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The Context and Key Points of the Paper
I The paper proposes a formal framework for deriving optimal

patching policies to deal with heterogeneous malware
epidemics

I Models the spread of malware using a stratified epidemic
model.

I Derives structural results of the optimal controller using
Pontryagin’s Maximum Principle (PMP).

I Evaluates patching strategies in simulation.
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Malware epidemics
I Malware

I Software intentionally designed to cause disruption to a
computer system or network.

I Types of Malware
I Virus: malware that spreads through execution of some other

program.
I Worm: virus that can spread by itself.
I Trojan: virus that infects computers through social

engineering.
I Ransomware: locks down a computer until a ransom is paid.
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Case Study: Ransomware Attack Against Coop July 2021
I The ransomware was deployed on the systems through a

zero-day exploit.
I The original target was Kaseya, an American company, which

provide cashier equipment to Coop.
I The people behind the attack are linked to Russia, group is

called “REvil”, Hackers from Ukraine/Russia were arrested.
I 700 out of 800 Coop stores nationwide had to close

because payments could not be made.
I The ransom to get the payment systems working again was

600 million SEK.
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Stratified Epidemic Models
I Stratified model: the population is divided into

sub-populations
I SIR model: each sub population is divided into three states:

I (S)usceptible: individuals susceptible to the virus
I (I)infected: infected individuals
I (R)ecovered: recovered (immune) individuals

I Individuals move between states. Evolution of states can be
modeled with non-linear differential equations, e.g.

dS
dt = −βIS

N ,
dI
dt = −βIS

N − γI, dR
dt = γI

I Folkhälsomyndigheten used a SEIR (Susceptible, Exposed,
Infected, Recovered) model to analyze Covid 19.
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Pontryagin’s Maximum Principle

I The maximum principle provides local
optimality conditions for continuous
and constrained control problems.

I Developed by Soviet mathematician
Lev Pontryagin in the 50s.

I Pontryagin became blind at the age of
14 due to an explosion.

I His mother wrote all the formulas and
read papers aloud to him.

I The principle was originally developed
to maximize the speed of missiles and
rockets during the cold war. Pontryagin, 1908-1988
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Pontryagin’s Maximum Principle
Consider a control problem on Bolza form:

J(u(t))︷ ︸︸ ︷
min
u(·)

[
φ(x(tf )) +

∫ tf

t0
fo(t, x(t),u(t))dt

]
(1)

subject to


ẋ = f (t, x(t),u(t)) ∀t ∈ [0, tf ]
x(0) = x0

x(t) ∈ Rn ∀t ∈ [0, tf ]
u(t) ∈ Rm ∀t ∈ [0, tf ]

(2)

Goal is to optimize a functional J(u(t)). Since u(t) is not
parameterized we are optimizing over an infinite space of
continuous parameters.
fo is the running cost (e.g. fuel used by the rocket). φ is the
terminal cost (e.g. time to reach destination). f is the dynamics
model (e.g. a system of ODEs).
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Pontryagin’s Maximum Principle

We can find optimal control candidates using variational
arguments from calculus of variations.

If u∗ is optimal and we make a small perturbation to u∗ (a
variation), the cost cannot decrease. We obtain the variational
inequality:

J(u∗(t) + δu)− J(u∗(t)) ≥ 0 ∀t (3)

Pontryagin’s principle maps the above optimality condition in the
primal space to simpler conditions in the dual space.
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Pontryagin’s Maximum Principle
Define the Hamiltonian:

H(t, x(t),u(t),λ(t)) = fo(t, x(t),u(t)) + λT (t)f (t, x(t),u(t))

Hamiltonian minimization condition:

u∗(t) = µ̃(t, x(t),λ(t)) = arg min
u

H(t, x(t),u(t),λ(t))

Adjoint equation:

λ̇(t) = ∇xH(t, x(t),u∗(t),λ(t)) subject to λ(tf ) = ∇xφ(x(tf ))

State equation:

ẋ(t) = ∇λH(t, x(t),u∗(t),λ(t)) subject to x(0) = x0

i.e. we transformed the control problem to a two-point boundary
value problem and a pointwise minimization.
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Remarks

I Necessary but not sufficient:
I Any controller u(t) that satisfies Pontryagin’s conditions is

possibly optimal. (Necessary conditions but not sufficient.)
I Under certain convexity assumptions Pontryagin’s conditions

are sufficient.

I Computations:
I Applying PMP involves pointwise minimization and solving a

two-point boundary value problem of ODEs.
I Compare this to solving the Hamilton-Jacobi-Bellman equation

(HJBE), which involves a complicated PDE.

I Open-loop solution:
I PMP gives you an optimal trajectory, i.e. an open-loop

solution. It does not give you a feedback controller
(closed-loop solution).
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Approach

1. Model virus spread with a stratified SIR model
2. Formulate the problem of minimizing the spread as an optimal

control problem
3. Analyze the structure of the optimal controller using

Pontryagin’s principle
4. Use numerical methods to compute the solution and evaluate

through simulations
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System Model
I We have N nodes (e.g. computing devices)
I We have M types of nodes that form subpopulations
I A node of type i ∈ {1, . . . ,M} can be in three states:

(S)usceptible, (I)nfected, (R)ecovered.
I Let nS

i (t), nI
i (t), nR

i (t) denote the number of susceptible,
infected, and recovered nodes of type i , respectively.

I A subset of the recovered nodes are “dispatchers”. They can
“heal” infected nodes and make susceptible nodes immune.

I The control signal u(t) ∈ [0, 1] controls the rate at which
dispatchers contact other nodes.

I Studies two versions of the model:
I Non-replicative patching: There is a fixed set of dispatchers.
I Replicative patching: When a node has been recovered it

becomes a dispatcher.
I W.L.O.G I will focus on the non-replicative setting.
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System Model
I Studies the mean-field regime where N →∞
I Let βij denote the rate at which nodes of type i spread virus

to type j and let β̄ij denote the rate at which dispatchers of
type i contact nodes of type j .

I When a dispatcher of type j attempts to cure an infected
node of type i the cure is successful with probability πj,i .

I Let Si (t), Ii (t),Ri (t) denote the fractions of susceptible,
infected and recovered nodes of type i at time t.

I The dynamics model is:

Ṡi = −
M∑

j=1
βji IjSi − Si

M∑
j=1

β̄jiR0
j uj (4)

İi =
M∑

j=1
βji IjSi − Ii

M∑
j=1

πji β̄jiR0
j uj (5)

I Initial conditions:
S(0) = S0 � 0, I(0) = I0 � 0 (6)
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Formulation of the Optimal Control Problem

I We are somewhere on the x-axis. Depending on the control
signal u(t) (how aggressive patching do we use?) the
epidemic will evolve in different ways

I Aggressive patching is costly but can help reach herd
immunity faster



17/26

Formulation of the Optimal Control Problem

I Let f (I) and hi (ui ) denote the cost of infection and patching,
respectively.

I Let L(R) denote the reward of recovered/patching nodes.
I The total cost can then be defined as

J =
∫ tf

0

(
f (I)− L(R) +

M∑
i=1

R0
i hi (ui )

)
dt (13)
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Formulation of the Optimal Control Problem
We have the control problem on Lagrange form

min
u(·)

[∫ tf

0

(
f (I)− L(R) +

M∑
i=1

R0
i hi (ui )

)
dt
]

subject to



Ṡi =

vi︷ ︸︸ ︷
−

M∑
j=1

βji Ij(t)Si (t)− Si (t)
M∑

j=1
β̄jiR0

j uj(t)

İi =

µi︷ ︸︸ ︷
−

M∑
j=1

βji Ij(t)Si (t)− Ii (t)
M∑

j=1
πji β̄jiR0

j uj(t)

S(0) = S0

I(0) = I0

u(t) ∈ [0, 1] ∀t ∈ [0, tf ]
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Analysis of the Optimal Controller using PMP

I Hamiltonian:

H(t,u, I,R,λ) = f (I)− L(R) +
M∑

i=1
R0

i hi (ui ) +
m∑

i=1
(λS

i vi + λI
iµi )

I Adjoint equations:

λ̇S
i = −∂H

∂Si
∀i ∈ {1, . . . ,M}

λ̇I
i = −∂H

∂Ii
∀i ∈ {1, . . . ,M}

I Since there is no terminal cost, the transversality conditions
are λS

i (tf ) = λI
i (tf ) = 0.
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Analysis of the Optimal Controller using PMP
I Recall that the first condition of PMP is that u∗(t) should

minimize the Hamiltonian pointwise:

u∗(t) = µ̃(t, I(t),R(t),λ(t)) = arg min
u

H(t, I(t),R(t),u(t),λ(t))

I By assumption, H is concave in u:

Minima at
endpoints
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Analysis of the Optimal Controller using PMP

I Since u(t)i ∈ [0, 1], we have that u∗(t) ∈ {0, 1} for all t.
I We note that u∗(t) = 0 =⇒ H(t) = 0.
I Let the cost of the Hamiltonian when u∗(t) = 1 be denoted

by H(u = 1).
I We then have that a necessary condition for any optimal

controller is:

u∗(t) =


1 if H(u = 1) < 0
[0, 1] if H(u = 1) = 0
0 if H(u = 1) > 0

(14)

I Hence H(u = 1) is a switching function. If we take the time
derivative Ḣ(u = 1) at the point where Ḣ(u = 1) = 0 we see
that the derivative has constant sign, which means that at
most one switch can occur.
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Analysis of the Optimal Controller using PMP
I Since Ḣ(u = 1) always has the same sign when H(u = 1) = 0,

at most one switch can occur.
I This means that there are four possible switching sequences

are (0), (1), (0, 1), (1, 0):

t

H(u = 1)

0

u∗(t) = 0 ∀t ∈ [0, tf ]

t

H(u = 1)

switch

t ′
0

u∗(t) = 0 ∀t ∈ [0, t ′]
u∗(t) = 1 ∀t ∈ [t ′, tf ]

t

H(u = 1)

0

u∗(t) = 1 ∀t ∈ [0, tf ]

t

H(u = 1)

switch

t ′
0

u∗(t) = 1 ∀t ∈ [0, t ′]
u∗(t) = 0 ∀t ∈ [t ′, tf ]

The switching function H(u = 1) defines four cases for the bang-bang
controller u∗(t).
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Analysis of the Optimal Controller using PMP

I Based on certain assumptions the sign of Ḣ(u = 1) is positive
H(u = 1, t = 0) < 0 and H(u = 1, t = tf ) > 0, which means
that the optimal control has the form:

u∗(t) =
{
1 if t < ti

0 if t ≥ ti
(18)

I Which is the main theorem of the paper.

I What does this structural result mean intuitively?
I Patch as much as possible in the beginning to achieve herd

immunity
I Once herd immunity is achieved, don’t patch anything.
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Conclusions

I This paper studied malware epidemics from a control-theoretic
perspective

I Formulated the problem of optimal patching to contain
malware spread as an optimal control problem

I Derived that the optimal controller has a bang-bang structure.
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Discussions

I Is their patching model realistic?
I Do you really deploy patching nodes that “spread” their

patches in a decentralized manner?

I Is their spreading model realistic?
I Do malwares spread in the same way as biological viruses?

I Other use cases in cyber security where similar approaches are
applicable?

I Questions?


