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The Context and Key Points of the Paper

I The paper proposes an approach to develop automated cyber
defence agents

I Models the security problem with a structured causal model.

I Computes optimal defender strategies through Dynamic Causal
Bayesian Optimization (DCBO).

I Evaluates defender strategies in a cyber security simulation.

I The simulation is open-sourced and is called “Yawning Titan”.
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Causal Inference
I Causality: cause-effect relationships among variables. Study

causation to make sense of data, to guide actions and policies.
I Causal inference:

I What is the effect on Y if I change X? (interventional
question)

I Example: What is the effect on the security of my system if I
update this firewall rule?

I I changed X and observed Y , what if I had changed Z
instead? (counterfactual question)

I Example: What is the probability that an attack that
compromised server N1 would still have compromised N1 if I
had used two-factor authentication instead of one-factor?

I How to model causality mathematically?
I Probability theory?
I It is not sufficient! Causation is not correlation!
I Assume P[I am ill|I went to the hospital] > 0.5. Does it mean

going to the hospital causes illness?
I If causation=correlation then our conclusion would be that to

avoid illness we should avoid going to the hospital. Nonsense!
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The Causal Revolution (According to Pearl)

The causal revolution: causality
has been transformed from a
concept shrouded in mystery
into a mathematical object with
well-defined semantics and well-
founded logic. - Pearl

I The “new” formal framework for
causality:

I Causal graphs
I Structured causal models (SCMs)
I The do-calculus Judea Pearl. Turing award

winner 2011.
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The Formal Framework of Causality
I If causation is not correlation, then what is it?:

I We know that P[Y |X ] 6= P[Y ] 6=⇒ X causes Y.
I To denote the causal effect on Y when setting

X = x , we use P[Y |do(X = x)].
I do(X = x) is the do-operator, representing an

intervention on X .
I The do-calculus

I An axiomatic system for calculating interventional
distributions P[Y |do(X = x)].

I Causal graphs
I A probabilistic graphical model.
I A directed acyclic graph that encodes causal

relationships.
I Structured causal models (SCMs)

I An SCM encodes relationships among variables
I Defined by the tuple M = 〈U,V ,F 〉.
I U: exogeneous variables, V : endogeneous variables,

F : functions that define causal relationships.

X

Y

Z
Causal graph.
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Causal Diagram Example
I Does smoking cause cancer?

I Historically one of the most debated
questions in science. R.A Fisher argued
for no (lifetime smoker).

I Now we know that the answer is yes.
I That smoking and cancer are correlated

was shown early.
I But how do you show that smoking

causes cancer? What if there is a gene
that causes cancer and also makes you
love cigarettes?

I We can answer this question by
randomized controlled trials.
Problem: involves forcing people to
smoke for 40+ years (not ethical!).

I Conclusion: Inferring causal relationships
from data alone is very difficult.
Generally need a causal model to express
causal assumptions to make sense of the
data.
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Structured Causal Model Example

I Let Z model the salary of an employee, X
the number of years of education the
employee has, and Y the number of years
in the profession the employee has.

I An example structured causal model
(SCM) M to model the causal effects of X
and Y on Z :

M = 〈U,V ,F 〉 SCM
U = {X ,Y } exogeneous variables

V = {Z} endogeneous variables
F = {fZ} causal relations

fZ : Z = 2X + 3Y

Z

X Y

Causal graph for the
example SCM.
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Optimization and Decision Problems Based on SCMs
Given SCM M = 〈U,V ,F 〉, where
V is partitioned into a set of con-
trol variables X , a set of covariates
Z , and an outcome variable Y , decide
which variables in X to intervene on
and their values to achieve the desired
effect on Y .

I If the outcome variable Y is a quantity to
be minimized or maximized, a causal
decision problem can be formulated as a
causal optimization problem:

X∗s , x∗s = arg min
Xs∈P(X),xs∈dom(Xs)

E[Y |do(Xs = xs)]

I If all control variables Xi ∈ X are discrete,
it can be formulated as a causal
multi-armed bandit.
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Approach of the Paper

1. Design a cyber simulator, which will be used for experiments.

2. Model a scenario in the simulator with an SCM (Structured
Causal Model)

3. Compute optimal defender interventions for the SCM
through DCBO

4. Evaluate the convergence rate of DCBO against baselines.
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Cyber Security Simulator: Yawning Titan
Yawning Titan is an abstract, highly flexible, cyber security
simulator that is capable of simulating a range of cyber
security scenarios.

I Network is represented as a graph.
I Each node in the graph corresponds to a machine and has:

I A vulnerability score
I An isolation status
I A compromised status
I A discovered status
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Cyber Security Simulator: Yawning Titan
I Examples of defender actions in the simulation:

I reduce the vulnerability of nodes
I scan the network for intrusions
I reset a node back to its initial state
I deploy deceptive nodes

I Attacker can attack nodes.
I Probablistic model of attack success with attacker skill

level RS and vulnerability score vuln(Vi ):
100× RS2

RS + (1− vuln(Vi )) ≥ u ∼ U(0, 100)
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Causal Model
I Discrete time-steps t = 0, 1, . . . ,. At

each step, both agents take one action
each.

I Tt = Ct + At is the total cost of
attacks (Ct) and defensive actions
(At) at time-step t (minimization
objective).

I St is the attack surface and Ht is the
likelihood of further compromise at
time-step t.

I Pt , It ∈ [0, 1] are probabilities of
defender restoring and isolating a node
in St at time-step t, respectively.

Causal diagram of the security
scenario. Assumes no
unobserved confounders.
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The Structured Causal Model (SCM)
Recall that an SCM M = 〈U,V ,F 〉 contains exogeneous variables
(U, defender actions in this case), endogeneous variables V (e.g.
cost and compromised nodes), and causal relationships (F ).

Pt = pt(RES)
It = pt(ISO)
St = |K c

t ∩ φc
t |

Ct =
(n=N∑

n=1
Γc [n ∈ Kt ]

)1.5

Ht =
∑

n∈Kt

∑
v∈N+(n)

(vuln(v)[v 6∈ φt ])

At =
{

ΓRES At = RES
ΓISO At = ISO

Tt = Ct + At
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The Estimated Structured Causal Model (SCM)
I The SCM M = 〈U,V ,F 〉 presented on the previous slide

depends on information that is unknown to the defender, such
as the compromised nodes and the vulnerability scores.

I The defender estimates the SCM by placing Gaussian process
estimators on all functions fi ∈ F :

Pt = fP(t) + εP

It = fI(t) + εI

St = fS(Ct−1, It) + εS

Ct = fC (Ht−1) + εC

Ht = fH(Pt ,Ct) + εH

At = fA(Pt ,Ct) + εA

Tt = fT (Ct ,At) + εT

I The Gaussian processes are fitted based on data collected
from running simulations with a random defender agent.
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Computing Optimal Defender Interventions

I Given the estimated SCM M = 〈U,V ,F 〉, the optimal
defender interventions do(X1 = x1), do(X2 = x2), . . . (here
Xs,t ⊂ {Pt , It} and xs,t ∈ [0, 1]|Xs,t |) are obtained by solving
the following optimization problem:

X∗t,s , x∗s,t = arg min
Xs,t∈P(Xt),xs,t∈dom(Xs,t)

E[Tt |do(Xs,t = xs,t),1t>0 · I0:t−1]

I Focus on a network of 10 nodes with 25 time-steps for making
interventions.

I Three algorithms are considered for solving the above
optimization problem: DCBO, CBO, and BO.
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Bayesian Optimization (BO)
I Bayesian Black-box optimization method
I Finds the optimum of a function f (x) on some compact set X
I Uses a probabilistic model of f (x) (typically a Gaussian

process)
I The model of GP is used to optimizing an acquisition function
α to decide where in X to evaluate f .
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Bayesian Optimization

Algorithm 1 Bayesian Optimization.

1: procedure Bayesian Optimization
2: p(f (x)) = GP(f ;µ,K )
3: x1 ∼ U(X)
4: D = {(x1, f (x1))}
5: for n = 1, 2, . . . do
6: xn+1 = arg maxx αEI(x,D)
7: D = D ∪ {(xn+1, f (xn+1))}
8: p(f (x)) = p(f (x)|D) = GP(f ;µf |D,Kf |D)
9: end for

10: return maxD
11: end procedure
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Causal Bayesian Optimization (CBO)

I CBO generalizes BO to the case where causal information
about the optimization problem is available in an SCM M:
1. Causal optimization objective (selecting both which variables

to intervene on and their values)

X∗s , x∗s = arg min
Xs∈P(X),xs∈dom(Xs )

E[Y |do(Xs = xs)]

2. Causal surrogate model (extends the GP to estimate
interventional distributions E[Y |do(Xs = xs)] based on both
observational and interventional data.)

3. Causal acquisition function. (acquisition function which only
considers intervention sets in the pruned version of dom(Xs),
i.e. intervention sets that are POMIS)

4. Integrates both observational and interventional data. (CBO
evaluates interventions on subsets Xs ⊆ X , including the
empty intervention set Xs = ∅, which yields observational data
that is used to update the causal GP through the do-calculus.)
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Dynamic Causal Bayesian Optimization (DCBO)

I DCBO generalizes CBO to consider temporal dynamics of
an SCM:
1. Dynamic structured causal model causal model with causal

structure across time Mt = 〈U0:t ,V0:t ,F0:t〉 where 0 : t
denotes the union of the corresponding variables or functions
up to time t and G0:T is a causal dynamic Bayesian network.

2. Dynamic causal optimization objective (optimization objective
that accounts for past interventions)

X∗s,t , x∗s,t = arg min
Xs,t∈P(Xt ),xs∈dom(Xs,t )

E[Y |do(Xs,t = xs),1t>0 · I0:t−1]

where I0:t−1 =
⋃t−1

i=0 do(X∗s,i = x∗s,i ) denotes previous
interventions and 1t>0 is the indicator function.

3. Dynamic causal surrogate model. (extends the Causal
Gaussian Process to estimate interventional distributions
conditioned on past interventions)
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Evaluation Results

Evaluation results.

I CBO and DCBO converge faster than BO by exploiting
causal structure.

I CBO actually perform sligthly better than DCBO. This
indicates that the temporal structure incorporated in DCBO
is not that useful for this particular problem.
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Summary and Contributions

I Summary. Presents a novel causal optimization approach to
compute optimal defender strategies:
1. Model security problem with a structured causal model
2. Fit model using Gaussian processes and data from a simulator
3. Formulate optimal defender interventions as a causal dynamic

otimization problem
4. Solve the optimization problem using causal extensions to

Bayesian optimization (CBO, DCBO)
5. Evaluate obtained defender interventions in simulation.

I Contributions.
1. The approach based on causal optimization and SCM is novel

to the cyber domain.
2. Presents a new cyber security simulator.
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Discussion
I Strong points

I The approach is novel and since the causal optimization
approach has not previously been explored in the cyber
domain, it lays a foundation for future work.

I Discusses the causal approach in relation to traditional
approaches based on control/game/learning/decision theory.

I Weak points
I Static attacker
I Simplistic defender model
I Difficult to define the SCM in practice
I No conclusions can be made from the results other than that

DCBO and CBO outperforms BO in an abstract simulation.
I Discussion points

I Myopic?
I How useful are the simulation results? Effective solutions in

simulated environments have been demonstrated for 15+years,
are we getting closer to something that can work in practice?


