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Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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We formulate this use case as an Optimal Stopping problem
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Background on Optimal Stopping Problems
I The General Problem:

I A Markov process (st)T
t=1 is observed sequentially

I Two options per t: (i) continue to observe; or (ii) stop
I Find the optimal stopping time τ∗:

τ∗ = arg max
τ

Eτ

[
τ−1∑
t=1

γt−1RC
st st+1

+ γτ−1RS
sτ sτ

]
(1)

where RS
ss′ & RC

ss′ are the stop/continue rewards

I History:
I Studied in the 18th century to analyze a gambler’s fortune
I Formalized by Abraham Wald in 1947
I Since then it has been generalized and developed by (Chow,

Shiryaev & Kolmogorov, Bather, Bertsekas, etc.)

I Applications & Use Cases:
I Change detection, machine replacement, hypothesis testing,

gambling, selling decisions, queue management, advertisement
scheduling, the secretary problem, etc.
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2Y. Chow, H. Robbins, and D. Siegmund. “Great expectations: The theory of optimal stopping”. In: 1971.
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2007.
4John Bather. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. USA:

John Wiley and Sons, Inc., 2000. isbn: 0471976490.
5Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena

Scientific, 2005.
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https://doi.org/10.1016/j.stamet.2005.05.003. url:
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9Vikram Krishnamurthy, Anup Aprem, and Sujay Bhatt. “Multiple stopping time POMDPs: Structural results
& application in interactive advertising on social media”. In: Automatica 95 (2018), pp. 385–398. issn:
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Optimal Stopping: The General Theory
I Two general approaches: the Markovian approach and the

martingale approach.

I The Markovian approach:
I Model the problem as a MDP or POMDP
I A policy π∗ that satisfies the Bellman-Wald equation is

optimal:

π∗(s) = arg max
{S,C}

[
E
[
RS

s
]︸ ︷︷ ︸

stop

,E
[
RC

s + γV ∗(s ′)
]︸ ︷︷ ︸

continue

]
∀s ∈ S

I Solve by backward induction, dynamic programming, or
reinforcement learning

I The martingale approach:
I Model the state process as an arbitrary stochastic process
I The reward of the optimal stopping time is given by the

smallest supermartingale that stochastically dominates the
process, called the Snell envelope [14].
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Formulating Intrusion Prevention as a Stopping Problem

time-step t = 1

t
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I Intrusion Prevention as Optimal Stopping Problem:
I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?
I We formalize this problem with a POMDP
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A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
Login attempts ∆z , stops remaining
lt ∈ {1, .., L},
fXYZ (∆x ,∆y ,∆z |st , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service. Penalty:

false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

intrusion starts
Qt = 1

intrusion prevented
lt ≤ lA

lt = 0
final stop

t ≥ It + Tint
intrusion succeeds

t ≥ It + Tint
episode ends

5 10 15 20 25
intrusion start time t

0.0

0.5

1.0

C
D
F
I t

(t
)

It ∼ Ge(p = 0.2)
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We analyze the optimal policy using optimal stopping theory
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Threshold Properties of the Optimal Defender Policy (1/4)

I Belief States:
I The belief state bt ∈ B is defined as bt(st) = P[st |ht ]
I bt is a sufficient statistic of st based on

ht = (ρ1, a1, o1, . . . , at−1, ot) ∈ H
I B is the unit (|S| − 1)-simplex

I Characterizing the Optimal Policy π∗:
I To characterize the optimal policy π∗ we partition B based on

optimal actions and stops remaining l .
I st ∈ {0, 1}. bt has two components: bt(0) = P[st = 0|ht ] and

bt(1) = P[st = 1|ht ]
I Since bt(0) + bt(1) = 1, bt is completely characterized by

bt(1), (bt(0) = 1− bt(1))
I Hence, B is the unit interval [0, 1]
I Stopping sets S l = {b(1) ∈ [0, 1] : π∗l

(
b(1)

)
= S}

I Continue sets C l = {b(1) ∈ [0, 1] : π∗l
(
b(1)

)
= C}
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Threshold Properties of the Optimal Defender Policy (2/4)

Theorem

1. S l−1 ⊆ S l for l = 2, . . . L.
2. If L = 1, there exists an optimal threshold α∗ ∈ [0, 1] and an

optimal policy of the form:

π∗(b(1)) = S ⇐⇒ b(1) ≥ α∗ (2)

3. If L ≥ 1 and fXYZ , is totally positive of order 2 (TP2), there
exists L optimal thresholds α∗l ∈ [0, 1] and an optimal policy
of the form:

π∗l (b(1)) = S ⇐⇒ b(1) ≥ α∗l , l = 1, . . . , L (3)

where α∗l is decreasing in l .
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Threshold Properties of the Optimal Defender Policy (3/4)
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Threshold Properties of the Optimal Defender Policy (3/4)

π∗(b(1))

0
0
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1
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b(1)continue

stop

belief space B = [0, 1]

continue set C 1
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threshold α∗
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Threshold Properties of the Optimal Defender Policy (4/4)

I What are the implications of these results about π∗?

I Can be used to validate policies

I The optimal policy is simple to implement in practical systems

I The optimal policy can be computed efficiently for very large
models
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Our Method for Finding Effective Security Strategies
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Emulation System Σ Configuration Space
σi

** *
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Emulated Infrastructures

R1 R1 R1

Emulation
A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

I The set of virtualized configurations define a
configuration space Σ = 〈A,O,S,U , T ,V〉.

I A specific emulation is based on a configuration σi ∈ Σ.
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Emulation: Execution Times of Replicated Operations
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I Fundamental issue: Computational methods for policy
learning typically require samples on the order of 100k − 10M.

I =⇒ Infeasible to optimize in the emulation system
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Our Method for Finding Effective Security Strategies
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From Emulation to Simulation: System Identification
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I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)
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System Identification: Estimated Empirical Distributions
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Our Method for Finding Effective Security Strategies
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Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=1 γ
t−1rt+1

]
I Learning Algorithm:

I Represent π by πθ
I Define objective J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st , at)
]

I Maximize J(θ) by stochastic gradient ascent

∇θJ(θ) = Eπθ

[
∇θ log πθ(a|h)︸ ︷︷ ︸

actor

Aπθ (h, a)︸ ︷︷ ︸
critic

]

I Method:
1. Simulate a series of POMDP episodes
2. Use episode outcomes and trajectories to estimate
∇θJ(θ)

3. Update policy πθ with stochastic gradient ascent
4. Continue until convergence

Agent

Environment

at

st+1

rt+1
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Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E[
∑T

t=1
γt−1rt+1]

I Learning Algorithm:
I Represent π by πθ

I Define objective J(θ) = Eπθ
[
∑T

t=1
γt−1r(st , at )]

I Maximize J(θ) by stochastic gradient ascent
∇θJ(θ) = Eπθ [∇θ log πθ(a|h)Aπθ (h, a)]

I Method:
1. Simulate a series of POMDP episodes
2. Use episode outcomes and trajectories to estimate ∇θJ(θ)
3. Update policy πθ with stochastic gradient ascent
4. Continue until convergence

I Finding Effective Security Strategies through Reinforcement
Learning and Self-Playa

I Learning Intrusion Prevention Policies through Optimal
Stoppingb

aKim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM). Izmir, Turkey, Nov. 2020.

bKim Hammar and Rolf Stadler. Learning Intrusion Prevention Policies through Optimal Stopping. 2021. arXiv:
2106.07160 [cs.AI].

Agent

Environment

at

st+1

rt+1

http://arxiv.org/abs/2106.07160
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The Target Infrastructure

I Topology:
I 30 Application Servers, 1 Gateway/IDS (Snort), 3 Clients, 1 Attacker,

1 Defender

I Services
I 31 SSH, 8 HTTP, 1 DNS, 1 Telnet, 2 FTP, 1 MongoDB, 2 SMTP, 2

Teamspeak 3, 22 SNMP, 12 IRC, 1 Elasticsearch, 12 NTP, 1 Samba,
19 PostgreSQL

I RCE Vulnerabilities
I 1 CVE-2010-0426, 1 CVE-2014-6271, 1 SQL Injection, 1

CVE-2015-3306, 1 CVE-2016-10033, 1 CVE-2015-5602, 1
CVE-2015-1427, 1 CVE-2017-7494

I 5 Brute-force vulnerabilities

I Operating Systems
I 23 Ubuntu-20, 1 Debian 9:2, 1 Debian Wheezy, 6 Debian Jessie, 1

Kali

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Target infrastructure.
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Emulating the Client Population

Client Functions Application servers

1 HTTP, SSH, SNMP, ICMP N2,N3,N10,N12
2 IRC, PostgreSQL, SNMP N31,N13,N14,N15,N16
3 FTP, DNS, Telnet N10,N22,N4

Table 1: Emulated client population; each client interacts with
application servers using a set of functions at short intervals.



24/30

Emulating the Defender’s Actions

lt Action Command in the Emulation

3 Reset users deluser –remove-home <username>
2 Blacklist IPs iptables -A INPUT -s <ip> -j DROP
1 Block gateway iptables -A INPUT -i eth0 -j DROP

Table 2: Commands used to implement the defender’s stop actions in the
emulation.
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Static Attackers to Emulate Intrusions

Time-steps t NoviceAttacker ExperiencedAttacker ExpertAttacker

1-It ∼ Ge(0.2) (Intrusion has not started) (Intrusion has not started) (Intrusion has not started)
It + 1-It + 6 Recon1, brute-force attacks (SSH,Telnet,FTP) Recon2, CVE-2017-7494 exploit on N4, Recon3, CVE-2017-7494 exploit on N4,

on N2,N4,N10, login(N2,N4,N10), brute-force attack (SSH) on N2, login(N2,N4), login(N4), backdoor(N4)
backdoor(N2,N4,N10) backdoor(N2,N4), Recon2 Recon3, SQL Injection on N18

It + 7-It + 10 Recon1, CVE-2014-6271 on N17, CVE-2014-6271 on N17, login(N17) login(N18), backdoor(N18),
login(N17), backdoor(N17) backdoor(N17), SSH brute-force attack on N12 Recon3, CVE-2015-1427 on N25

It + 11-It + 14 SSH brute-force attack on N12, login(N12) login(N12), CVE-2010-0426 exploit on N12, login(N25), backdoor(N25),
CVE-2010-0426 exploit on N12, Recon1 Recon2, SQL Injection on N18 Recon3, CVE-2017-7494 exploit on N27

It + 15-It + 16 login(N18), backdoor(N18) login(N27), backdoor(N27)
It + 17-It + 19 Recon2, CVE-2015-1427 on N25, login(N25)

Table 3: Attacker actions to emulate intrusions.
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Learning Intrusion Prevention Policies through Optimal
Stopping
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Learning Intrusion Prevention Policies through Optimal
Stopping
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Threshold Properties of the Learned Policies, L = 1

0.0

0.2

0.4

0.6

0.8

1.0
p
ro

b
a
b
il

it
y

z = 0, t = 2 z = 0, t = 6

0 20 40 60 80
# total alerts x+ y

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
il

it
y

z = 0, t = 12

0 20 40 60 80
# total alerts x+ y

z = 0, t = 24

πθ(S) vs Novice

πθ(S) vs Experienced

πθ(S) vs Expert

b(1) vs Novice

b(1) vs Experienced

b(1) vs Expert

soft
thresholds



29/30

Threshold Properties of the Learned Policies, L = 3
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Conclusions & Future Work

I Conclusions:

I We develop a method to find learn intrusion prevention
policies

I (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement
learning and (5) domain randomization and generalization.

I We formulate intrusion prevention as a multiple stopping
problem

I We present a POMDP model of the use case
I We apply the stopping theory to establish structural results of the optimal policy

I Our research plans:
I Extending the theoretical model

I Relaxing simplifying assumptions (e.g. more dynamic defender actions)
I Active attacker

I Evaluation on real world infrastructures


