
1/30

Learning Intrusion Prevention Policies
Through Optimal Stopping

NSE Seminar

Kim Hammar & Rolf Stadler

kimham@kth.se & stadler@kth.se

Division of Network and Systems Engineering
KTH Royal Institute of Technology

Oct 8, 2021

2/30

Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

3/30

Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

We formulate this use case as an Optimal Stopping problem

4/30

Background on Optimal Stopping Problems
I The General Problem:

I A Markov process (st)T
t=1 is observed sequentially

I Two options per t: (i) continue to observe; or (ii) stop
I Find the optimal stopping time τ∗:

τ∗ = arg max
τ

Eτ

[
τ−1∑
t=1

γt−1RC
st st+1

+ γτ−1RS
sτ sτ

]
(1)

where RS
ss′ & RC

ss′ are the stop/continue rewards

I History:
I Studied in the 18th century to analyze a gambler’s fortune
I Formalized by Abraham Wald in 1947
I Since then it has been generalized and developed by (Chow,

Shiryaev & Kolmogorov, Bather, Bertsekas, etc.)

I Applications & Use Cases:
I Change detection, machine replacement, hypothesis testing,

gambling, selling decisions, queue management, advertisement
scheduling, the secretary problem, etc.

4/30

Background on Optimal Stopping Problems
I The General Problem:

I A Markov process (st)T
t=1 is observed sequentially

I Two options per t: (i) continue to observe; or (ii) stop
I History:

I Studied in the 18th century to analyze a gambler’s fortune
I Formalized by Abraham Wald in 19471
I Since then it has been generalized and developed by (Chow2,

Shiryaev & Kolmogorov3, Bather4, Bertsekas5, etc.)

1Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.
2Y. Chow, H. Robbins, and D. Siegmund. “Great expectations: The theory of optimal stopping”. In: 1971.
3Albert N. Shirayev. Optimal Stopping Rules. Reprint of russian edition from 1969. Springer-Verlag Berlin,

2007.
4John Bather. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. USA:

John Wiley and Sons, Inc., 2000. isbn: 0471976490.
5Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena

Scientific, 2005.

4/30

Background on Optimal Stopping Problems
I The General Problem:

I A Markov process (st)T
t=1 is observed sequentially

I Two options per t: (i) continue to observe; or (ii) stop
I History:

I Studied in the 18th century to analyze a gambler’s fortune
I Formalized by Abraham Wald in 1947
I Since then it has been generalized and developed by (Chow,

Shiryaev & Kolmogorov, Bather, Bertsekas, etc.)
I Applications & Use Cases:

I Change detection6, selling decisions7, queue management8,
advertisement scheduling9, etc.

6Alexander G. Tartakovsky et al. “Detection of intrusions in information systems by sequential change-point
methods”. In: Statistical Methodology 3.3 (2006). issn: 1572-3127. doi:
https://doi.org/10.1016/j.stamet.2005.05.003. url:
https://www.sciencedirect.com/science/article/pii/S1572312705000493.

7Jacques du Toit and Goran Peskir. “Selling a stock at the ultimate maximum”. In: The Annals of Applied
Probability 19.3 (2009). issn: 1050-5164. doi: 10.1214/08-aap566. url:
http://dx.doi.org/10.1214/08-AAP566.

8Arghyadip Roy et al. “Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision
Processes”. In: CoRR (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

9Vikram Krishnamurthy, Anup Aprem, and Sujay Bhatt. “Multiple stopping time POMDPs: Structural results
& application in interactive advertising on social media”. In: Automatica 95 (2018), pp. 385–398. issn:
0005-1098. doi: https://doi.org/10.1016/j.automatica.2018.06.013. url:
https://www.sciencedirect.com/science/article/pii/S0005109818303054.

https://doi.org/https://doi.org/10.1016/j.stamet.2005.05.003
https://www.sciencedirect.com/science/article/pii/S1572312705000493
https://doi.org/10.1214/08-aap566
http://dx.doi.org/10.1214/08-AAP566
http://arxiv.org/abs/1912.10325
1912.10325
https://doi.org/https://doi.org/10.1016/j.automatica.2018.06.013
https://www.sciencedirect.com/science/article/pii/S0005109818303054

4/30

Background on Optimal Stopping Problems
I The General Problem:

I A Markov process (st)T
t=1 is observed sequentially

I Two options per t: (i) continue to observe; or (ii) stop

I History:
I Studied in the 18th century to analyze a gambler’s fortune
I Formalized by Abraham Wald in 1947
I Since then it has been generalized and developed by (Chow, Shiryaev & Kolmogorov, Bather,

Bertsekas, etc.)

I Applications & Use Cases:
I Change detection10, selling decisions11, queue management12,

advertisement scheduling13, intrusion prevention14 etc.
10Alexander G. Tartakovsky et al. “Detection of intrusions in information systems by sequential change-point

methods”. In: Statistical Methodology 3.3 (2006). issn: 1572-3127. doi:
https://doi.org/10.1016/j.stamet.2005.05.003. url:
https://www.sciencedirect.com/science/article/pii/S1572312705000493.

11Jacques du Toit and Goran Peskir. “Selling a stock at the ultimate maximum”. In: The Annals of Applied
Probability 19.3 (2009). issn: 1050-5164. doi: 10.1214/08-aap566. url:
http://dx.doi.org/10.1214/08-AAP566.

12Arghyadip Roy et al. “Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision
Processes”. In: CoRR (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

13Vikram Krishnamurthy, Anup Aprem, and Sujay Bhatt. “Multiple stopping time POMDPs: Structural results
& application in interactive advertising on social media”. In: Automatica 95 (2018), pp. 385–398. issn:
0005-1098. doi: https://doi.org/10.1016/j.automatica.2018.06.013. url:
https://www.sciencedirect.com/science/article/pii/S0005109818303054.

14Kim Hammar and Rolf Stadler. Learning Intrusion Prevention Policies through Optimal Stopping. 2021. arXiv:
2106.07160 [cs.AI].

https://doi.org/https://doi.org/10.1016/j.stamet.2005.05.003
https://www.sciencedirect.com/science/article/pii/S1572312705000493
https://doi.org/10.1214/08-aap566
http://dx.doi.org/10.1214/08-AAP566
http://arxiv.org/abs/1912.10325
1912.10325
https://doi.org/https://doi.org/10.1016/j.automatica.2018.06.013
https://www.sciencedirect.com/science/article/pii/S0005109818303054
http://arxiv.org/abs/2106.07160

5/30

Optimal Stopping: The General Theory
I Two general approaches: the Markovian approach and the

martingale approach.

I The Markovian approach:
I Model the problem as a MDP or POMDP
I A policy π∗ that satisfies the Bellman-Wald equation is

optimal:

π∗(s) = arg max
{S,C}

[
E
[
RS

s
]︸ ︷︷ ︸

stop

,E
[
RC

s + γV ∗(s ′)
]︸ ︷︷ ︸

continue

]
∀s ∈ S

I Solve by backward induction, dynamic programming, or
reinforcement learning

I The martingale approach:
I Model the state process as an arbitrary stochastic process
I The reward of the optimal stopping time is given by the

smallest supermartingale that stochastically dominates the
process, called the Snell envelope [14].

5/30

Optimal Stopping: The General Theory
I Two general approaches: the Markovian approach and the

martingale approach.

I The Markovian approach:
I Model the problem as a MDP or POMDP
I A policy π∗ that satisfies the Bellman-Wald equation is

optimal:

π∗(s) = arg max
{S,C}

[
E
[
RS

s
]︸ ︷︷ ︸

stop

,E
[
RC

s + γV ∗(s ′)
]︸ ︷︷ ︸

continue

]
∀s ∈ S

I Solve by backward induction, dynamic programming, or
reinforcement learning

I The martingale approach:
I Model the state process as an arbitrary stochastic process
I The reward of the optimal stopping time is given by the

smallest supermartingale that stochastically dominates the
process, called the Snell envelope [14].

5/30

Optimal Stopping: The General Theory

I Two general approaches: the Markovian approach and the
martingale approach.

I The Markovian approach:
I Model the problem as a MDP or POMDP
I A policy π∗ that satisfies the Bellman-Wald equation is optimal
I Solve by backward induction, dynamic programming, or

reinforcement learning

I The martingale approach:
I Model the state process as an arbitrary stochastic process
I The reward of the optimal stopping time is given by the

smallest supermartingale that stochastically dominates the
process, called the Snell envelope15.

15J. L. Snell. “Applications of martingale system theorems”. In: Transactions of the American Mathematical
Society 73 (1952), pp. 293–312.

6/30

Formulating Intrusion Prevention as a Stopping Problem

time-step t = 1

t
t = T

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I Intrusion Prevention as Optimal Stopping Problem:
I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?
I We formalize this problem with a POMDP

6/30

Formulating Intrusion Prevention as a Stopping Problem

time-step t = 1

t
t = T

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I Intrusion Prevention as Optimal Stopping Problem:
I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?
I We formalize this problem with a POMDP

6/30

Formulating Intrusion Prevention as a Stopping Problem

time-step t = 1

t
t = T

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I Intrusion Prevention as Optimal Stopping Problem:
I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?
I We formalize this problem with a POMDP

6/30

Formulating Intrusion Prevention as a Stopping Problem

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I Intrusion Prevention as Optimal Stopping Problem:
I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?
I We formalize this problem with a POMDP

6/30

Formulating Intrusion Prevention as a Stopping Problem

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
affect the intrusion

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I Intrusion Prevention as Optimal Stopping Problem:
I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?
I We formalize this problem with a POMDP

6/30

Formulating Intrusion Prevention as a Stopping Problem

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
affect the intrusion

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I Intrusion Prevention as Optimal Stopping Problem:
I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?
I We formalize this problem with a POMDP

6/30

Formulating Intrusion Prevention as a Stopping Problem

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
affect the intrusion

Episode
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

I Intrusion Prevention as Optimal Stopping Problem:
I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?
I We formalize this problem with a POMDP

7/30

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
Login attempts ∆z , stops remaining
lt ∈ {1, .., L},
fXYZ (∆x ,∆y ,∆z |st , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service. Penalty:

false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

intrusion starts
Qt = 1

intrusion prevented
lt ≤ lA

lt = 0
final stop

t ≥ It + Tint
intrusion succeeds

t ≥ It + Tint
episode ends

5 10 15 20 25
intrusion start time t

0.0

0.5

1.0

C
D
F
I t

(t
)

It ∼ Ge(p = 0.2)

7/30

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
Login attempts ∆z , stops remaining
lt ∈ {1, .., L},
fXYZ (∆x ,∆y ,∆z |st , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service. Penalty:

false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

intrusion starts
Qt = 1

intrusion prevented
lt ≤ lA

lt = 0
final stop

t ≥ It + Tint
intrusion succeeds

t ≥ It + Tint
episode ends

5 10 15 20 25
intrusion start time t

0.0

0.5

1.0

C
D
F
I t

(t
)

It ∼ Ge(p = 0.2)

7/30

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
Login attempts ∆z , stops remaining
lt ∈ {1, .., L},
fXYZ (∆x ,∆y ,∆z |st , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service. Penalty:

false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

intrusion starts
Qt = 1

intrusion prevented
lt ≤ lA

lt = 0
final stop

t ≥ It + Tint
intrusion succeeds

t ≥ It + Tint
episode ends

5 10 15 20 25
intrusion start time t

0.0

0.5

1.0

C
D
F
I t

(t
)

It ∼ Ge(p = 0.2)

7/30

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
Login attempts ∆z , stops remaining
lt ∈ {1, .., L},
fXYZ (∆x ,∆y ,∆z |st , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service. Penalty:

false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

intrusion starts
Qt = 1

intrusion prevented
lt ≤ lA

lt = 0
final stop

t ≥ It + Tint
intrusion succeeds

t ≥ It + Tint
episode ends

5 10 15 20 25
intrusion start time t

0.0

0.5

1.0

C
D
F
I t

(t
)

It ∼ Ge(p = 0.2)

7/30

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
Login attempts ∆z , stops remaining
lt ∈ {1, .., L},
fXYZ (∆x ,∆y ,∆z |st , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service. Penalty:

false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

intrusion starts
Qt = 1

intrusion prevented
lt ≤ lA

lt = 0
final stop

t ≥ It + Tint
intrusion succeeds

t ≥ It + Tint
episode ends

5 10 15 20 25
intrusion start time t

0.0

0.5

1.0

C
D
F
I t

(t
)

It ∼ Ge(p = 0.2)

7/30

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
Login attempts ∆z , stops remaining
lt ∈ {1, .., L},
fXYZ (∆x ,∆y ,∆z |st , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service. Penalty:

false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

intrusion starts
Qt = 1

intrusion prevented
lt ≤ lA

lt = 0
final stop

t ≥ It + Tint
intrusion succeeds

t ≥ It + Tint
episode ends

5 10 15 20 25
intrusion start time t

0.0

0.5

1.0

C
D
F
I t

(t
)

It ∼ Ge(p = 0.2)

7/30

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
Login attempts ∆z , stops remaining
lt ∈ {1, .., L},
fXYZ (∆x ,∆y ,∆z |st , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service. Penalty:

false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

intrusion starts
Qt = 1

intrusion prevented
lt ≤ lA

lt = 0
final stop

t ≥ It + Tint
intrusion succeeds

t ≥ It + Tint
episode ends

5 10 15 20 25
intrusion start time t

0.0

0.5

1.0

C
D
F
I t

(t
)

It ∼ Ge(p = 0.2)

7/30

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
Login attempts ∆z , stops remaining
lt ∈ {1, .., L},
fXYZ (∆x ,∆y ,∆z |st , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service. Penalty:

false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0

intrusion starts
Qt = 1

intrusion prevented
lt ≤ lA

lt = 0
final stop

t ≥ It + Tint
intrusion succeeds

t ≥ It + Tint
episode ends

5 10 15 20 25
intrusion start time t

0.0

0.5

1.0

C
D
F
I t

(t
)

It ∼ Ge(p = 0.2)

We analyze the optimal policy using optimal stopping theory

8/30

Threshold Properties of the Optimal Defender Policy (1/4)

I Belief States:
I The belief state bt ∈ B is defined as bt(st) = P[st |ht]
I bt is a sufficient statistic of st based on

ht = (ρ1, a1, o1, . . . , at−1, ot) ∈ H
I B is the unit (|S| − 1)-simplex

I Characterizing the Optimal Policy π∗:
I To characterize the optimal policy π∗ we partition B based on

optimal actions and stops remaining l .
I st ∈ {0, 1}. bt has two components: bt(0) = P[st = 0|ht] and

bt(1) = P[st = 1|ht]
I Since bt(0) + bt(1) = 1, bt is completely characterized by

bt(1), (bt(0) = 1− bt(1))
I Hence, B is the unit interval [0, 1]
I Stopping sets S l = {b(1) ∈ [0, 1] : π∗l

(
b(1)

)
= S}

I Continue sets C l = {b(1) ∈ [0, 1] : π∗l
(
b(1)

)
= C}

8/30

Threshold Properties of the Optimal Defender Policy (1/4)

I Belief States:
I The belief state bt ∈ B is defined as bt(st) = P[st |ht]
I bt is a sufficient statistic of st based on

ht = (ρ1, a1, o1, . . . , at−1, ot) ∈ H
I B is the unit (|S| − 1)-simplex

B(3): 2-dimensional unit-simplex

0.25 0.55

0.2

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(0.25, 0.55, 0.2)

B(2): 1-dimensional unit-simplex

(1, 0) (0, 1)

0.4 0.6
(0.4, 0.6)

8/30

Threshold Properties of the Optimal Defender Policy (1/4)

I Belief States:
I The belief state bt ∈ B is defined as bt(st) = P[st |ht]
I bt is a sufficient statistic of st based on

ht = (ρ1, a1, o1, . . . , at−1, ot) ∈ H
I B is the unit (|S| − 1)-simplex

I Characterizing the Optimal Policy π∗:
I To characterize the optimal policy π∗ we partition B based on

optimal actions and stops remaining l .
I st ∈ {0, 1}. bt has two components: bt(0) = P[st = 0|ht] and

bt(1) = P[st = 1|ht]
I Since bt(0) + bt(1) = 1, bt is completely characterized by

bt(1), (bt(0) = 1− bt(1))
I Hence, B is the unit interval [0, 1]
I Stopping sets S l = {b(1) ∈ [0, 1] : π∗l

(
b(1)

)
= S}

I Continue sets C l = {b(1) ∈ [0, 1] : π∗l
(
b(1)

)
= C}

8/30

Threshold Properties of the Optimal Defender Policy (1/4)

I Belief States:
I The belief state bt ∈ B is defined as bt(st) = P[st |ht]
I bt is a sufficient statistic of st based on

ht = (ρ1, a1, o1, . . . , at−1, ot) ∈ H
I B is the unit (|S| − 1)-simplex

I Characterizing the Optimal Policy π∗:
I To characterize the optimal policy π∗ we partition B based on

optimal actions and stops remaining l .
I st ∈ {0, 1}. bt has two components: bt(0) = P[st = 0|ht] and

bt(1) = P[st = 1|ht]
I Since bt(0) + bt(1) = 1, bt is completely characterized by

bt(1), (bt(0) = 1− bt(1))
I Hence, B is the unit interval [0, 1]
I Stopping sets S l = {b(1) ∈ [0, 1] : π∗l

(
b(1)

)
= S}

I Continue sets C l = {b(1) ∈ [0, 1] : π∗l
(
b(1)

)
= C}

8/30

Threshold Properties of the Optimal Defender Policy (1/4)

I Belief States:
I The belief state bt ∈ B is defined as bt(st) = P[st |ht]
I bt is a sufficient statistic of st based on

ht = (ρ1, a1, o1, . . . , at−1, ot) ∈ H
I B is the unit (|S| − 1)-simplex

I Characterizing the Optimal Policy π∗:
I To characterize the optimal policy π∗ we partition B based on

optimal actions and stops remaining l .
I st ∈ {0, 1}. bt has two components: bt(0) = P[st = 0|ht] and

bt(1) = P[st = 1|ht]
I Since bt(0) + bt(1) = 1, bt is completely characterized by

bt(1), (b(0) = 1− b(1))
I Hence, B is the unit interval [0, 1]
I Stopping sets S l = {b(1) ∈ [0, 1] : π∗l

(
b(1)

)
= S}

I Continue sets C l = {b(1) ∈ [0, 1] : π∗l
(
b(1)

)
= C}

8/30

Threshold Properties of the Optimal Defender Policy (1/4)

I Belief States:
I The belief state bt ∈ B is defined as bt(st) = P[st |ht]
I bt is a sufficient statistic of st based on

ht = (ρ1, a1, o1, . . . , at−1, ot) ∈ H
I B is the unit (|S| − 1)-simplex

I Characterizing the Optimal Policy π∗:
I To characterize the optimal policy π∗ we partition B based on

optimal actions and stops remaining l .
I st ∈ {0, 1}. bt has two components: bt(0) = P[st = 0|ht] and

bt(1) = P[st = 1|ht]
I Since bt(0) + bt(1) = 1, bt is completely characterized by

bt(1), (bt(0) = 1− bt(1))
I Hence, B is the unit interval [0, 1]
I Stopping sets S l = {b(1) ∈ [0, 1] : π∗l

(
b(1)

)
= S}

I Continue sets C l = {b(1) ∈ [0, 1] : π∗l
(
b(1)

)
= C}

9/30

Threshold Properties of the Optimal Defender Policy (2/4)

Theorem

1. S l−1 ⊆ S l for l = 2, . . . L.
2. If L = 1, there exists an optimal threshold α∗ ∈ [0, 1] and an

optimal policy of the form:

π∗(b(1)) = S ⇐⇒ b(1) ≥ α∗ (2)

3. If L ≥ 1 and fXYZ , is totally positive of order 2 (TP2), there
exists L optimal thresholds α∗l ∈ [0, 1] and an optimal policy
of the form:

π∗l (b(1)) = S ⇐⇒ b(1) ≥ α∗l , l = 1, . . . , L (3)

where α∗l is decreasing in l .

9/30

Threshold Properties of the Optimal Defender Policy (2/4)

Theorem

1. S l−1 ⊆ S l for l = 2, . . . L.
2. If L = 1, there exists an optimal threshold α∗ ∈ [0, 1] and an

optimal policy of the form:

π∗(b(1)) = S ⇐⇒ b(1) ≥ α∗ (4)

3. If L ≥ 1 and fXYZ , is totally positive of order 2 (TP2), there
exists L optimal thresholds α∗l ∈ [0, 1] and an optimal policy
of the form:

π∗l (b(1)) = S ⇐⇒ b(1) ≥ α∗l , l = 1, . . . , L (5)

where α∗l is decreasing in l .

9/30

Threshold Properties of the Optimal Defender Policy (2/4)

Theorem

1. S l−1 ⊆ S l for l = 2, . . . L.
2. If L = 1, there exists an optimal threshold α∗ ∈ [0, 1] and an

optimal policy of the form:

π∗(b(1)) = S ⇐⇒ b(1) ≥ α∗ (6)

3. If L ≥ 1 and fXYZ , is totally positive of order 2 (TP2), there
exists L optimal thresholds α∗l ∈ [0, 1] and an optimal policy
of the form:

π∗l (b(1)) = S ⇐⇒ b(1) ≥ α∗l , l = 1, . . . , L (7)

where α∗l is decreasing in l .

9/30

Threshold Properties of the Optimal Defender Policy (2/4)

Theorem

1. S l−1 ⊆ S l for l = 2, . . . L.
2. If L = 1, there exists an optimal threshold α∗ ∈ [0, 1] and an

optimal policy of the form:

π∗(b(1)) = S ⇐⇒ b(1) ≥ α∗ (8)

3. If L ≥ 1 and fXYZ , is totally positive of order 2 (TP2), there
exists L optimal thresholds α∗l ∈ [0, 1] and an optimal policy
of the form:

π∗l (b(1)) = S ⇐⇒ b(1) ≥ α∗l , l = 1, . . . , L (9)

where α∗l is decreasing in l .

10/30

Threshold Properties of the Optimal Defender Policy (3/4)

b(1)
0 1

belief space B = [0, 1]

10/30

Threshold Properties of the Optimal Defender Policy (3/4)

b(1)
0 1

belief space B = [0, 1]

S 1

α∗1

10/30

Threshold Properties of the Optimal Defender Policy (3/4)

b(1)
0 1

belief space B = [0, 1]

S 1
S 2

α∗1α∗2

10/30

Threshold Properties of the Optimal Defender Policy (3/4)

b(1)
0 1

belief space B = [0, 1]

S 1
S 2
...

S L

α∗1α∗2α∗L . . .

11/30

Threshold Properties of the Optimal Defender Policy (3/4)

π∗(b(1))

0
0

1

1

action a

b(1)continue

stop

belief space B = [0, 1]

continue set C 1

stopping set S 1

threshold α∗

12/30

Threshold Properties of the Optimal Defender Policy (4/4)

I What are the implications of these results about π∗?

I Can be used to validate policies

I The optimal policy is simple to implement in practical systems

I The optimal policy can be computed efficiently for very large
models

12/30

Threshold Properties of the Optimal Defender Policy (4/4)

I What are the implications of these results about π∗?

I Can be used to validate policies

I The optimal policy is simple to implement in practical systems

I The optimal policy can be computed efficiently for very large
models

12/30

Threshold Properties of the Optimal Defender Policy (4/4)

I What are the implications of these results about π∗?

I Can be used to validate policies

I The optimal policy is simple to implement in practical systems

I The optimal policy can be computed efficiently for very large
models

12/30

Threshold Properties of the Optimal Defender Policy (4/4)

I What are the implications of these results about π∗?

I Can be used to validate policies

I The optimal policy is simple to implement in practical systems

I The optimal policy can be computed efficiently for very large
models

13/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

13/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

13/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

13/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

13/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

13/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

13/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

13/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

13/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

14/30

Emulation System Σ Configuration Space
σi

** *

172.18.4.0/24172.18.19.0/24172.18.61.0/24

Emulated Infrastructures

R1 R1 R1

Emulation
A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

I The set of virtualized configurations define a
configuration space Σ = 〈A,O,S,U , T ,V〉.

I A specific emulation is based on a configuration σi ∈ Σ.

14/30

Emulation System Σ Configuration Space
σi

** *

172.18.4.0/24172.18.19.0/24172.18.61.0/24

Emulated Infrastructures

R1 R1 R1

Emulation
A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

I The set of virtualized configurations define a
configuration space Σ = 〈A,O,S,U , T ,V〉.

I A specific emulation is based on a configuration σi ∈ Σ.

15/30

Emulation: Execution Times of Replicated Operations

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

F
re

q
u

en
cy

Action execution times (costs)

|N | = 25

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

Action execution times (costs)

|N | = 50

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

Action execution times (costs)

|N | = 75

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

Action execution times (costs)

|N | = 100

I Fundamental issue: Computational methods for policy
learning typically require samples on the order of 100k − 10M.

I =⇒ Infeasible to optimize in the emulation system

16/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

17/30

From Emulation to Simulation: System Identification

R1

m1m2 m3

m4

m5m6

m7

m1,1 . . . m1,k
[]

m5,1 . . . m5,k
[]

m6,1 . . . m6,k
[]

m2,1
...

m2,k




m3,1
...

m3,k




m7,1
...

m7,k




m4,1
...

m4,k




Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉

a1 a2 a3 . . .

s1 s2 s3 . . .

o1 o2 o3 . . .

I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)

17/30

From Emulation to Simulation: System Identification

R1

m1m2 m3

m4

m5m6

m7

m1,1 . . . m1,k
[]

m5,1 . . . m5,k
[]

m6,1 . . . m6,k
[]

m2,1
...

m2,k




m3,1
...

m3,k




m7,1
...

m7,k




m4,1
...

m4,k




Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉

a1 a2 a3 . . .

s1 s2 s3 . . .

o1 o2 o3 . . .

I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)

17/30

From Emulation to Simulation: System Identification

R1

m1m2 m3

m4

m5m6

m7

m1,1 . . . m1,k
[]

m5,1 . . . m5,k
[]

m6,1 . . . m6,k
[]

m2,1
...

m2,k




m3,1
...

m3,k




m7,1
...

m7,k




m4,1
...

m4,k




Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉

a1 a2 a3 . . .

s1 s2 s3 . . .

o1 o2 o3 . . .

I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)

18/30

System Identification: Estimated Empirical Distributions

0 100 200 300 400 500 600

10−3

f̂
X
Y
Z

(∆
x
)

Severe IDS Alerts ∆x

0 50 100 150 200 250 300

10−3

10−1

f̂
X
Y
Z

(∆
y
)

Warning IDS Alerts ∆y

0 20 40 60 80 100

10−2

f̂
X
Y
Z

(∆
z
)

Login Attempts ∆z

vs Novice vs Experienced vs Expert No intrusion

19/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

20/30

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=1 γ
t−1rt+1

]
I Learning Algorithm:

I Represent π by πθ
I Define objective J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st , at)
]

I Maximize J(θ) by stochastic gradient ascent

∇θJ(θ) = Eπθ

[
∇θ log πθ(a|h)︸ ︷︷ ︸

actor

Aπθ (h, a)︸ ︷︷ ︸
critic

]

I Method:
1. Simulate a series of POMDP episodes
2. Use episode outcomes and trajectories to estimate
∇θJ(θ)

3. Update policy πθ with stochastic gradient ascent
4. Continue until convergence

Agent

Environment

at

st+1

rt+1

20/30

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=1 γ
t−1rt+1

]
I Learning Algorithm:

I Represent π by πθ
I Define objective J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st , at)
]

I Maximize J(θ) by stochastic gradient ascent

∇θJ(θ) = Eπθ

[
∇θ log πθ(a|h)︸ ︷︷ ︸

actor

Aπθ (h, a)︸ ︷︷ ︸
critic

]

I Method:
1. Simulate a series of POMDP episodes
2. Use episode outcomes and trajectories to estimate
∇θJ(θ)

3. Update policy πθ with stochastic gradient ascent
4. Continue until convergence

Agent

Environment

at

st+1

rt+1

20/30

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=1 γ
t−1rt+1

]
I Learning Algorithm:

I Represent π by πθ
I Define objective J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st , at)
]

I Maximize J(θ) by stochastic gradient ascent

∇θJ(θ) = Eπθ

[
∇θ log πθ(a|s)︸ ︷︷ ︸

actor

Aπθ (s, a)︸ ︷︷ ︸
critic

]

I Method:
1. Simulate a series of POMDP episodes
2. Use episode outcomes and trajectories to estimate
∇θJ(θ)

3. Update policy πθ with stochastic gradient ascent
4. Continue until convergence

Agent

Environment

at

st+1

rt+1

20/30

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=1 γ
t−1rt+1

]
I Learning Algorithm:

I Represent π by πθ
I Define objective J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st , at)
]

I Maximize J(θ) by stochastic gradient ascent

∇θJ(θ) = Eπθ

[
∇θ log πθ(a|h)︸ ︷︷ ︸

actor

Aπθ (h, a)︸ ︷︷ ︸
critic

]

I Method:
1. Simulate a series of POMDP episodes
2. Use episode outcomes and trajectories to estimate
∇θJ(θ)

3. Update policy πθ with stochastic gradient ascent
4. Continue until convergence

Agent

Environment

at

st+1

rt+1

20/30

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E[
∑T

t=1
γt−1rt+1]

I Learning Algorithm:
I Represent π by πθ

I Define objective J(θ) = Eπθ
[
∑T

t=1
γt−1r(st , at)]

I Maximize J(θ) by stochastic gradient ascent
∇θJ(θ) = Eπθ [∇θ log πθ(a|h)Aπθ (h, a)]

I Method:
1. Simulate a series of POMDP episodes
2. Use episode outcomes and trajectories to estimate ∇θJ(θ)
3. Update policy πθ with stochastic gradient ascent
4. Continue until convergence

I Finding Effective Security Strategies through Reinforcement
Learning and Self-Playa

I Learning Intrusion Prevention Policies through Optimal
Stoppingb

aKim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM). Izmir, Turkey, Nov. 2020.

bKim Hammar and Rolf Stadler. Learning Intrusion Prevention Policies through Optimal Stopping. 2021. arXiv:
2106.07160 [cs.AI].

Agent

Environment

at

st+1

rt+1

http://arxiv.org/abs/2106.07160

21/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

22/30

The Target Infrastructure

I Topology:
I 30 Application Servers, 1 Gateway/IDS (Snort), 3 Clients, 1 Attacker,

1 Defender

I Services
I 31 SSH, 8 HTTP, 1 DNS, 1 Telnet, 2 FTP, 1 MongoDB, 2 SMTP, 2

Teamspeak 3, 22 SNMP, 12 IRC, 1 Elasticsearch, 12 NTP, 1 Samba,
19 PostgreSQL

I RCE Vulnerabilities
I 1 CVE-2010-0426, 1 CVE-2014-6271, 1 SQL Injection, 1

CVE-2015-3306, 1 CVE-2016-10033, 1 CVE-2015-5602, 1
CVE-2015-1427, 1 CVE-2017-7494

I 5 Brute-force vulnerabilities

I Operating Systems
I 23 Ubuntu-20, 1 Debian 9:2, 1 Debian Wheezy, 6 Debian Jessie, 1

Kali

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Target infrastructure.

23/30

Emulating the Client Population

Client Functions Application servers

1 HTTP, SSH, SNMP, ICMP N2,N3,N10,N12
2 IRC, PostgreSQL, SNMP N31,N13,N14,N15,N16
3 FTP, DNS, Telnet N10,N22,N4

Table 1: Emulated client population; each client interacts with
application servers using a set of functions at short intervals.

24/30

Emulating the Defender’s Actions

lt Action Command in the Emulation

3 Reset users deluser –remove-home <username>
2 Blacklist IPs iptables -A INPUT -s <ip> -j DROP
1 Block gateway iptables -A INPUT -i eth0 -j DROP

Table 2: Commands used to implement the defender’s stop actions in the
emulation.

25/30

Static Attackers to Emulate Intrusions

Time-steps t NoviceAttacker ExperiencedAttacker ExpertAttacker

1-It ∼ Ge(0.2) (Intrusion has not started) (Intrusion has not started) (Intrusion has not started)
It + 1-It + 6 Recon1, brute-force attacks (SSH,Telnet,FTP) Recon2, CVE-2017-7494 exploit on N4, Recon3, CVE-2017-7494 exploit on N4,

on N2,N4,N10, login(N2,N4,N10), brute-force attack (SSH) on N2, login(N2,N4), login(N4), backdoor(N4)
backdoor(N2,N4,N10) backdoor(N2,N4), Recon2 Recon3, SQL Injection on N18

It + 7-It + 10 Recon1, CVE-2014-6271 on N17, CVE-2014-6271 on N17, login(N17) login(N18), backdoor(N18),
login(N17), backdoor(N17) backdoor(N17), SSH brute-force attack on N12 Recon3, CVE-2015-1427 on N25

It + 11-It + 14 SSH brute-force attack on N12, login(N12) login(N12), CVE-2010-0426 exploit on N12, login(N25), backdoor(N25),
CVE-2010-0426 exploit on N12, Recon1 Recon2, SQL Injection on N18 Recon3, CVE-2017-7494 exploit on N27

It + 15-It + 16 login(N18), backdoor(N18) login(N27), backdoor(N27)
It + 17-It + 19 Recon2, CVE-2015-1427 on N25, login(N25)

Table 3: Attacker actions to emulate intrusions.

26/30

Learning Intrusion Prevention Policies through Optimal
Stopping

−100

0

100

v
s

N
o
v
ic

e

Reward per episode

2

4

6

8

10
Episode length (steps)

0.00

0.25

0.50

0.75

1.00
P[intrusion interrupted]

0.00

0.25

0.50

0.75

1.00

P[early stopping]

0

1

2

3

4

5
Duration of intrusion

−100

0

100

v
s

E
x
p
e
r
ie

n
c
e
d

2

4

6

8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0

1

2

3

4

5

0 200K 400K
training episodes

−100

0

100

v
s

E
x
p
e
r
t

0 200K 400K
training episodes

2

4

6

8

0 200K 400K
training episodes

0.00

0.25

0.50

0.75

1.00

0 200K 400K
training episodes

0.00

0.25

0.50

0.75

1.00

0 200K 400K
training episodes

0

1

2

3

4

5

πθ emulation πθ simulation t = 6 baseline (∆x + ∆y) ≥ 1 baseline Upper bound π∗

Learning curves of training defender policies against static attackers,
L = 1.

27/30

Learning Intrusion Prevention Policies through Optimal
Stopping

−200

0

200

v
s

N
o
v
ic

e

Reward per episode

10

15

20

Episode length (steps)

0.6

0.7

0.8

0.9

1.0
P[intrusion interrupted]

0.0

0.2

0.4

P[early stopping]

1

2

3

4
Duration of intrusion

−200

0

v
s

E
x
p
e
r
ie

n
c
e
d

5

10

15

20

0.6

0.7

0.8

0.9

1.0

0.0

0.2

0.4

1

2

3

4

5

0 250K 500K 750K
training episodes

−150

−100

−50

0

50

v
s

E
x
p
e
r
t

0 250K 500K 750K
training episodes

2

4

6

8

10

0 250K 500K 750K
training episodes

0.6

0.7

0.8

0.9

1.0

0 250K 500K 750K
training episodes

0.0

0.2

0.4

0 250K 500K 750K
training episodes

2

4

6

πθ emulation πθ simulation t = 6 baseline (∆x + ∆y) ≥ 1 baseline Upper bound π∗

Learning curves of training defender policies against static attackers,
L = 3.

28/30

Threshold Properties of the Learned Policies, L = 1

0.0

0.2

0.4

0.6

0.8

1.0
p
ro

b
a
b
il

it
y

z = 0, t = 2 z = 0, t = 6

0 20 40 60 80
total alerts x+ y

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
il

it
y

z = 0, t = 12

0 20 40 60 80
total alerts x+ y

z = 0, t = 24

πθ(S) vs Novice

πθ(S) vs Experienced

πθ(S) vs Expert

b(1) vs Novice

b(1) vs Experienced

b(1) vs Expert

soft
thresholds

29/30

Threshold Properties of the Learned Policies, L = 3

0.00

0.25

0.50

0.75

1.00

v
s

N
o
v
ic

e

z = 0, t = 5− lt z = 0, t = 10− lt

0.00

0.25

0.50

0.75

1.00

v
s

E
x
p
e
r
ie

n
c
e
d

0 50 100 150 200
total alerts x+ y

0.00

0.25

0.50

0.75

1.00

v
s

E
x
p
e
r
t

0 50 100 150 200
total alerts x+ y

πlt=3
θ (S) πlt=2

θ (S) πlt=1
θ (S) b(1)

P

first stop second & third stop
not used

second stop

first stop

third stop
not used

all stops used
when x + y ≥ 40

30/30

Conclusions & Future Work

I Conclusions:

I We develop a method to find learn intrusion prevention
policies

I (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement
learning and (5) domain randomization and generalization.

I We formulate intrusion prevention as a multiple stopping
problem

I We present a POMDP model of the use case
I We apply the stopping theory to establish structural results of the optimal policy

I Our research plans:
I Extending the theoretical model

I Relaxing simplifying assumptions (e.g. more dynamic defender actions)
I Active attacker

I Evaluation on real world infrastructures

