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» What are useful controls?

» Intrusion prevention strategies & Adaptive security policies
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» What are useful controls?

» Limiting virus spread
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» Simulation-Based Approaches

» Evolutionary Methods!®
» Reinforcement Learning??
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Model-Based Control: DT Dynamical System Model

M = (8, A, P2, R, 7,0, T)

Observations Security Controls

Control Policy 7T

» M = Markov Decision Process

» Problem reduces to solving Bellman’s equations

ue(he) = sup |re(se,a) + Z pe(jlst, a) ues1(he, a. j)
€A Jjes -cost to go

» Solution methods?!: Backward induction, Dynamic
programming (Value iteration, Policy iteration)

21Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. 1st.
USA: John Wiley and Sons, Inc., 1994. ISBN: 0471619779.
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Limitations of the Model-Based Approach

Modeling Challenge

How to model complex systems and cyber attacks accurately?



Limitations of the Model-Based Approach

Scalability Challenge

Models are often impractical due to scale of applications.
» e.g. assume MDP model of cyber range:
M = <S’ A? sas” Rsa-s'a Y5 Po, T>
> Need to solve:
V*(s) = max »_ P2, [R% +yV*(s)]
? s'eS



Limitations of the Model-Based Approach

Scalability Challenge

Models are often impractical due to scale of applications.
» e.g. assume MDP model of cyber range:
M= <S7 Aa 7);5’7 RiSH Y5 Po, T>
> Need to solve (curse of modeling®?):

Ve(s) = max Y | Pi [Re +7V*(s")]
a s/@

S| = 10'7° (Atoms in the universe ~ 108°)

22Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. 1st. Athena Scientific,
1996. ISBN: 1886529108.



Simulation-Based Approaches

Simulator

(s,a) = (¢,r)

SR
Nl

Observations Controls

— Control Policy 7T

» Rather than defining complete model
M =(S, A, PL,RL,v, po, T) = define simulator that
can be sampled from.

» Pros: scalable, simple to implement, flexible

» Cons: (same as model-based) is it realistic??



Simulation-Based Example: Intrusion Prevention®

Question

Can effective security-strategies emerge from self-play RL?

23Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement
Learning and Self-Play”. In: International Conference on Network and Service Management (CNSM
2020) (CNSM 2020). Izmir, Turkey, Nov. 2020.



Simulation-Based Example: Intrusion Prevention?*

Question

Can effective security-strategies emerge from self-play RL?

» Model network as graph G = (N, &)
> Attack/defense attributes per node Sy = (S{, SP)
» Simulate outcome of actions as function f(s, a).

» Partially observed two-player Markov game

24Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement
Learning and Self-Play”. In: International Conference on Network and Service Management (CNSM
2020) (CNSM 2020). Izmir, Turkey, Nov. 2020.



Simulation-Based Example: Intrusion Prevention®

Question
Can effective security-strategies emerge from self-play RL?

» Results:

» Challenging learning task but possible
» c-optimal strategies emerge using our proposed method
» AR policy, opponent pool, PPO, function approximation

» Strategies are abstract, cannot easily be verified

25Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement
Learning and Self-Play”. In: International Conference on Network and Service Management (CNSM

2020) (CNSM 2020). Izmir, Turkey, Nov. 2020.



Research Questions

» Prior work focused on simulation-based and model-based
approaches

» Assumed to be impractical to interact with real systems

Related Work

AN

(s,a) = (s',r)
Model M Simulation

/

IT infrastructure



Research Questions
> How large is this gap? How can we bridge it?

» Take inspiration from early works studying this problem?°
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1801.08917. URL: http://arxiv.org/abs/1801.08917, Piotr Gawlowicz and Anatolij Zubow. “ns3-gym:
Extending OpenAl Gym for Networking Research”. In: CoRR abs/1810.03943 (2018). arXiv:
1810.03943. URL: http://arxiv.org/abs/1810.03943.
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Research Questions
Assumption
“Assumed to be impractical to interact with real systems”

» Can we question this assumption?
» What is the right balance between model/simulation/real
system?

M
Model

(s,a) = (¢, r)

N
Simulation W

Cyber range
(Emulation)




Our Approach

» Goals:
» Framework for learning control tasks in

security

» Connect simulations & models with
practical environment




Our Approach

» What is a good environment for

evaluation? ‘

» Cyber ranges .‘E .‘E =
> Used to evaluate human security experts SEL s
I ose




Our Approach

Idea

Need a tool to generate cyber ranges for different control tasks



Generation of Cyber Ranges for Control Tasks

Y =(C,0,8,U,T) Configuration Space

» The configuration space?’ defines the networks that can be
generated.

» Controls C (e.g. nmap, firewall configs, metasploit, etc.)
» Operating Systems O (e.g. Kali, Ubuntu 20, etc.)

> Services S (e.g. Kafka, MongoDB, NTP, etc.)

> User types U (e.g. root, non-root, various groups)

» Topologies T (implemented using firewall rules)

27implemented with a set of docker images



Generation of Cyber Ranges for Control Tasks

Y =(C,0,8,U,T) Configuration Space

o * * * *—  System Space
g—7>0 g—0 F @/@ @/@

/ / al (7

e o B Ruei

172.18.1.0/24 172.18.2.0/24 172.18.3.0/24 172.18.4.0/24172.18.5.0/24



Generation of Cyber Ranges for Control Tasks

= (C,0,8,U,T) Configuration Space
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System Architecture

state sy 11

action a¢
reward reyq

Markov Decision Process
ag, n @ ai n /S_Q\ a3 @ a3, r Q ag, 15
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Host network x.x.x.x
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Virtual Subnetwork 172.18.x.0/24

Linux Containers
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First Evaluation of Framework: Learn to Capture the Flag

&S
7N\
e e
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S |
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Learning task vy Learning task vz
&
T

Learning task v3



System Model (1/3)

» Hidden Markov Model. The
agent estimates the state of the
system based on a sequence of
observations 01,05,...€ O MDP: _P

System Partial Observability

Observations: og 01 or



System Model (1/3)

» Infinite Discounted
Time-Horizon. Discrete time,
decision epochs T = Nxq.
Objective:

max [E
T

Z A r(sy, at)]

t=1




System Model (2/3)

Belief state b(s)

Action a

Observation o

Let b; be the belief state at time t

P11 p12 ... Sh

be(s) =Plseri=slbd, s=| : 1 . i |eSeRVH
Pn1 Pn2 .- Shy

state estimated based on basis functions {¢1, ..., ¢34} from

observations o. e.g.

le(o) = ILport 22 open ¢2(o) = Lshell access - - - ¢34(0) = #CVES



System Model 2/3

a

00 ... 0 \
bt(s){z o ] a = arg maxmy(als)



System Model 2/3

10...0
10...0 a; = arg maxmy(a|b;)
bt: .. . a
o — nmap -sP 172.18.3.0/24
00 ..0 P

Find reachable machines on network




System Model (2/3)

» Let A £ {nmap, metasploit; nikto;,...} be the action
space. A C B where B is the set of commands of the Bash
command-line.



System Model (2/3)

> Let
10 if b7, 8 > pfiles
r(sev1lat, st) = < 0 if bey1 # by
-10 otherwise

be the reward function, realizing the agent's objective to
capture the flags in the system.



System Model (3/3)

» As |B| >> 1034, we rely on parameteric function
approximation.

» Consider parameterized policies 7y
> where § € RY A d << 1034,

Observations —State Estimation —>Modeling & Prediction ———Planning —Controls




System Model (3/3)

» We consider?® the space of Non-Markovian
History-Dependent Time-Homogeneous Mixed Policies
7:B— A, wenhtk

81
[e:
@7
o=

Observations —State Estimation —>Modeling & Prediction ———Planning —Controls

2913 is the set of belief states.



First Task: vy
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» Goal: Given no prior knowledge, except the IP of the
subnetwork 172.18.1.0/24, learn 7.

mp = argmaxE
Te€Ely

o0
zml] M= {m | 6eR%)
t=0

» 7. Finds all flags in the minimum number of steps



A First Attempt of the v; Task!

Episodic Rewards

80 1
60 1

40 1

Avg Episode Reward

20 1

—— T

0.0 0.5 1.0 1.5 2.0 2.5
# Hours training
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A First Attempt of the v; Task!

/(R”* - R”e) dt
t Episodic Rewards
Regret | |
— [
80 1
e)
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>
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Empirical Distribution of Action Costs

1ftp ftp://u:pw@172.8.3.3

Normalized Frequency

10°

107t

Action Costs

/
/

nmap -sV

-script=vu

1lscan/vul

scan.nse 172.18.3.0/24

\

20

40

60
Time Cost (s)

80

100



Some Assumptions

» With some loss of generality (but not much), we can assume
a Partially Synchronous System

» Access to Eventually Perfect Failure Detector OP
> (strong completeness and eventual strong accuracy)
» Eventual upper bounds on communication delays
» Crash-stop failure model extended with omission faults



Some Assumptions

» This system model enables optimizations:

» Upper bound timeout on scanning operations

» Scan results can be cached for some duration A

» Pool SSH, Telnet, FTP, ... connections and re-use between
episodes

» Constrain action space per state s, As C A



A Second Attempt of the vy Task

/t(R”* - R”e) dt

Episodic Rewards

Regret _  F=—————--= = = g————g===—Crm==o——-
80 1
= \w(a|s;0) trained with PPO
2
& 60
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2
(0 40 1
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>
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# Hours training

—&— Optimized Env —— Non-Optimized Env -—— 7




Second Task: v

Learning task vz

» Goal: Given no prior knowledge, except the IP of the
subnetwork 172.18.1.0/24, learn 7.

mp = argmaxE
Te€Ely

[e.9]
varm] Ng={ms | 6€R}
t=0

» 7. Finds all flags in the minimum number of steps



vy Task Training Results

/t(R”* - R“e) dt

Episodic Rewards
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Third Task: vs3

» Goal: Given no prior knowledge, except the IP of the
subnetwork 172.18.1.0/24, learn .

mp = arg maxE
me €My

o0
z] Mo (ro | 0€RY)
t=0

» 7. Finds all flags in the minimum number of steps



vz Task Training Results

/(R”* — R™) dt
t Episodic Rewards
Regret 50 +==r= =
— ( N‘IF FW'""'TF[N'T"{N'“'V[nm"'\]\n'
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Example of a Learned Policy my

00 ... 0 .
bt(s){z o ] a = arg maxmy(als)

a



Example of a Learned Policy my

10...0
10...0 a; = arg maxmy(a|b;)
bt: .. . a
o — nmap -sP 172.18.3.0/24
00 ..0 P

Find reachable machines on network




Example of a Learned Policy my

11 ...0
12 ...0 a; = arg maxmy(a|b;)
by= 1. a
o & = nmap -sU -p- 172.18.3.0/24
00...0 Identify open ports
>

&



Example of a Learned Policy my

a; = arg maxmy(al|by)
a
o . —nmap -sV -script=vulscan/vulscan.nse
00...0 172.18.3.2
Identify vulnerabilities

B @@%@ &



Example of a Learned Policy my

a; = arg maxy(a|b;)
a

RSSO
N
o

b

VA

oL = nmap -p 22 -script ssh-brute
00..0 () 172.18.3.2
Exploit vulnerability

B @@%@ &



Example of a Learned Policy my

11 ...1

12 ...0 a; = arg maxmy(al|by)
be=|. . . a

S = sshu@172.18.3.2

00...0

Compromise host

Do @@%@ e



Example of a Learned Policy my

11 ...1
12 ...0 a; = arg maxy(a|b;)
bt = |. . a
S & = find / -name ’flag*.txt’
00..0 J

Search file system

. @@%@ e



Challenge: Learning with Large Action Spaces

Avg Episode Reward

Episodic Rewards vs

108 actions —
276 actions
480 actions
853 actions
- Optimal

25

50

75

100
# lteration
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175 200



Action Space Scaling

» Actions scale linearly with the
number of nodes |N].

> |Al= 25|N| + 28

~—— ~~

Node-actions Subnet actions

1,000 1

800

600 -

400 +

200

Al /
==yl
s |
L M
10 20 30 . 40



Action Space Scaling

» Large action spaces is a known
challenge for RL

» Reason: Inflates the policy
space [1 exponentially
» Assume Markovian
Deterministic Stationary
policies
> ()= (S|4 =
((spHT=1

1,000 1

800

600 -

400 +

200

A /
==yl
yd g i
4 |
L W
10 20 30 . 40



A Possible Solution: Auto-Regressive Policy

» ldea: Represent action a; as sequence of sub-actions (n, a):
1. Select node in the topology to target (n)
2. Select action to apply to node (a)



A Possible Solution: Auto-Regressive Policy

» Then, m(a|o) = m(a, n|o), which can be decomposed into

w(aln, o) & m(n|o):

m(a, nlo) = w(a|n, o) - m(n|o) Chain rule



A Possible Solution: Auto-Regressive Policy

» Reduces the size of the action space from 25|N| + 28 to
V| + 25 4 28
> Still O(n), though.

/
4,000 | —  x+25+28 // |
< — 25x+28 "
~ 2000/ — i
9 /
//
Y

0 20 40 60 80 100 120 140 160 180 200
W1



Conclusions and Future Work

» It is challenging to use decision-theoretic methods for
controlling complex systems
» Simulation/Abstract Models are effective to deal with scale,
but...
» We also want to ensure grounding in real world
applications



Conclusions and Future Work

» We investigate how to combine real security applications with
decision theory/learning theory methods.
» Propose a framework/system for learning control-tasks in
security
» Shown on simple tasks that the approach is feasible
> We seek the right trade-off between real-system
interaction and simulation/models—Open research question




Conclusions and Future Work

» Future work:
» Many challenges remain..
» Domain randomization and generalization
» More elaborate learning tasks
» Model-based RL



