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Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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The Intrusion Prevention Problem
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When to take a defensive action?
Which action to take?
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A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)



4/28

A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)

Manual
detection/
prevention
(1980s)

Reference points
Intrusion prevention milestones



4/28

A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)

Manual
detection/
prevention
(1980s)

Audit logs
and manual
detection/prevention
(1980s)

Reference points
Intrusion prevention milestones



4/28

A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)

Manual
detection/
prevention
(1980s)

Audit logs
and manual
detection/prevention
(1980s)

Rule-based
IDS/IPS
(1990s)

Reference points
Intrusion prevention milestones



4/28

A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)

Manual
detection/
prevention
(1980s)

Audit logs
and manual
detection/prevention
(1980s)

Rule-based
IDS/IPS
(1990s)

Rule-based &
Statistical
IDS/IPS
(2000s)

Reference points
Intrusion prevention milestones



4/28

A Brief History of Intrusion Prevention

ARPANET
(1969)

Internet
(1980s)

Manual
detection/
prevention
(1980s)

Audit logs
and manual
detection/prevention
(1980s)

Rule-based
IDS/IPS
(1990s)

Rule-based &
Statistical
IDS/IPS
(2000s)

Research:
ML-based IDS
RL-based IPS
Control-based IPS
Computational game theory IPS
(2010-present)Reference points

Intrusion prevention milestones



4/28

A Brief History of Intrusion Prevention

Shewhart’s
control chart
(1925)
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Quality control milestones (optimal stopping)
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Our Approach

I Formal model:
I Controlled Hidden Markov Model
I Defender has partial observability
I A game if attacker is active

I Data collection:
I Emulated infrastructure

I Finding defender strategies:
I Self-play reinforcement learning
I Optimal stopping

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Reinforcement Learning,
Optimal Stopping&

Hidden Markov Model

Emulation system

Target infrastructure
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Outline
I Use Case & Approach:

I Intrusion prevention
I Reinforcement learning and optimal stopping

I Formal Model of The Use Case
I Intrusion prevention as an optimal stopping problem
I Partially observed stochastic game

I Game Analysis and Structure of (π̃1, π̃2)
I Structural result: multi-threshold best responses
I Stopping sets S

(1)
l are connected and nested

I Our Method
I Emulation of the target infrastructure,
I System identification
I Our reinforcement learning algorithm

I Results & Conclusion
I Numerical evaluation results & Demo
I Conclusion & future work
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Intrusion Prevention through Optimal Stopping
I The system evolves in discrete time-steps.
I A stop action = a defensive action. (e.g. reconfigure IPS)

Stochastic
system π: Stop?

Yes

No
Continue monitor

Defensive action

ot

I The L− lth stopping time τl is:

τl = inf{t : t > τl−1, at = S}, l ∈ 1, .., L, τL+1 = 0

I τl is a random variable from sample space Ω to N, which is
dependent on hτ = ρ1, a1, o1, . . . , aτ−1, oτ and independent of
aτ , oτ+1, . . .
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I The L− lth stopping time τl is:

τl = inf{t : t > τl−1, at = S}, l ∈ 1, .., L, τL+1 = 0

I τl is a random variable from sample space Ω to N, which is
dependent on hτl = ρ1, a1, o1, . . . , aτl−1, oτl and independent
of aτl , oτl +1, . . .
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Intrusion Prevention through Optimal Stopping

We consider the class of stopping times
Tt = {τl ≤ t|τl > τl−1} ∈ Fk (Fk =natural filtration on ht).
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Intrusion Prevention through Optimal Stopping
We consider the class of stopping times
Tt = {τl ≤ t|τl > τl+1} ∈ Fk (Fk =natural filtration on ht).

1 2 . . .

Given the observations:

t

ot

Find the optimal stopping times τ∗L , τ∗L−1, . . .:

t

ot

τ∗L τ∗L−1 τ∗L−2 . . .
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The Defender’s Stop Actions

IP packets

Infrastructure

Defender,π1
Controls

Reads

IPS

Drop

rules ht

1. Ingress traffic goes through deep packet inspection at gateway
2. Gateway runs the Snort IDS/IPS and may drop packets
3. The defender controls the IPS configuration
4. At each stopping time, we update the IPS configuration
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The Defender’s Stop Actions
l Alarm class c Action

34 Attempted administrator privilege gain DROP
33 Attempted user privilege gain DROP
32 Inappropriate content was detected DROP
31 Potential corporate privacy violation DROP
30 Executable code was detected DROP
29 Successful administrator privilege gain DROP
28 Successful user privilege gain DROP
27 A network trojan was detected DROP
26 Unsuccessful user privilege gain DROP
25 Web application attack DROP
24 Attempted denial of service DROP
23 Attempted information leak DROP
22 Potentially Bad Traffic DROP
21 Attempt to login by a default username and password DROP
20 Detection of a denial of service attack DROP
...

...
...

Table 1: Defender stop actions in the emulation; l denotes the number of
stops remaining.
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Optimal Stopping Game
I We assume a strategic attacker

I Attacker knows which actions generate alarms
I Attacker tries to be stealthy
I Attacker may try to achieve denial of service

Attacker, π2

. . .
Clients

IP packets

Infrastructure

Defender,π1
Controls

Reads

IPS

Drop

rules ht
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Optimal Stopping Game

Attacker actions

Defender actions

t = 1
t

I The attacker’s stopping times τ2,1, τ2,2, . . . determine the
times to start/stop the intrusion
I During the inrusion, the attacker follows a fixed intrusion

strategy
I The defender’s stopping times τ1,L, τ1,L−1, . . . determine the

times to update the IPS configuration
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Optimal Stopping Game

Attacker actions

Defender actions

t = 1
t

prevented

Game episode

I The attacker’s stopping times τ2,1, τ2,2, . . . determine the
times to start/stop the intrusion
I During the intrusion, the attacker follows a fixed intrusion

strategy
I The defender’s stopping times τ1,1, τ1,2, . . . determine the

times to update the IPS configuration
I We seek a Nash equilibrium (π∗1, π∗2), from which we can

extract the optimal defender strategy π∗1 against the
worst-case attacker.

We model this game as a zero-sum partially observed stochastic game
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Partially Observed Stochastic Game

I Players: N = {1, 2} (Defender=1)
I States: Intrusion st ∈ {0, 1}, terminal ∅.
I Observations:

I IDS Alerts ∆x1,t ,∆x2,t , . . . ,∆xM,t ,
defender stops remaining lt ∈ {1, .., L},
fX (∆x1, . . . ,∆xM |st)

I Actions:
I A1 = A2 = {S,C}

I Rewards:
I Defender reward: security and service.
I Attacker reward: negative of defender

reward.
I Transition probabilities:

I Follows from game dynamics.
I Horizon:

I ∞

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

a(2)
t = S

a(2)
t = S

lt = 1
a(1)

t = S

φ l t
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One-Sided Partial Observability

I We assume that the attacker has perfect information. Only
the defender has partial information.

I The attacker’s view:
s1 s2 s3 . . . sn

o1 o2 o3 . . . o5

I The defender’s view:
s1 s2 s3 . . . sn

o1 o2 o3 . . . o5



14/28

One-Sided Partial Observability
I We assume that the attacker has perfect information. Only

the defender has partial information.

I The attacker’s view:
s1 s2 s3 . . . sn

o1 o2 o3 . . . o5

I The defender’s view:
s1 s2 s3 . . . sn

o1 o2 o3 . . . o5

I Makes it tractable to compute the defender’s belief
b(1)

t,π2(st) = P[st |ht , π2] (avoid nested beliefs)
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Game Analysis
I Defender strategy is of the form: π1,l : B → ∆(A1)
I Attacker strategy is of the form: π2,l : S × B → ∆(A2)

I Defender and attacker objectives:

J1(π1,l , π2,l ) = E(π1,l ,π2,l )

[ ∞∑
t=1

γt−1Rl (st , at)
]

J2(π1,l , π2,l ) = −J1
I Best response correspondences:

B1(π2,l ) = arg max
π1,l∈Π1

J1(π1,l , π2,l )

B2(π1,l ) = arg max
π2,l∈Π2

J2(π1,l , π2,l )

I Nash equilibrium (π∗1,l , π∗2,l ):

π∗1,l ∈ B1(π∗2,l ) and π∗2,l ∈ B2(π∗1,l ) (1)



15/28

Game Analysis
I Defender strategy is of the form: π1,l : B → ∆(A1)
I Attacker strategy is of the form: π2,l : S × B → ∆(A2)

I Defender and attacker objectives:

J1(π1,l , π2,l ) = E(π1,l ,π2,l )

[ ∞∑
t=1

γt−1Rl (st , at)
]

J2(π1,l , π2,l ) = −J1
I Best response correspondences:

B1(π2,l ) = arg max
π1,l∈Π1

J1(π1,l , π2,l )

B2(π1,l ) = arg max
π2,l∈Π2

J2(π1,l , π2,l )

I Nash equilibrium (π∗1,l , π∗2,l ):

π∗1,l ∈ B1(π∗2,l ) and π∗2,l ∈ B2(π∗1,l ) (2)



15/28

Game Analysis
I Defender strategy is of the form: π1,l : B → ∆(A1)
I Attacker strategy is of the form: π2,l : S × B → ∆(A2)

I Defender and attacker objectives:

J1(π1,l , π2,l ) = E(π1,l ,π2,l )

[ ∞∑
t=1

γt−1Rl (st , at)
]

J2(π1,l , π2,l ) = −J1
I Best response correspondences:

B1(π2,l ) = arg max
π1,l∈Π1

J1(π1,l , π2,l )

B2(π1,l ) = arg max
π2,l∈Π2

J2(π1,l , π2,l )

I Nash equilibrium (π∗1,l , π∗2,l ):

π∗1,l ∈ B1(π∗2,l ) and π∗2,l ∈ B2(π∗1,l ) (3)



15/28

Game Analysis
I Defender strategy is of the form: π1,l : B → ∆(A1)
I Attacker strategy is of the form: π2,l : S × B → ∆(A2)

I Defender and attacker objectives:

J1(π1,l , π2,l ) = E(π1,l ,π2,l )

[ ∞∑
t=1

γt−1Rl (st , at)
]

J2(π1,l , π2,l ) = −J1
I Best response correspondences:

B1(π2,l ) = arg max
π1,l∈Π1

J1(π1,l , π2,l )

B2(π1,l ) = arg max
π2,l∈Π2

J2(π1,l , π2,l )

I Nash equilibrium (π∗1,l , π∗2,l ):

π∗1,l ∈ B1(π∗2,l ) and π∗2,l ∈ B2(π∗1,l )



16/28

Structure of Best Response Strategies

b(1)
0 1
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Structure of Best Response Strategies
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Our Method for Learning Effective Security Strategies
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Emulating the Target Infrastructure
I Emulate hosts with docker containers
I Emulate IDS and vulnerabilities with

software
I Network isolation and traffic shaping

through NetEm in the Linux kernel
I Enforce resource constraints using

cgroups.
I Emulate client arrivals with Poisson

process
I Internal connections are full-duplex

& loss-less with bit capacities of 1000
Mbit/s

I External connections are full-duplex
with bit capacities of 100 Mbit/s &
0.1% packet loss in normal operation
and random bursts of 1% packet loss
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Running a Game Episode in the Emulation

I A distributed system with
synchronized clocks

I We run software sensors on all
emulated hosts

I Sensors produce messages to a
distributed queue (Kafka)

I A stream processor (Spark) consumes
messages from the queue and
computes statistics

I Actions are selected based on the
computed statistics and the strategies

I Actions are sent to the emulation
using gRPC

I Actions are executed by running
commands on the hosts

ot atbt

ht

π1, π2

st
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Our Reinforcement Learning Approach
I We learn a Nash equilibrium (π∗1,l ,θ(1) , π

∗
2,l ,θ(2)) through

fictitious self-play.
I In each iteration:

1. Learn a best response strategy of the defender by solving a
POMDP π̃1,l,θ(1) ∈ B1(π2,l,θ(2) ).

2. Learn a best response strategy of the attacker by solving an
MDP π̃2,l,θ(2) ∈ B2(π1,l,θ(1) ).

3. Store the best response strategies in two buffers Θ1,Θ2
4. Update strategies to be the average of the stored strategies

Strategy π2

Strategy π1

Strategy π′2

Strategy π′1

. . . Strategy π∗2

Strategy π∗1

Self-play process
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Fictitious Self-Play

Input
Γp: the POSG
Output
(π∗1,θ, π∗2,θ): an approximate Nash equilibrium

1: procedure ApproximateFP
2: θ(1) ∼ NL(−1, 1), θ(2) ∼ N2L(−1, 1)
3: Θ(1) ← {θ(1)}, Θ(2) ← {θ(2)}, δ̂ ←∞
4: while δ̂ ≥ δ do
5: θ(1) ← ThresholdBR(Γp, π2,l,θ,N, a, c, λ,A, ε)
6: θ(2) ← ThresholdBR(Γp, π1,l,θ,N, a, c, λ,A, ε)
7: Θ(1) ← Θ(2) ∪ θ(1), Θ2 ← Θ(2) ∪ θ(2)

8: π1,l ,θ ←MixtureDistribution(Θ(1))
9: π2,l ,θ ←MixtureDistribution(Θ(2))
10: δ̂ = Exploitability(π1,l ,θ, π2,l ,θ)
11: end while
12: return (π1,l ,θ, π2,l ,θ)
13: end procedure
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Our Reinforcement Learning Algorithm for Learning
Best-Response Threshold Strategies

I We use the structural result that threshold best response
strategies exist (Theorem 1) to design an efficient
reinforcement learning algorithm to learn best response
strategies.

I We seek to learn:
I L thresholds of the defender, α̃1,≥ α̃2, . . . ,≥ α̃L ∈ [0, 1]
I 2L thresholds of the attacker, β̃0,1, β̃1,1, . . . , β̃0,L, β̃1,L ∈ [0, 1]

I We learn these thresholds iteratively through Robbins and
Monro’s stochastic approximation algorithm.1

Monte-Caro
Simulation

Stochastic
Approximation

(RL)

θn+1
θ̂∗

Performance estimate
Ĵ(θn)

θ1

θn

1Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The Annals of Mathematical
Statistics 22.3 (1951), pp. 400 –407. doi: 10.1214/aoms/1177729586. url:
https://doi.org/10.1214/aoms/1177729586.

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
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Our Reinforcement Learning Algorithm
1. Parameterize the strategies π1,l ,θ(1) , π1,l ,θ(2) by θ(1) ∈ RL,
θ(2) ∈ R2L

2. The policy gradient

∇θ(i)J(θ(i)) = Eπi,l,θ(i)

[ ∞∑
t=1
∇θ(i) log πi ,l ,θ(i)(a(i)

t |st)
∞∑
τ=t

rt
]

exists as long as πi ,l ,θ(i) is differentiable.
3. A pure threshold strategy is not differentiable.
4. To ensure differentiability and to constrain the thresholds to

be in [0, 1], we define πi ,θ(i),l to be a smooth stochastic
strategy that approximates a threshold strategy:

πi ,θ(i)
(
S|b(1)

)
=

1 +
(
b(1)(1− σ(θ(i),j))
σ(θ(i),j)(1− b(1))

)−20−1

where σ(·) is the sigmoid function and σ(θ(i),j) is the
threshold.
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Smooth Threshold
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Our Reinforcement Learning Algorithm
1. We learn the thresholds through simulation.
2. For each iteration n ∈ {1, 2, . . .}, we perturb θ(i)

n to obtain
θ

(i)
n + cn∆n and θ(i)

n − cn∆n.
3. Then, we run two MDP or POMDP episodes
4. We then use the obtained episode outcomes Ĵi (θ(i)

n + cn∆n)
and Ĵi (θ(i)

n − cn∆n) to estimate ∇θ(i)Ji (θ(i)) using the
Simultaneous Perturbation Stochastic Approximation (SPSA)
gradient estimator4:(

∇̂
θ

(i)
n
Ji (θ(i)

n )
)

k
= Ĵi (θ(i)

n + cn∆n)− Ĵi (θ(i)
n − cn∆n)

2cn(∆n)k

5. Next, we use the estimated gradient and update the vector of
thresholds through the stochastic approximation update:

θ
(i)
n+1 = θ(i)

n + an∇̂θ(i)
n
Ji (θ(i)

n )

4James C. Spall. “Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient
Approximation”. In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL 37.3 (1992), pp. 332–341.
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Simulation Results (Emulation Results TBD..)
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Demo - A System for Interactive Examination of Learned
Security Strategies

Client web browser

Policy Examination

JavaScript frontend

Flask HTTP server

PostgreSQL

Traces Policy πθ
Emulation Simulation

s1,1 s1,2 . . . s1,n

s2,1 s2,2 . . . s2,n

... ... ... ...

Architecture of the system for examining learned security strategies.
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Conclusions & Future Work

I Conclusions:

I We develop a method to automatically learn security policies
I (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement

learning and (5) domain randomization and generalization.

I We apply the method to an intrusion prevention use case

I We formulate intrusion prevention as a multiple stopping
problem

I We present a Partially Observed Stochastic Game of the use case
I We present a POMDP model of the defender’s problem
I We present a MDP model of the attacker’s problem
I We apply the stopping theory to establish structural results of the best response strategies

I Our research plans:
I Run experiments in the emulation system
I Make learned strategy available as plugin to the Snort IDS
I Extend the model

I Less restrictions on defender
Scaling up the emulation system:

I Non-static infrastructures


