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Challenge: IT Systems are Complex

I It is not realistic that any model will capture all the details.
I =⇒ We have to work with approximate models.
I =⇒ model misspecification.

I How does misspecification affect optimality and convergence?
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Our Contribution: Conjectural Online Learning
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Use Case: Security Response

I A defender owns an infrastructure.

I Defends the infrastructure by
monitoring and response.

I Has partial observability.

I An attacker seeks to intrude on the
infrastructure.

I Wants to compromise specific
components.

I Attacks by reconnaissance,
exploitation and pivoting.
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Prior Work
I Assumes a stationary model with no misspecification

I Limitation: fails to capture many real-world systems.
I Focuses on offline computation of defender strategies

I Limitation: computationally intractable for realistic models.

1 2 3
0

1,000
2,000
3,000

# Servers N

Ti
m
e
(s
)

(a) |O| = 10.

10 100 1000
0

2,000
4,000
6,000
8,000

Observation space size |O|
Ti
m
e
(s
)

(b) N = 1.

Time required to compute a perfect Bayesian equilibrium with hsvi.



5/24

Problem
I Partially-observed stochastic game Γθt .

I Γθt is parameterized by θt , which is hidden.

I Player k has a conjecture of θt , denoted by θt ∈ Θk.

I The player is misspecified if θt 6∈ Θk.

I As θt evolves, the player adapts its conjecture.

I The player uses the conjecture to update its strategy πk,t .

I What is an effective method to update conjectures and
strategies?
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Our Method: Conjectural Online Learning
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Strategy Adaptation through Conjectural Rollout (1/2)
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Strategy Adaptation through Conjectural Rollout (1/2)
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Strategy Adaptation through Conjectural Rollout (1/2)
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Strategy Adaptation through Conjectural Rollout (2/2)
`k-step rollout based on the conjectured model:

πk,t(bt) ∈ R(θ(k)
t ,bt , J

(πt )
k , `k) , arg min

a(k)
t ,a(k)

t+1,...,a
(k)
t+`k−1

(1)

Eπt

t+`k−1∑
j=t

γj−tck(Sj ,A(D)
j ) + γ`kJ (πt )

k (Bt+`k) | bt

 .
I θ

(k)
t is the model conjecture.

I ck is the cost function.

I Jπt
k is the conjectured cost-to-go under strategy profile πt .

I bt is the current belief state.
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Performance Guarantees of Rollout (1/2)

Theorem
The conjectured cost of player k’s rollout strategy πk,t satisfies

J (πk,t ,π−k,t )
k (b) ≤ J (πk,1,π−k,t )

k (b) ∀b ∈ B. (A)

Intuition:
I The rollout policy improves the base policy in the

conjectured model (A).
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Performance Guarantees of Rollout (1/2)
Theorem
The conjectured cost of player k’s rollout strategy πk,t satisfies

J (πk,t ,π−k,t )
k (b) ≤ J (πk,1,π−k,t )

k (b) ∀b ∈ B. (A)

Assuming (θ(k)
t , `−k) predicts the game `k steps ahead, then

‖J (πk,t ,π−k,t )
k − J?k‖ ≤

2γ`k
1− γ ‖J

(πk,1,π−k,t )
k − J?k‖, (B)

where J?k is the optimal cost-to-go. ‖·‖ is the maximum norm
‖J‖ = maxx |J(x)|.

Intuition:
I The rollout policy improves the base policy in the

conjectured model (A).
I If the conjectured model is wrong but can predict the next `k

steps, then we can bound the performance (B).
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Performance Guarantees of Rollout (2/2)
The performance bound

‖J (πk,t ,π−k,t )
k − J?k‖ ≤

2γ`k
1− γ ‖J

(πk,1,π−k,t )
k − J?k‖, (B)

improves superlinearly with the lookahead horizon `k.
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Compute Time of the Rollout Operator
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Our Method: Conjectural Online Learning
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Bayesian Learning to Calibrate Conjectures

ρ
(k)
t is calibrated through Bayesian learning as

ρ
(k)
t (θ(k)

t ) ,
P[i(k)

t | θ(k)
t ,bt−1]ρ(k)(θ(k)

t−1)∫
Θk

P[i(k)
t | θ(k)

t ,bt−1]ρ(k)
t−1(dθ(k)

t )
,

where i(k)
t is the information feedback at time t.

I We want to characterize limt→∞ ρ
(k)
t .

I Does the conjecture converge?

I Is the conjecture consistent asymptotically?
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Asymptotic Analysis of Bayesian Learning

I Let ν ∈ ∆(B) be an occupancy measure over the belief space.

I We say that a conjecture θ(k) is consistent if it minimizes
the weighted KL-divergence:

K (θ(k)
, ν) , Eb∼νEI(k)

[
ln
(

P[I(k) | θ,b]
P[I(k) | θ(k)

,b]

)
| θ,b

]
.

I Let Θ?
k denote the set of consistent conjectures.

Remark
Due to misspecification, θ(k)

t ∈ Θ?
k does not imply that θ(k)

t
equals the true parameter vector θt .
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Bayesian Learning Converges to Consistent Conjectures
Intuitively, consistent conjectures are “closest” to the true model.
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Bayesian Learning is Consistent Asymptotically

As t →∞, the conjecture distribution ρ
(k)
t concentrates on

the set of consistent conjectures.

Theorem
Given certain regularity conditions, the following property is
guaranteed by col.

lim
t→∞

∫
Θk

(
K (θ, νt)− K ?

Θk(νt)
)
ρ

(k)
t (dθ) = 0

a.s.-PR , where K ?
Θk

denotes the minimal weighted kl-divergence.
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Our Method: Conjectural Online Learning
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Evaluation - Target Infrastructure

I Target infrastructure to the right.

I Defender monitors the
infrastructure through ids alerts.

I Attacker seeks to compromise
servers.

I The position of the attacker is
unknown.

I Defender can recover compromised
servers at a cost.
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Model Parameter
I Let θt represent the number of clients.
I Clients arrive according to the rate function.

λ(t) = exp
(dim(ψ)∑

i=1
ψi t i

︸ ︷︷ ︸
trend

+
dim(χ)∑

k=1
χk sin(ωkt + φk)︸ ︷︷ ︸

periodic

)
.

50 100 150 200 250 300 350

20

40
X ∼ Po(λ(t))

λ(t)
λ(t) non-periodic

t



20/24

Correlation Between Observations and the Model
I We collect measurements from our testbed to estimate the

distribution of ids alerts.
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Evaluation of col (1/3)
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Evaluation of col (2/3)
Fix the number of clients to be θt = 12 for all t.
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Evaluation of col (3/3)

Fix the number of clients to be θt = 12 for all t.23
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Conclusion

I We introduce a novel game-theoretic formulation of
automated security response where each player has a
probabilistic conjecture about the game model.

I We present Conjectural Online Learning, a theoretically-sound
method for online learning of security strategies in
non-stationary and uncertain environments.
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