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The Context and Key Points of the Paper

» The paper proposes a new architecture for greybox fuzzing

» Uses hierarchical coverage metric
» Models seed scheduling as an MAB problem
» Learns scheduling of seeds through reinforcement learning
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Background: Fuzzing

» Fuzzing is a method to test software, systems, networks, etc.

» Generates random inputs to the program to find
crashes/bugs/memory leaks etc.
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Comparison to other types of Tests
> Unit tests and integration tests define an execution of the

program and verifies its result with assertions.
» In fuzzing, we don't specify the execution nor the verification

process
» We run the program with random inputs and checks if it

crashes
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Comparison to other types of Tests

> Property-based tests specify properties that should be true
for classes of inputs. For exampe:
x+yeD VxekX ye).
» Many similarities with fuzzing
» Fuzzing in general is less structured and more random (i.e.
don't even specify X and )))
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Different Types of Fuzzing

» This paper focuses on greybox fuzzing:
» Use instrumentation to measure how the input causes the
program to exercise different code paths
» Try to generate inputs that maximize coverage
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Different Types of Fuzzing

» Other types of fuzzing:
» Black box: no instrumentation (random search)
» White box: leverage static program analysis to generate inputs
that maximize coverage
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Background: Greybox Fuzzing

1. Start with an initial seed

2. Generate test inputs from the seed using some algorithm
3. Run the tests and measure coverage and bugs
4

. If you improve coverage or find a bug, add the test case as a

new seed
5. Repeat
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Background: Greybox Fuzzing

> Generation of inputs (genetic process)::

Start with some seed.

Generate new inputs through mutation and crossover.
Test the new inputs

Save inputs with strongest fitness as new seeds

Most common fitness function: edge coverage
Measure “hit counts” on branches in the code
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Background: Greybox Fuzzing

» Trade-Off:

» Using a more sensitive/detailed coverage metric, the fuzzing
can find more bugs by saving more critical “waypoints”

» However this also leads to many more potential inputs to test
(seeds)
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Background: Greybox Fuzzing
» Problem: may have to run the program thousands of times
» Cannot try all possible seeds (Seed exploision)

» Need some algorithm to schedule the seeds (i.e prioritize
which seeds to use first)

» This paper proposes a novel approach for dealing with this
problem.
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Background: Other types of Fuzzing

» Seed-based, aka mutational-based fuzzing is not the only type
of fuzzing..

> Also exist generational fuzzing, aka model-based fuzzing.

» Mutational fuzzing incrementally performs arbitrary
mutations to the data (does not take into account the
structure of the data).
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Background: Other types of Fuzzing

» Generational fuzzing mutates the data according to some
specific structure (e.g. described by a grammar). Does not
generate inputs incrementally but rather generates inputs from

scratch every time.

Grammar based
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Background: Cyber Grand Challenge (CGC)

» To evaluate their fuzzing techniques, the CGC dataset is used.

» The CGC dataset is a dataset of software programs with
mainly memory corruption vulnerabilities, .e.g
buffer-overflows and memory disclosures.

» Written in C or C++ for the DECREE operating system.

------------ + Patches, Exploits
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Example: Heartbleed

> A security bug in the OpenSSL library

> Released 2012
» Disclosed 2014

> Affected software: most implementations of TLS
» How it works:

» A sender in OpenSSL can send a heartbeat msg
with payload+length

» The receiver allocates a memory buffer according to
the length without verifying the length

» The receiver writes the payload to the buffer

» The receiver sends back the content of the buffer to
the sender

» Since the buffer size can be larger than the payload
(it is not verified) the sender may send back more
data than the original payload - possibly sensitive
data.



Background: Multi-arm Bandits
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Finite set of actions (arms) A

Each time an action is chosen, some reward r € R is received.
The rewards follow an unknown i.i.d distribution p(-|a).
Denote the expected reward of a as g(a) = E[r|a]

Goal: learn in an online fashion to select the actions that

minimize the regret:

T
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RT = q* T
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Optimal reward

Our reward

Algorithm should have sub-linear regret, i.e. limy_,, RT =0



Background: Multi-arm Bandits

1. procedure UCB MULTI-ARMED BANDIT

2 N(a) - 0,Q(a) — 0 > Initialization
3 fort €{1,... T} do

e a = argmax, Q(a) + }\C,’(g;)

5 r < reward(a)

6: N(a) « N(a)+1

Q(a) « Qa) + 355 (r — Q(a))

8 end for

o. end procedure

» Uses principle of optimism in the face of uncertainty

» Greedily select actions based on highest expected reward or if
the actions we have not been tried before



Background: Multi-arm Bandits

» The term: 1/;\7%;) comes from Hoeffding's inequality:

PX < E[X] + ¢] < e 2

» We use Hoeffding's inequality to bound empirical reward Q(a)
from actual mean Q*(a):

P[Q(ar) < Q*(ac) +¢] < &2 (1)

> Want to select e such that this inequality holds with a some
probability, e.g. < g



Background: Multi-arm Bandits
> We get:
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» Continuing this derivation we obtain the UCB term, which we
can show gives sub-linear regret.



The Paper Approach and Contributions

» Approach:
» Use hierarhical seed generation and multi-level coverage metric
» Multi-level coverage metric allows to organize seeds for
efficient scheduling
» Model seed scheduling as a multi-armed bandit problem
» Use reinforcement learning to find effective seed scheduling

strategy



The Paper Approach and Contributions

» Contributions:
» New hierarhical coverage-metric function to instrument the

fuzzing
» Extensive evaluation of a standard multi-armed bandit

algorithm



Multi-Level Coverage

» A metric that consists of a sequence of coverage
merasurements on different levels
» Edge coverage
» Function coverage
» Hamming distance of comparison operands
> A way to organize coverage and seeds
» Trade-off sensitive coverage metrics and more coarse-grained
coverage metrics
» l.e how long does the fuzzer mutate a given seed before giving
up and scheduling other seeds? Exploitation vs exploration



Incremental Seed Clustering

P Use a clustering algorithm to group seeds that are similar.
» Similar in terms of coverage.

> A way to organize the seeds to facilitate intelligent scheduling
of seeds.



Hierarchical Seed Scheduling

» Seed scheduling: seek path from root to leaf node

» Leaf node is selected as next seed to schedule



Modeling Seed Scheduling as a Multi-Armed Bandit

» Model:

P Action: select seed to schedule
> Reward: progress in terms of coverage/bugs
> Balance exploitation/exploration

» Training:
» Select nodes to schedule following the UCB1 algorithm

» Reward seed selection based on how much progress was made
in terms of coverage/bugs

SeedReward(s, I, t) = max rareness|F] (2)

Reward(a', t) = n/+\l/]:[ SeedReward(s, k, t) (3)
k



Evaluation
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» Qutperforms state-of-the-at on the CGC dataset
» Does not outperform other fuzzers on other benchmarks



Strong points of the Paper

> Extensive evaluation with clear benchmarks

» Qutperforms state-of-the-art on the CGC dataset
» Does not outperform other fuzzers on other benchmarks

» Clever idea with multi-level coverage and seed clustering
» Deserves further study



Limitations of the Paper

» Modeling of the multi-armed bandit

» Hard to follow
» Lacks details and formal treatement

> Evaluation
» No evaluation of the reinforcement learning algorithms



Conclusions

» Greybox fuzzing

» Use multi-level coverage metric and incremental seed
clustering to organize sseds

» Schedule seeds based on a hierarchical structure
» Use multi-armed bandit to model the scheduling problem

» Learn scheduling strategy using reinforcement learning



Discussion

» |s fuzzing a MAB problem or MDP? Trade-offs?
» Opinions of the paper?

» Applications to your research?



