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Context of the Paper
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» Presents a new Intrusion Detection System (IDS) based on
deep learning.

» The proposed IDS achieves state-of-the-art results on several
benchmarks.



Motivation
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» Previous state-of-the-art deep learning IDSs perform
inconsistently for detecting different types of attacks.

» DDoS attacks are detected reliably but MITM, injection and
backdoor attacks are not detected very well.

» — To improve state-of-the-art, the focus should be on
detecting the MITM/backdoor/injection attacks.



Why Do Existing IDSs Perform Inconsistently on Different
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(f) Representation correlation map of DDoS attacks

» The authors argue that the poor detection performance of
certain attacks is due to entanglement of features.

» The statistical distributions of different features (e.g., network
traffic statistics) look identical to the model.

» For DDoS attacks the feature distributions are separated —
Better Detection Performance.



Overview of 3D-IDS
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Graph Construction (1/2)

» Each device i € A/ in the network is

associated with a level /;.

» Terminal devices, e.g., PCs or an loT

device are in level ; =0
» Routers and switches are in level
=1

For each netflow record (source ip,
destination ip, timestamp t, flow
duration At, flow statistics) the
following edge is created in the graph:

Eij(t) = (vi. li, vj, lj, t, At, Fig(t))

where v;, v; are the nodes, [;, /; are the

node levels, and Fj(t) are the flow
statistics
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Graph Construction (2/2)

» The sequence of NetFlow records
generates a sequence of edges
{€%}, and thus a sequence of

graphs {G'}[ .
» In other words, the graph is dynamic.

» The graph at each time-step t is
modeled as a multi-layered graph:

A= A(/J) A(k,k) A(/}m)

where A; ; is the intra-layer adjacency
matrix of layer i and A;; where i # j
is the cross-layer adjacency matrix
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Statistical Disentanglement
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» Disentangled representation learning is used to disentangle
features, which should improve performance on downstream
tasks such as classification.



Learning Disentangled Representations

P> The goal in disentangled representation learning is to learn
a compact representation r(x) of some high-dimensional
feature vector x, where r(x) captures all of the factors of
variation in X.

> Hypothesis:

P x is a realization of some high-dimensional random variable
X € RN which is generated by K << N independent causal
mechanisms G = (G, ..., Gk), which are latent (hidden).

» Our goal: we want to learn a representation z = r(x) that
captures only the factors of variation in x.

» Downstream tasks, such as classification and prediction should
be much easier given r(x) rather than x.




Statistical Disentanglement

» Factors of variation: dog color, breed, age, background
scenery..



Learning Disentangled Representations

» Assume probabilistic model P(x | z)p(z)

» Typically learn the generative model P(x | z) and the posterior
P(z | x) using variational auto-encoders.

» Example of a causal disentangled representation:




Statistical Heuristic Disentanglement in 3D-IDS
» Let F € RX*N denote the matrix of normalized features for a
given edge.
» Define a weight matrix w €
» The disentangelement problem is then formulated as the
following constrained optimization problem

RKXN

N—1
maximize wyFy —wiF1 — > [2w;F; — wip1 Fip1 — Wi 1 Fi1]
i=2
subject to Wpin < wj < Wiax i=12,...,N
N
> wiFi<B
i=1
WifiSWi+1.F}+1 i:1,2,...,N—1 (A)

where Winin, Wnax, B are constants and (A) is an ordering
constraint and w;F; is the disentangled representation of
feature i. and h; is the vector of disentangled features for

edge (/, ).



Statistical Heuristic Disentanglement in 3D-IDS
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» The effect of solving the constrained optimization problem is
that the feature distributions are shifted in a certain order.

» The intuition is that this shift should minimize the mutual
information (overlap) between each two features.

» |.e, a rather heuristic form of feature disentanglement.



Learning Node Embeddings

__________________________________

3. Representational Disentanglement
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» The embeddings are trained in a supervised manner using
recurrent neural networks.



Learning Node Embeddings
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Learning Node Embeddings

» The embedding of node i at time t is denoted by m;(t).
It is defined by an GRU encoder neural network called “Mem”
which takes as input:

m;(t) = Mem(ci(t), m;(t™)) m;(0) =0 Vi

where ¢;(t) encodes the edge features related to node i at
time t:

ci(t) = Msg(m;(t™), m;(t™), t, At, I, [;, hi )

where h; ; is the disentangled edge representation, At is the
edge duration, /;, /; are the node levels, and m;(t~) and
mj(t~) are the node-embeddings from the previous time-step.

> Here “Msg"” is a recurrent neural network.



Graph Diffusion

» Graph diffusion is used to capture how flow features evolve
from the time the flow is started at time t to the time it ends
t+ At.



Diffusion Processes
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» Diffusion describes the movement of some quantity from
regions of high concentration to lower concentration over
time.

» e.g., Heat on an iron rod diffuses from warmer parts of the
rod to colder parts.

» This process can be described by the heat equation (a Partial
Differential Equation):

2
%x(u, t) = %x(u, t) (2)

where x(u, t) is the temperature at position u at time t.



Perona-Malik Diffusion

Smoothing Using Anisotropic Diffusion (Left) vs. Gaussian Blurring (Right)

» Perona-Malik (also known as anisotropic) diffusion is a
technique to reduce noise in images.
» |t is defined by a Partial Differential Equation (PDE):

Olmg(x, y, t)
ot
where x, y are the coordinates of the image, t is time, div is
the divergence operator, V is the gradient, and ¢ controls the
diffusion rate.

= div(c(x, y, t)VImg) (3)



Perona-Malik Diffusion

Smoothing Using Anisotropic Diffusion (Left) vs. Gaussian Blurring (Right)

» When t = 0 the function that satisfies the PDE is equal to
the original image.

> As t increases, the image becomes blurrier while still
maintaining important characteristics/edges in the image,
which has the effect of removing noise.

» That is, Perona-Malik diffusion can be used to remove noise
from images without blurring edges.



Perona-Malik Diffusion

Smoothing Using Anisotropic Diffusion (Left) vs. Gaussian Blurring (Right)

» The diffusion rate function ¢ works as an “edge stopper”.

Olmg(x, y, t)

o = div(c(x, y, t)VImg) (4)

> |t satisfies c(x) — 0 as x — o

» Which means that the diffusion (the blurring) is stopped at
sharp edges of the image

» When x is not an edge, c(x) > 0, which means that the
diffusion causes blurring.



Perona-Malik Diffusion Applied to Graphs
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Since a graph can be defined by its adjacency matrix and
feature matrix, similar diffusion equations that are applied in
image processing can be used on graphs.

For example, if there is a high traffic load on node i in a
computer network at time t, we can use graph diffusion and a
PDE to describe how the network load will spread through the
neighbors of / until time t + At



Graph Diffusion in 3D-IDS

» Given the node embeddings mi(t), my(t),... and the edges
Et, the new graph Gt is fused with the previous graphs
Gt~1,Gt2, ... through a graph diffusion method, which
fuses the topological information of the evolving graph.

» They utilize the Perona-Malik diffusion form image processing,
which is defined by the following partial differential equation:

Ox(u, t)
ot

— divlg([Vx(u, £)) V(s 1)
with initial condition x(u,0) = c.

» Here x(u, t) represents the node embedding of a given node
at time t after the update wv.



Graph Diffusion 3D-IDS

» Applying the gradient and divergence operators to the graph,
one can obtain from spectral graph theory that the PDE can
be expressed as:

OX: = —MTo(MXKT)S(MXKT)K (5)

where X is the matrix with the node embeddings, K is a
transformation matrix, S is a matrix with coefficients
computed by a neural network, and o(x) = exp(—|x|).

» A solution to the above PDE is approximated using the
Runge-Kutta numerical methods

» The obtained solution of the PDE then represents the node
embeddings at time t + At, i.e., X¢rAt-



Intrusion Detection and Attack Classification
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» Finally, after computing the updated node

t
embeddings X; ¢ they are fed into two
feed-forward neural networks t

(o] (]
> The first neural network is a binary classifier that  _ "5 ’E

predicts whether an intrusion occurs

» The second neural network predicts the attack type

Node Embeddings

» The loss function is defined as

m K

m
Lint = — Y 108(1 = pror,i) + log(patei) + Y ¥ik log(pi k)

i=1 i=1j=1

where m is the batch size, K is the number of
attack types and ppor,; is the predicted probability
of no intrusion.



Regularization and Representational Disentanglement

» Two regularization terms are added to the loss function during
the supervised training:
1. A term to incentivize disentangled node embeddings:

1 T 2
Lois = SIIX(O)X(t7)" —1][z (6)
I.e the norm of the matrix product of the node representations,
which should ensure that the node representations are close to

orthogonal (i.e that their dot products are zero).
2. A term to incentivize smooth updates:

T
Csmooth = Z ||Xt+At - XtH2 (7)
t=0

» The final loss is thus:
L= Lint + OlLSmooth + 5£Dis (8)

where o and 3 are constants.



Comparison with State-of-the-art in terms of Binary

Intrusion Detection

Table 1: Comparisons of binary classification on five d The results with } are directly copied from [8].
Methods CIC-TON-IoT CIC-BoT-IoT EdgelloT NF-UNSW-NB15-v2 | NF-CSE-CIC-IDS2018-v2
F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
TGN [61] 89.90+1.66 82.09+136 | 96.84+0.44 94.41+081 | 94.99+061 89.50%204 | 93.55+023 88.01%197 | 95.11+0.46 91.30+0.76
EULER [36] 89.73+1.13  80.48+246 | 96.00+0.29 91.47+136 | 92.89+032 90.64+180 | 92.76+0.86 86.97+1.11 | 95.87+0.51 90.76+0.64
AnomRank [78] 76.51+098 77.41+164 | 84.84+049 82.50%059 | 78.37+0.43 81.36+0.41 | 90.54+240 79.63%0.12 | 90.08+0.52 83.76+0.35
DynAnom [27] 79.23+181  75.22+0.92 | 83.25%0.62 79.04+0.84 | 81.56+0.94 83.94+036 | 89.11+148 85.25%0.64 | 91.21%0.95 88.79+0.54
Anomal-E [8] - - - - - - 91.89% - 94.51% -
GAT [74] 86.30+1.16  74.66+137 | 94.56+0.75 93.09+2:83 | 93.30+0.14 88.30%156 | 92.20+1.60 89.91%0.62 | 96.08+0.24 90.56+0.34
E-GraphSAGE [46] | 89.46+125 79.56+163 | 93.74+076  90.53%1.90 | 92.10%1.46 89.10+0.64 | 94.10+033  90.39+0.26 | 95.714035 90.22+0.48
DMGI [55] 88.83+048 79.13x2.11 | 96.07+1.89 92.65+157 | 93.83+1.67 86.03%t2.45 | 93.11+098 88.51%1.00 | 93.87+0.84 87.56+0.55
SSDCM [50] 89.23+0.87  80.84+232 | 97.11+0.63 94.82+0.96 | 94.72+159  86.69+076 | 93.30+0.25 89.22+1.94 | 94.96+052  88.61+0.3s
MLP [60] 80.74+0.43 61.80t1.48 | 93.01%0.60 87.90+0.54 | 88.78+0.44 86.00+1.49 | 93.124064 89.92+0.55 | 94.59+0.94 90.42+0.89
MStream [5] 73.90+1.13  70.22+161 | 78.48+0.19 74.04+166 | 82.47+167 77.89%058 | 89.47+1.13 84.38+101 | 88.34+0.45 83.66+1.79
LUCID [18] 83.62+1.69 7231114 | 94.36+0.41 89.46%0.72 | 88.94+173  85.23%0.94 | 92.77+139  88.32+091 | 95.84+1.46 90.75%0.79
Ours (3D-IDS) | 91.57+040 84.06+101 | 98.24032  96.32%025 | 96.83+036 92.34%110 | 95452067 91554105 | 96.34%021  93.23%150
I E-GraphsaGE [ TGN I AdaBoostt e v Ours (3D-IDS)

» State-of-the-art results

on all metrics on five datasets (!).



Comparison with State-of-the-art in terms of Attack Type

Classification
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Figure 4: Comp of multi-classification. Here 1 indi that the results are directly copied from the previous works.

> State-of-the-art results on all metrics except 2(!).
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Ablation Study

Variants P R F1 AUC

w/o SD 92.70+0.46  90.71x0.89 91.69+033  86.87+0.54

w/o RD 91.06+0.57 87.32+0.67 89.15+0.42  83.57+1.33
w/0o MLGRAND | 88.76+0.54 84.43+0.26 86.54+0.71 79.32+0.30
3D-IDS(ours) ‘ 97.78+032 98.06+0.43 97.92+026 96.04+0.25

» All modules of the deep learning system improves

performance.

» Graph diffusion improves performance the most



Conclusions

» This paper presents a novel IDS based on deep learning called
3D-IDS

» 3D-IDS uses two levels of feature disentanglement and graph
diffusion in combination with deep neural networks.

» 3D-IDS achieves state-of-the-art results on five
benchmarks.



Discussions

> Impressive results, what are the drawbacks?

» Could be overfitting on these five benchmarks, system is a bit
overengineered to beat STOTA.

» Novel use of diffusion processes, can it be used for other tasks
in cyber security?

> Problems:

» Kitchen sink of heuristics.

» Poor description of related work.

» Usage of representation disentanglement is inconsistent with
theory and literature.

» Definition of the SMT problem for statistical disentanglement
is incomplete.

» Questions?



