 s5 s4

... ... ...



16/54

State Model

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i )i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t ) are the actions.

s1 s2 s3

s4 s5 s4

... ... ...



16/54

State Model

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i )i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t ) are the actions.

s1 s2 s3

s4 s5 s4

... ... ...



17/54

Workflow Model

I Services are connected into workflows W = {w1, . . . ,w|W|}.



17/54

Workflow Model
I Services are connected into workflows W = {w1, . . . ,w|W|}.

gw fw idps lb

http
servers

auth
server

search
engine

db

cache

Dependency graph of an example workflow representing a web
application; gw, fw, idps, lb, and db are acronyms for gateway,
firewall, intrusion detection and prevention system, load balancer, and
database, respectively.



18/54

Workflow Model

I Services are connected into
workflows
W = {w1, . . . ,w|W|}.

I Each w ∈ W is realized as a
directed acyclic subgraph (dag)
Gw = 〈{gw} ∪ Vw, Ew〉 of G

I W = {w1, . . . ,w|W|} induces a
partitioning

V =
⋃

wi∈W
Vwi such that i 6= j =⇒ Vwi ∩ Vwj = ∅

Zone a

Zone b Zone c

gw

1 2 3

4 5 6

7

A workflow dag



18/54

Workflow Model

I Services are connected into
workflows
W = {w1, . . . ,w|W|}.

I Each w ∈ W is realized as a
directed acyclic subgraph (dag)
Gw = 〈{gw} ∪ Vw, Ew〉 of G

I W = {w1, . . . ,w|W|} induces a
partitioning

V =
⋃

wi∈W
Vwi such that i 6= j =⇒ Vwi ∩ Vwj = ∅

Zone a

Zone b Zone c

gw

1 2 3

4 5 6

7

A workflow dag



19/54

Client Model
Client population

. . .Arrival rate λ Departure

Service time µ

. . .

...
...

...

w1 w2 w|W|

Workflows (Markov processes)

I Homogeneous client population
I Clients arrive according to Po(λ), Service times Exp( 1µ)
I Workflow selection: uniform
I Workflow interaction: Markov process



20/54

Observation Model

I idpss inspect network traffic and
generate alert vectors:

ot ,
(
ot,1, . . . , ot,|V|

)
∈ N|V|0

ot,i is the number of alerts related to
node i ∈ V at time-step t.

I ot = (ot,1, . . . , ot,|V|) is a realization
of the random vector Ot with joint
distribution Z

idps

idps

idps

idps

alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64



20/54

Observation Model

I idpss inspect network traffic and
generate alert vectors:

ot ,
(
ot,1, . . . , ot,|V|

)
∈ N|V|0

ot,i is the number of alerts related to
node i ∈ V at time-step t.

I ot = (ot,1, . . . , ot,|V|) is a realization
of the random vector Ot with joint
distribution Z

idps

idps

idps

idps

alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64



21/54

p
ro

b
ab

il
it

y

ZO1
ZO2

ZO3
ZO4

ZO5
ZO6

ZO7
ZO8

p
ro

b
ab

il
it

y

ZO9
ZO10

ZO11
ZO12

ZO13
ZO14

ZO15
ZO16

p
ro

b
ab

il
it

y

ZO17
ZO18

ZO19
ZO20

ZO21
ZO22

ZO23
ZO24

p
ro

b
ab

il
it

y

ZO25
ZO26

ZO27
ZO28

ZO29
ZO30

ZO31
ZO32

p
ro

b
ab

il
it

y

ZO33
ZO34

ZO35
ZO36

ZO37
ZO38

ZO39
ZO40

p
ro

b
ab

il
it

y

ZO41
ZO42

ZO43
ZO44

ZO45
ZO46

ZO47
ZO48

p
ro

b
ab

il
it

y

ZO49
ZO50

ZO51
ZO52

ZO53
ZO54

ZO55
ZO56

250 500 750
O

p
ro

b
ab

il
it

y

ZO57

250 500 750
O

ZO58

250 500 750
O

ZO59

250 500 750
O

ZO60

250 500 750
O

ZO61

250 500 750
O

ZO62

250 500 750
O

ZO63

250 500 750
O

ZO64

Distributions of # alerts weighted by priority ZOi
(Oi | S(D)

i ,A
(A)
i ) per node i ∈ V

no intrusion intrusion



22/54

Monitoring and Telemetry
Devices

Event bus

Security Policy

Storage Systems

Control actions

Data pipelines

Events

I Emulated devices run monitoring agents that periodically
push metrics to a Kafka event bus.

I The data in the event bus is consumed by data pipelines that
process the data and write to storage systems.

I The processed data is used by an automated security policy to
decide on control actions to execute in the digital twin.



23/54

Feature Selection
I Our framework collects 100s of metrics every time-step.
I We focus on the IDPS alert metric as it provides the most

information for detecting the type of attacks we consider.

0 2500 5000 7500

P
ro

b
ab

il
it
y

Weighted idps alerts
DKL(ZO|0 ‖ ZO|1) = 0.49

−100 0 100

New login attempts
DKL(ZO|0 ‖ ZO|1) = 0.07

−500 0

# New processes
DKL(ZO|0 ‖ ZO|1) = 0.01

−100 0 100

P
ro

b
ab

il
it
y

New tcp connections
DKL(ZO|0 ‖ ZO|1) = 0.01

0 10 20 30

# Blocks written to disk
DKL(ZO|0 ‖ ZO|1) = 0.12

0 20 40

# Blocks read from disk
DKL(ZO|0 ‖ ZO|1) = 0.0

ZO|s=0 (no intrusion) ZO|s=1 (intrusion)



24/54

Defender Model
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii) stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control



24/54

Defender Model
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii) stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control



24/54

Defender Model
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii) stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control



25/54

Attacker Model
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii) compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution



25/54

Attacker Model
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii) compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution



25/54

Attacker Model
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii) compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution



25/54

The Intrusion Response Problem

maximize
πD∈ΠD

minimize
πA∈ΠA

E(πD,πA) [J ] (1a)

subject to s(D)
t+1 ∼ fD

(
· | A(D)

t ,A(D)
t
)

∀t (1b)

s(A)
t+1 ∼ fA

(
· | S(A)

t ,At
)

∀t (1c)

ot+1 ∼ Z
(
· | S(D)

t+1,A
(A)
t ) ∀t (1d)

a(A)
t ∼ πA

(
· | H(A)

t
)
, a(A)

t ∈ AA(st) ∀t (1e)

a(D)
t ∼ πD

(
· | H(D)

t
)
, a(D)

t ∈ AD ∀t (1f)

where E(πD,πA) denotes the expectation of the random vectors
(St ,Ot ,At)t∈{1,...,T} under the strategy profile (πD, πA).

(1) can be formulated as a zero-sum Partially Observed Stochastic
Game with Public Observations (a PO-POSG):

Γ = 〈N , (Si )i∈N , (Ai )i∈N , (fi )i∈N , u, γ, (b(i)
1 )i∈N ,O,Z 〉



26/54

Existence of a Solution

Theorem
Given the po-posg Γ (2), the following holds:
(A) Γ has a mixed Nash equilibrium and a value function

V ∗ : BD × BA → R that maps each possible initial pair of
belief states (b(D)

1 ,bA
1 ) to the expected utility of the defender

in the equilibrium.

(B) For each strategy pair (πA, πD) ∈ ΠA ×ΠD, the best response
sets BD(πA) and BA(πD) are non-empty and correspond to
optimal strategies in two Partially Observed Markov Decision
Processes (pomdps): M (D) and M (A). Further, a pair of
pure best response strategies (π̃D, π̃A) ∈ BD(πA)× BA(πD)
and a pair of value functions (V ∗D,πA

,V ∗A,πD
) exist.



27/54

The Curse of Dimensionality
I While (1) has a solution (i.e the game Γ has a value (Thm

1)), computing it is intractable since the state, action, and
observation spaces of the game grow exponentially with |V|.

1 2 3 4 5

104

105
2

105

|S|
|O|
|Ai |

|V|

Growth of |S|, |O|, and |Ai | in function of the number of nodes |V|



28/54

The Curse of Dimensionality
I While (1) has a solution (i.e the game Γ has a value (Thm

1)), computing it is intractable since the state, action, and
observation spaces of the game grow exponentially with |V|.

1 2 3 4 5

104

105
2

105

|S|
|O|
|Ai |

|V|

Growth of |S|, |O|, and |Ai | in function of the number of nodes |V|

We tackle the scability challenge with decomposition



29/54

Intuitively..

r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 65

The optimal
action here...

Does not directly
depend on the state or

action of a node
down here



30/54

Intuitively..

r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 65

The optimal
action here...

But they are
not completely

independent either.

How can we
exploit this
structure?

Does not directly
depend on the state
or action of a node

down here



31/54

System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently



31/54

System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently



32/54

Additive Structure Across Workflows (Intuition)

“=”

I If there is no path between i and j in G, then i and j are
independent in the following sense:
I Compromising i has no affect on the state of j .
I Compromising i does not make it harder or easier to

compromise j .
I Compromising i does not affect the service provided by j .
I Defending i does not affect the state of j .
I Defending i does not affect the service provided by j .



33/54

Additive Structure Across Workflows
Definition (Transition independence)
A set of nodes Q are transition independent iff the transition
probabilities factorize as

f (St+1 | St ,At) =
∏
i∈Q

f (St+1,i | St,i ,At,i )

Definition (Utility independence)
A set of nodes Q are utility independent iff there exists functions
u1, . . . , u|Q| such that the utility function u decomposes as

u(St ,At) = f (u1(St,1,At,1), . . . , u1(St,|Q|,At,Q))

and

ui ≤ u′i ⇐⇒ f (u1, . . . , ui , . . . , u|Q|) ≤ f (u1, . . . , u′i , . . . , u|Q|)



34/54

Additive Structure Across Workflows
Theorem (Additive structure across workflows)
(A) All nodes V in the game Γ are transition independent.
(B) If there is no path between i and j in the topology graph G,
then i and j are utility independent.

Corollary
Γ decomposes into |W| additive subproblems that can be solved
independently and in parallel.

π
(w1)
k

π
(w2)
k

π
(w|W|)
k

ot,w1

ot,w2

ot,w|W|

...
⊕

a(k)
w1

a(k)
w2

a(k)
w|W|

a(k)
t



35/54

Additive Structure Across Workflows: Minimal Example

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

a) IT infrastructure b) Transition dependencies
St ,At St+1,Ot+1

S(D)
t+1,1S(D)

t,1

A(D)
t,1 S(A)

t+1,1

S(A)
t,1 Ot,1

A(A)
t,1

S(D)
t+1,2S(D)

t,2

A(D)
t,2 S(A)

t+1,2

S(A)
t,2 Ot,2

A(A)
t,2

S(D)
t+1,3S(D)

t,3

A(D)
t,3 S(A)

t+1,3

S(A)
t,3 Ot,1

A(A)
t,3

c) Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3



35/54

System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently



36/54

Optimal Substructure Within a Workflow
I Nodes in the same workflow are utility

dependent.

I =⇒ Locally-optimal strategies for
each node can not simply be added
together to obtain an optimal strategy
for the workflow.

I However, the locally-optimal strategies
satisfy the optimal substructure
property.

I =⇒ there exists an algorithm for
constructing an optimal workflow
strategy from locally-optimal
strategies for each node.

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

IT infrastructure

Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3



36/54

Optimal substructure within a workflow
I Nodes in the same workflow are utility

dependent.

I =⇒ Locally-optimal strategies for
each node can not simply be added
together to obtain an optimal strategy
for the workflow.

I However, the locally-optimal strategies
satisfy the optimal substructure
property.

I =⇒ there exists an algorithm for
constructing an optimal workflow
strategy from locally-optimal
strategies for each node.

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

IT infrastructure

Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3



37/54

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

Algorithm 1: Algorithm for combining local strate-
gies

1 Input: Γ: the game,
2 πk : a vector with local strategies
3 Output: (πD, πA): global game strategies
4 Algorithm composite-strategy(Γ,πk)
5 for player k ∈ N do
6 πk ←λ (s(k)

t , b(k)
t )

7 a(k)
t = ()

8 for workflow w ∈ W do
9 for node

i ∈ topological-sort(Vw) do
10 a(k,i)

t ← π
(i)
k (s(k)

t ,b(k)
t )

11 if gw 6→a(k)
t

t i then
12 a(k,i)

t ← ⊥
13 end
14 a(k)

t = a(k)
t ⊕ a(k,i)

t
15 end
16 end
17 return a(k)

t
18 end
19 return (πD, πA)

π
(1)
k

→1
ot,1 a(k)

t,1 a(k),′
t,1

π
(2)
k

→2⊕ot,2 a(k)
t,2 a(k),′

t,2

π
(3)
k

→3⊕ot,3 a(k)
t,3 a(k),′

t,3

...
π

(|Vw|)
k

→|Vw|⊕ot,|Vw|
a(k)

t,|Vw| a(k),′
t,|Vw|

⊕ a(k)
w



38/54

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

(π(i)
D )i∈Vw : local strategies in the same workflow w ∈ W



38/54

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,1)
t ∼ π

(1)
D

Step 1; select action for node 1 according to its local strategy

Workflow action:
(a(D,1)

t )



38/54

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,2)
t ∼ π

(2)
D

Step 2; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 2);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t )



38/54

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

Step 3; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 3);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t )



38/54

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,4)
t = 0

Step 3; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 3);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t , ·, 0)



38/54

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,3)
t ∼ π

(3)
D

Step 3; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 3);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0)



38/54

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,5)
t ∼ π

(5)
D

Step 4; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 5);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0, a(D,5)
t )



38/54

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

Step 5; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0, a(D,5)
t )



38/54

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,6)
t = 0

Step 5; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0, a(D,5)
t , 0)



39/54

Computational Benefits of Decomposition
I ∴ we can obtain an optimal (best response) strategy for the

full game Γ by combining the solutions to V simpler
subproblems that can be solved in parallel and have
significantly smaller state, observation, and action spaces.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

101

102

103

104

105

log10 |S| log10 |O| log10 |Ak |
log10 |S(i)| log10 |O(i)| log10 |A

(i)
k |

|V|

4 oom

3 oom

2 oom

Space complexity comparison between the full game and the decomposed
game.



40/54

System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently



41/54

Can we Solve the Local Problems with Dynamic
Programming?



42/54

Scalable learning through decomposition (Simulation)

0.00

0.25

0.50

0.75

1.00

av
g

d
ef

en
d

er
u

ti
lit

y

|V| = 2, |W| = 1 |V| = 4, |W| = 2 |V| = 8, |W| = 2 |V| = 16, |W| = 2

0 50 100 150
running time (min)

0.00

0.25

0.50

0.75

1.00

av
g

at
ta

ck
er

u
ti

lit
y

0 50 100 150
running time (min)

0 50 100 150
running time (min)

0 50 100 150
running time (min)

πdecomposition
D πworkflow

D πfull
D upper bound πdecomposition

A πworkflow
A πfull

A

Learning curves obtained during training of ppo to find best response
strategies against randomized opponents; red, purple, blue and brown
curves relate to decomposed strategies; the orange and green curves
relate to the non-decomposed strategies.



43/54

Scalable learning through decomposition (Simulation)

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

linear
measured

# parallel processes n

|V| = 10

Sp
ee

du
p
S
n

Speedup of completion time when computing best response strategies for
the decomposed game with |V| = 10 nodes and different number of
parallel processes; the subproblems in the decomposition are split evenly
across the processes; let Tn denote the completion time when using n
processes, the speedup is then calculated as Sn = T1

Tn
; the error bars

indicate standard deviations from 3 measurements.



44/54

Threshold Properties of Local Defender Strategies.
I The local problem of the defender can be decomposed in the

temporal domain as

max
πD

T∑
t=1

J = max
πD

τ1∑
t=1

J1 +
τ2∑

t=1
J2 + . . . (2)

where τ1, τ2, . . . are stopping times.
I =⇒ (1) selection of defensive actions is simplified; and (2)

the optimal stopping times are given by a threshold strategy
that can be estimated efficiently:

Belief space B(j)
D

Switching curve
Υ

Continuation set
C

Stopping set
S

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised



45/54

Threshold Properties of Local Defender Strategies.

Belief space B(j)
D

Switching curve
Υ

Continuation set
C

Stopping set
S

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised

I A node can be in three attack states s(A)
t : Healthy,

Discovered, Compromised.
I The defender has a belief state b(D)

t



46/54

Threshold Properties of Local Defender Strategies.
We estimate the optimal switching curves using a linear
approximation

πD(b(D)) =


Stop if

[
0 1 θT

] [b(D)

−1

]
< 0

Continue otherwise
(3)

subject to θ ∈ R2, θ2 > 0 and θ1 ≥ 1 (4)

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised

(a) (b) (c)

Examples of learned linear switching curves.



47/54

Proof Sketch (Threshold Properties)
I Let L(e1, b̂) denote the line segment

that starts at the belief state
e1 = (1, 0, 0) and ends at b̂, where b̂ is
in the sub-simplex that joins e2 and e3.

I All beliefs on L(e1, b̂) are totally
ordered according to the Monotone
Likelihood Ratio (MLR) order. =⇒ a
threshold belief state αb̂ ∈ L(e1, b̂)
exists where the optimal strategy
switches from C to S.

I Since the entire belief space can be
covered by the union of lines L(e1, b̂),
the threshold belief states αb̂1 , αb̂2 , . . .
yield a switching curve Υ.

Belief space B(j)
D

(the 2-dimensional unit simplex)

sub-simplex B(j)
D,e1

joining e2 and e3b̂5
b̂4

b̂3
b̂2

b̂1

b̂6
b̂7
b̂8
b̂9

L(e1, b̂5)

Switching curve
Υ

Threshold
belief state αb̂9

e1
(1, 0, 0)

e2
(0, 1, 0)

e3
(0, 0, 1)



48/54

Learning Best Responses for the Target Infrastructure
(Simulation)

0 2 4 6 8
running time (min)

0.0

0.5

1.0

av
g

d
ef

en
d

er
u

ti
lit

y

0 20 40 60 80
running time (min)

0.0

0.5

1.0

av
g

at
ta

ck
er

u
ti

lit
y

upper bound

our method

ppo

random

ot,i > 0

r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64



49/54

Decompositional Fictitious Play (DFSP) to Approximate
an Equilibrium

π̃2 ∈ B2(π1)

π2

π1

π̃1 ∈ B1(π2)

π̃′2 ∈ B2(π′1)

π′2

π′1

π̃′1 ∈ B1(π′2)

. . .

π∗2 ∈ B2(π∗1)

π∗1 ∈ B1(π∗2)

Fictitious play: iterative averaging of best responses.

I Learn best response strategies iteratively through the parallel
solving of subgames in the decomposition

I Average best responses to approximate the equilibrium



50/54

Learning Equilibrium Strategies

0 20 40 60 80
running time (h)

0

2

4

6

8

Approximate exploitability

0 20 40 60 80
running time (h)

0.0

0.2

0.4

0.6

0.8

1.0
Defender utility per episode

0 20 40 60 80
running time (h)

2.5

5.0

7.5

10.0

12.5

Episode length

dfsp simulation dfsp digital twin upper bound ot,i > 0 random defense

Learning curves obtained during training of dfsp to find optimal
(equilibrium) strategies in the intrusion response game; red and blue
curves relate to dfsp; black, orange and green curves relate to baselines.



51/54

Evaluation in the Digital Twin

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



51/54

Learning Equilibrium Strategies

0 20 40 60 80
running time (h)

0

2

4

6

8

Approximate exploitability

0 20 40 60 80
running time (h)

0.0

0.2

0.4

0.6

0.8

1.0
Defender utility per episode

0 20 40 60 80
running time (h)

2.5

5.0

7.5

10.0

12.5

Episode length

dfsp simulation dfsp digital twin upper bound ot,i > 0 random defense

Learning curves obtained during training of dfsp to find optimal
(equilibrium) strategies in the intrusion response game; red and blue
curves relate to dfsp; black, orange and green curves relate to baselines.



52/54

Learning Equilibrium Strategies (Comparison against
NFSP)

0 10 20 30 40 50 60 70 80
running time (h)

0.0

2.5

5.0

7.5

Approximate exploitability

dfsp nfsp

Learning curves obtained during training of dfsp and nfsp to find
optimal (equilibrium) strategies in the intrusion response game; the red
curve relate to dfsp and the purple curve relate to nfsp; all curves show
simulation results.



53/54

Conclusions
I We develop a framework to

automatically learn security strategies.

I We apply the method to an intrusion
response use case.

I We design a novel decompositional
approach to find near-optimal
intrusion responses for large-scale IT
infrastructures.

I We show that the decomposition
reduces both the computational
complexity of finding effective
strategies, and the sample complexity
of learning a system model by several
orders of magnitude.

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Emulation

Target
System

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation &
Learning



54/54

Current and Future Work

Timest

st+1

st+2

st+3

. . .

rt+1

rt+2

rt+3

rrT

1. Extend use case
I Heterogeneous client population
I Extensive threat model of the attacker

2. Extend solution framework
I Model-predictive control
I Rollout-based techniques
I Extend system identification algorithm

3. Extend theoretical results
I Exploit symmetries and causal structure


