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Challenge: IT Systems are Complex
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» [t is not realistic that any model will capture all the details.

» —> We have to work with approximate models.

» —> model misspecification.

» How does misspecification affect optimality and convergence?



Our Contribution: Conjectural Online Learning
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Use Case: Security Response

» A defender owns an infrastructure.

» Defends the infrastructure by
monitoring and response.
» Has partial observability.

> An attacker seeks to intrude on the
infrastructure.

» Wants to compromise specific
components.

P> Attacks by reconnaissance,
exploitation and pivoting.

Attker Clients

=
Defender



Prior Work
> Assumes a stationary model with no misspecification
» Limitation: fails to capture many real-world systems.

» Focuses on offline computation of defender strategies
> Limitation: computationally intractable for realistic models.
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Time required to compute a perfect Bayesian equilibrium with HSVI.



Problem
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Partially-observed stochastic game [y,.

g, is parameterized by ¢, which is hidden.

Player k has a conjecture of 8;, denoted by 8; € ©.
The player is misspecified if 8; ¢ Ox.
As 0; evolves, the player adapts its conjecture.

The player uses the conjecture to update its strategy 7 ;.

What is an effective method to update conjectures and
strategies?



Our Method: Conjectural Online Learning
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The conjecture distribution p; ’ is calibrated through Bayesian
learning and the strategy my ; is updated through rollout.
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Strategy Adaptation through Conjectural Rollout (1/2)
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Conjectured lookahead tree of player k.
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Conjectured lookahead tree of player k.
b,

& /\@
b1 O



Strategy Adaptation through Conjectural Rollout (1/2)

Conjectured lookahead tree of player k.
b,



Strategy Adaptation through Conjectural Rollout (1/2)

Conjectured lookahead tree of player k
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Strategy Adaptation through Conjectural Rollout (1/2)

l-step rollout.
b,
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Strategy Adaptation through Conjectural Rollout (2/2)

l-step rollout based on the conjectured model:
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> H(t ) is the model conjecture.

» ¢ is the cost function.

> jﬁt is the conjectured cost-to-go under strategy profile ;.

» b; is the current belief state.

(1)



Performance Guarantees of Rollout (1/2)

Theorem

The conjectured cost of player k's rollout strategy my : satisfies
jl(:rk,tvf—k,t)(b) < jl(:rk,l,ﬁ—k,t)(b) Vb € B. (A)

Intuition:

» The rollout policy improves the base policy in the
conjectured model (A).



Performance Guarantees of Rollout (1/2)
Theorem

The conjectured cost of player k's rollout strategy my ; satisfies

Jmee T () < Jmer Tk () vbeB. (A)

Assuming (éﬁk),z,k) predicts the game {\ steps ahead, then

[T — g < -kl ®)
where J is the optimal cost-to-go. ||-|| is the maximum norm
I = maxy [J(x)].
Intuition:

» The rollout policy improves the base policy in the
conjectured model (A).

» If the conjectured model is wrong but can predict the next £
steps, then we can bound the performance (B).



Performance Guarantees of Rollout (2/2)

The performance bound
HJ(ﬂk £ — kt) J*H < HJ(Wklﬂr kt J]:H: (B)

improves superlinearly with the lookahead horizon /.
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Compute Time of the Rollout Operator
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Compute time of the rollout operator for varying lookahead horizons /.
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Bayesian Learning to Calibrate Conjectures

pgk) is calibrated through Bayesian learning as
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where i; ’ is the information feedback at time t.
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> We want to characterize lim;_ o p; ’-

» Does the conjecture converge?

» |s the conjecture consistent asymptotically?



Asymptotic Analysis of Bayesian Learning

» Let v € A(B) be an occupancy measure over the belief space.

. —(k) . . e
> We say that a conjecture 0( ) is consistent if it minimizes

the weighted KL-divergence:
_ (k)
P[I) | 6%, b]

> Let ©f denote the set of consistent conjectures.

Remark

Due to misspecification, Eﬁk) € ©f does not imply that 59‘)

equals the true parameter vector 0;.



Bayesian Learning Converges to Consistent Conjectures
Intuitively, consistent conjectures are “closest” to the true model.
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Bayesian Learning is Consistent Asymptotically

As t — oo, the conjecture distribution p( ) concentrates on
the set of consistent conjectures.

Theorem

Given certain regularity conditions, the following property is
guaranteed by COL.

lim (K(é,yt) Kek(ut)) k) (d8) =0

t—o0 Oy

a.s.-P”, where Kék denotes the minimal weighted KL-divergence.
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Evaluation - Target Infrastructure

Attacker Clients

> Target infrastructure to the right

» Defender monitors the
infrastructure through 1Ds alerts.

> Attacker seeks to compromise
servers.

» The position of the attacker is
unknown.

» Defender can recover compromised ‘

servers at a cost.

)
Defender



Model Parameter

> Let O, represent the number of clients.

» Clients arrive according to the rate function.

dim() dim(x)
A(t) —exp< Z pit + Z Xk Sin wkt—i-qbk))

i=1

trend periodic

X ~ Po(\(t))
40 | —o A(t)
—— \(t) non-periodic

20 |

50 100 150 200 250 300 350



Correlation Between Observations and the Model

» We collect measurements from our testbed to estimate the
distribution of 1DS alerts.

Average number of clients
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Evaluation of coL (1/3)

Remark

The conjectures do not converge if 0+ keep changing.



Evaluation of coL (2/3)
Fix the number of clients to be 6; = 12 for all t.

P(tD)(et =12)
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Evaluation of coL (3/3)

Fix the number of clients to be 8; = 12 for all

# Time steps to converge

5.
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Conclusion

> We introduce a novel game-theoretic formulation of
automated security response where each player has a
probabilistic conjecture about the game model.

» We present Conjectural Online Learning, a theoretically-sound
method for online learning of security strategies in
non-stationary and uncertain environments.
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