
1/43

Intrusion Response through Optimal Stopping
New York University - Invited Talk

Kim Hammar

kimham@kth.se
Division of Network and Systems Engineering

KTH Royal Institute of Technology

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
affect the intrusion

Episode



2/43

Use Case: Intrusion Response

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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Intrusion Response from the Defender’s Perspective
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When to take a defensive action?
Which action to take?
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Formulating Intrusion Response as a Stopping Problem

time-step t = 1

t
t = T
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I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?
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Formulating Network Intrusion as a Stopping Problem
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I The system evolves in discrete time-steps.
I The attacker observes the infrastructure (IDS, log files, etc.).
I The first stop action decides when to intrude.
I The attacker can make 2 stops.
I The second stop action terminates the intrusion.
I Based on the observations & the defender’s belief, when

is it optimal to stop?
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A Dynkin Game Between the Defender and the Attacker1

Attacker

Defender

t = 1
t = T

τ1,1 τ1,2 τ1,3

τ2,1

t

Stopped

Game episode
Intrusion

I We formalize the Dynkin game as a zero-sum partially
observed one-sided stochastic game.

I The defender is the maximizing player
I The attacker is the minimizing player

1E.B Dynkin. “A game-theoretic version of an optimal stopping problem”. In: Dokl. Akad. Nauk SSSR 385
(1969), pp. 16–19.
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Our Approach for Solving the Dynkin Game
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Outline
I Use Case & Approach

I Use case: Intrusion response
I Approach: Optimal stopping

I Theoretical Background & Formal Model
I Optimal stopping problem definition
I Formulating the Dynkin game as a one-sided POSG

I Structure of π∗
I Stopping sets Sl are connected and nested, S1 is convex.
I Existence of multi-threshold best response strategies π̃1, π̃2.

I Efficient Algorithms for Learning π∗
I T-SPSA: A stochastic approximation algorithm to learn π∗
I T-FP: A Fictitious-play algorithm to approximate (π∗1 , π∗2 )

I Evaluation Results
I Target system, digital twin, system identification, & results

I Conclusions & Future Work
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Optimal Stopping: A Brief History

I History:
I Studied in the 18th century to analyze a gambler’s fortune
I Formalized by Abraham Wald in 19472
I Since then it has been generalized and developed by (Chow3,

Shiryaev & Kolmogorov4, Bather5, Bertsekas6, etc.)

2Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.
3Y. Chow, H. Robbins, and D. Siegmund. “Great expectations: The theory of optimal stopping”. In: 1971.
4Albert N. Shirayev. Optimal Stopping Rules. Reprint of russian edition from 1969. Springer-Verlag Berlin,

2007.
5John Bather. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. USA:

John Wiley and Sons, Inc., 2000. isbn: 0471976490.
6Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena

Scientific, 2005.
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The Optimal Stopping Problem
I The General Problem:

I A stochastic process (st)T
t=1 is observed sequentially

I Two options per t: (i) continue to observe; or (ii) stop
I Find the optimal stopping time τ∗:

τ∗ = arg max
τ

Eτ

[
τ−1∑
t=1

γt−1RC
st st+1

+ γτ−1RS
sτ sτ

]
(1)

where RS
ss′ & RC

ss′ are the stop/continue rewards
I The L− lth stopping time τl is:

τl = inf{t : t > τl−1, at = S}, l ∈ 1, .., L, τL+1 = 0

I τl is a random variable from sample space Ω to N, which is
dependent on hτ = ρ1, a1, o1, . . . , aτ−1, oτ and independent of
aτ , oτ+1, . . .

I We consider the class of stopping times Tt = {τ ≤ t} ∈ Fk
where Fk is the natural filtration on ht .

I Solution approaches: the Markovian approach and the
martingale approach.
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Optimal Stopping: Solution Approaches

I The Markovian approach:
I Model the problem as a MDP or POMDP
I A policy π∗ that satisfies the Bellman-Wald equation is

optimal:

π∗(s) = arg max
{S,C}

[
E
[
RS

s
]︸ ︷︷ ︸

stop

,E
[
RC

s + γV ∗(s ′)
]︸ ︷︷ ︸

continue

]
∀s ∈ S

I Solve by backward induction, dynamic programming, or
reinforcement learning
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Optimal Stopping: Solution Approaches
I The Markovian approach:

I Assume all rewards are received upon stopping: R∅s
I V ∗(s) majorizes R∅s if V ∗(s) ≥ R∅s ∀s ∈ S
I V ∗(s) is excessive if V ∗(s) ≥

∑
s′ PC

s′sV ∗(s ′) ∀s ∈ S
I V ∗(s) is the minimal excessive function which majorizes R∅s .

s

R∅s
∑

s′
PC
ss′V

∗(s′)
V ∗(s)
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Optimal Stopping: Solution Approaches

I The martingale approach:

I Model the state process as an arbitrary stochastic process
I The reward of the optimal stopping time is given by the

smallest supermartingale that stochastically dominates the
process, called the Snell envelope7.

7J. L. Snell. “Applications of martingale system theorems”. In: Transactions of the American Mathematical
Society 73 (1952), pp. 293–312.
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The Defender’s Optimal Stopping problem as a POMDP

I States:
I Intrusion state st ∈ {0, 1}, terminal ∅.

I Observations:
I IDS Alerts weighted by priority ot , stops

remaining lt ∈ {1, .., L}, f (ot |st)
I Actions:

I “Stop” (S) and “Continue” (C)
I Rewards:

I Reward: security and service. Penalty:
false alarms and intrusions

I Transition probabilities:
I Bernoulli process (Qt)T

t=1 ∼ Ber(p)
defines intrusion start It ∼ Ge(p)

I Objective and Horizon:
I max Eπ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0intrusion starts

Qt = 1

final stop
lt = 0

intrusion prevented
lt = 0

5 10 15 20 25
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I t
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It ∼ Ge(p = 0.2)
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The Attacker’s Optimal Stopping problem as an MDP

I States:
I Intrusion state st ∈ {0, 1}, terminal ∅,

defender belief b ∈ [0, 1].
I Actions:

I “Stop” (S) and “Continue” (C)
I Rewards:

I Reward: denial of service and intrusion.
Penalty: detection

I Transition probabilities:
I Intrusion starts and ends when the

attacker takes stop actions
I Objective and Horizon:

I max Eπ
[∑T∅

t=1 r(st , at)
]
, T∅

0 1

∅

t ≥ 1 t ≥ 2
intrusion starts

at = 1

final stop detected
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The Dynkin Game as a One-Sided POSG
I Players:

I Player 1 is the defender and player 2 is the
attacker. Hence, N = {1, 2}.

I Actions:
I A1 = A2 = {S,C}.

I Rewards:
I Zero-sum game. Defender maximizes, attacker

minimizes.
I Observability:

I The defender has partial observability. The
attacker has full observability.

I Obective functions:

J1(π1, π2) = E(π1,π2)

[ T∑
t=1

γt−1R(st , at)
]

(3)

J2(π1, π2) = −J1(π1, π2) (4)
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Outline
I Use Case & Approach

I Use case: Intrusion response
I Approach: Optimal stopping

I Theoretical Background & Formal Model
I Optimal stopping problem definition
I Formulating the Dynkin game as a one-sided POSG

I Structure of π∗
I Stopping sets Sl are connected and nested, S1 is convex.
I Existence of multi-threshold best response strategies π̃1, π̃2.

I Efficient Algorithms for Learning π∗
I T-SPSA: A stochastic approximation algorithm to learn π∗
I T-FP: A Fictitious-play algorithm to approximate (π∗1 , π∗2 )

I Evaluation Results
I Target system, digital twin, system identification, & results

I Conclusions & Future Work
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Structural Result: Optimal Multi-Threshold Policy

Theorem
Given the intrusion response POMDP, the following holds:
1. Sl−1 ⊆ Sl for l = 2, . . . L.
2. If L = 1, there exists an optimal threshold α∗ ∈ [0, 1] and an

optimal defender policy of the form:

π∗L(b(1)) = S ⇐⇒ b(1) ≥ α∗ (5)

3. If L ≥ 1 and fX is totally positive of order 2 (TP2), there
exists L optimal thresholds α∗l ∈ [0, 1] and an optimal
defender policy of the form:

π∗l (b(1)) = S ⇐⇒ b(1) ≥ α∗l , l = 1, . . . , L (6)

where α∗l is decreasing in l .
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Structural Result: Optimal Multi-Threshold Policy
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belief space B = [0, 1]
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Lemma: V ∗(b) is Piece-wise Linear and Convex
Lemma
V ∗(b) is piece-wise linear and convex.

I Belief space B is the |S − 1| dimensional unit simplex.
I |B| =∞, high-dimensional (|S − 1|) continuous vector
I Infinite set of deterministic policies: maxπ:B→A Eπ

[∑
t rt
]

B(3): 2-dimensional unit-simplex

0.25 0.55

0.2

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(0.25, 0.55, 0.2)

B(2): 1-dimensional unit-simplex

(1, 0) (0, 1)

0.4 0.6
(0.4, 0.6)
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Lemma: V ∗(b) is Piece-wise Linear and Convex

I Only finite set of belief points b ∈ B are “reachable”.
I Finite horizon =⇒ finite set of “conditional plans” H → A

I Set of pure strategies in an extensive game against
nature

N.{a1} N.{a2} N.{a3}

1.{a1, o1} 1.{a1, o2} 1.{a1, o3} 1.{a3, o3}1.{a3, o2}1.{a3, o1}1.{a2, o1} 1.{a2, o2} 1.{a2, o3}

1.∅ |A| = 2, |O| = 3,T = 2
a1 a2

a3

o1 o2 o3 o1 o2 o3 o3o2o1

a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a2a1a2a1a2a1
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Lemma: V ∗(b) is Piece-wise Linear and Convex
I For each conditional plan β ∈ Γ:

I Define vector αβ ∈ R|S| such that αβi = V β(i)
I =⇒ V β(b) = bTαβ (linear in b).

I Thus, V ∗(b) = maxβ∈Γ bTαβ (piece-wise linear and convex8)

b

bα1

bα2

bα3

bα4

bα5

0

8Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:
Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282–304. issn: 0030364X, 15265463. url:
http://www.jstor.org/stable/169635.

http://www.jstor.org/stable/169635
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Proofs: S1 is convex10

I S1 is convex if:
I for any two belief states b1, b2 ∈ S1
I any convex combination of b1, b2 is also in S1
I i.e. b1, b2 ∈ S1 =⇒ λb1 + (1− λ)b2 ∈ S1 for λ ∈ [0, 1].

I Since V ∗(b) is convex:

V ∗(λb1 + (1− λ)b2) ≤ λV ∗(b1) + (1− λ)V (b2)

I Since b1, b2 ∈ S1:

V ∗(b1) = Q∗(b1, S) S=stop
V ∗(b2) = Q∗(b2, S) S=stop

10Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104
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Proofs: S1 is convex13

Proof.
Assume b1, b2 ∈ S1. Then for any λ ∈ [0, 1]:

V ∗
(
λb1(1) + (1− λ)b2(1)

)
≤ λV ∗

(
b1(1)) + (1− λ)V ∗(b2(1)

)
= λQ∗(b1, S) + (1− λ)Q∗(b2,S)

13Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104


20/43

Proofs: S1 is convex14

Proof.
Assume b1, b2 ∈ S1. Then for any λ ∈ [0, 1]:

V ∗
(
λb1(1) + (1− λ)b2(1)

)
≤ λV ∗

(
b1(1)) + (1− λ)V ∗(b2(1)

)
= λQ∗(b1, S) + (1− λ)Q∗(b2,S)
= λR∅b1 + (1− λ)R∅b2
=
∑

s
(λb1(s) + (1− λ)b2(s))R∅s

14Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104


20/43

Proofs: S1 is convex15

Proof.
Assume b1, b2 ∈ S1. Then for any λ ∈ [0, 1]:

V ∗
(
λb1(1) + (1− λ)b2(1)

)
≤ λV ∗

(
b1(1)) + (1− λ)V ∗(b2(1)

)
= λQ∗(b1, S) + (1− λ)Q∗(b2,S)
= λR∅b1 + (1− λ)R∅b2
=
∑

s
(λb1(s) + (1− λ)b2(s))R∅s

= Q∗
(
λb1 + (1− λ)b2,S

)

15Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104


20/43

Proofs: S1 is convex16

Proof.
Assume b1, b2 ∈ S1. Then for any λ ∈ [0, 1]:

V ∗
(
λb1(1) + (1− λ)b2(1)

)
≤ λV ∗

(
b1(1)) + (1− λ)V ∗(b2(1)

)
= λQ∗(b1, S) + (1− λ)Q∗(b2,S)
= λR∅b1 + (1− λ)R∅b2
=
∑

s
(λb1(s) + (1− λ)b2(s))R∅s

= Q∗
(
λb1 + (1− λ)b2,S

)
≤ V ∗

(
λb1(1) + (1− λ)b2(1)

)
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because there is just a single stop.
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= V ∗

(
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)
b1, b2 ∈ S1 =⇒ (λb1 + (1− λ)) ∈ S1. Therefore S1 is
convex.
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Proofs: S1 is convex18

b(1)
0 1

belief space B = [0, 1]

S1

α∗1 β∗1

18Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104
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Proofs: Single-threshold policy is optimal if L = 119
I In our case, B = [0, 1]. We know S1 is a convex subset of B.
I Consequence, S1 = [α∗, β∗]. We show that β∗ = 1.
I If b(1) = 1, using our definition of the reward function, the

Bellman equation states:

π∗(1) ∈ arg max
{S,C}

[
150 + V ∗(∅)︸ ︷︷ ︸

a=S

,−90 +
∑
o∈O
Z(o, 1,C)V ∗

(
bo

C (1)
)

︸ ︷︷ ︸
a=C

]

= arg max
{S,C}

[
150︸︷︷︸
a=S

,−90 + V ∗(1)︸ ︷︷ ︸
a=C

]
= S i.e π∗(1) =Stop

I Hence 1 ∈ S1. It follows that S1 = [α∗, 1] and:

π∗
(
b(1)

)
=
{
S if b(1) ≥ α∗

C otherwise

19Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In:
International Conference on Network and Service Management (CNSM 2021).
http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf. Izmir, Turkey, 2021.

http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf
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Proofs: Single-threshold policy is optimal if L = 1

b(1)
0 1

belief space B = [0, 1]

S1

α∗1
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Proofs: Nested stopping sets Sl ⊆ S1+l
22

I We want to show that Sl ⊆ S1+l
I Bellman Equation:

π∗l−1(b(1)) ∈ arg max
{S,C}

[

RS
b(1),l−1 +

∑
o

Po
b(1)V

∗
l−2
(
bo(1)

)
︸ ︷︷ ︸

Stop

,RC
b(1),l−1 +

∑
o

Po
b(1)V

∗
l−1
(
bo(1)

)
︸ ︷︷ ︸

Continue

]

I =⇒ optimal to stop if:

RS
b(1),l−1 −R

C
b(1),l−1 ≥

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l−2

(
bo(1)

))
13

I Hence, if b(1) ∈ Sl−1, then (13) holds.
22T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of

Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.

https://doi.org/10.1007/BF00938445
https://doi.org/10.1007/BF00938445
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24

I We want to show that Sl ⊆ S1+l
I Bellman Equation:

π∗l−1(b(1)) ∈ arg max
{S,C}

[

RS
b(1),l−1 +

∑
o

Po
b(1)V

∗
l−2
(
bo(1)

)
︸ ︷︷ ︸

Stop

,RC
b(1),l−1 +

∑
o

Po
b(1)V

∗
l−1
(
bo(1)

)
︸ ︷︷ ︸

Continue

]

I =⇒ optimal to stop if:

RS
b(1),l−1 −R

C
b(1),l−1 ≥

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l−2

(
bo(1)

))
(13)

I Hence, if b(1) ∈ Sl−1, then (13) holds.
24T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of

Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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I

RS
b(1) −R

C
b(1) ≥

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l−2

(
bo(1)

))

I We want to show that b(1) ∈ Sl−2 =⇒ b(1) ∈ Sl−1.
I Sufficient to show that LHS above is non-decreasing in l and

RHS is non-increasing in l .
I LHS is non-decreasing by definition of reward function.
I We show that RHS is non-increasing by induction on

k = 0, 1 . . . where k is the iteration of value iteration.
I We know limk→∞ V k(b) = V ∗(b).
I Define W k

l
(
b(1)

)
= V k

l
(
b(1)

)
− V k

l−1
(
b(1)

)
25T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
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I

RS
b(1) −R

C
b(1) ≥

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l−2

(
bo(1)

))

I We want to show that b(1) ∈ Sl−2 =⇒ b(1) ∈ Sl−1.
I Sufficient to show that LHS above is non-decreasing in l and

RHS is non-increasing in l .
I LHS is non-decreasing by definition of reward function.
I We show that RHS is non-increasing by induction on

k = 0, 1 . . . where k is the iteration of value iteration.
I We know limk→∞ V k(b) = V ∗(b).
I Define W k

l
(
b(1)

)
= V k

l
(
b(1)

)
− V k

l−1
(
b(1)

)
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27

I

RS
b(1) −R

C
b(1) ≥

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l−2

(
bo(1)

))

I We want to show that b(1) ∈ Sl−2 =⇒ b(1) ∈ Sl−1.
I Sufficient to show that LHS above is non-decreasing in l and

RHS is non-increasing in l .
I LHS is non-decreasing by definition of reward function.
I We show that RHS is non-increasing by induction on

k = 0, 1 . . . where k is the iteration of value iteration.
I We know limk→∞ V k(b) = V ∗(b).
I Define W k

l
(
b(1)

)
= V k

l
(
b(1)

)
− V k

l−1
(
b(1)

)
27T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
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28

Proof.
W 0

l
(
b(1)

)
= 0 ∀l . Assume W k−1

l−1
(
b(1)

)
−W k−1

l
(
b(1)

)
≥ 0.

28T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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29

Proof.
W 0

l
(
b(1)

)
= 0 ∀l . Assume W k−1

l−1
(
b(1)

)
−W k−1

l
(
b(1)

)
≥ 0.

W k
l−1
(
b(1)

)
−W k

l (b(1)) = 2V k
l−1 − V k

l−2 − V k
l

29T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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30

Proof.
W 0

l
(
b(1)

)
= 0 ∀l . Assume W k−1

l−1
(
b(1)

)
−W k−1

l
(
b(1)

)
≥ 0.

W k
l−1
(
b(1)

)
−W k

l (b(1)) = 2V k
l−1 − V k

l−2 − V k
l =

2Rak
l−1

b(1) −R
ak

l
b(1) −R

ak
l−2

b(1)

+
∑
o∈O

Po
b(1)

(
2V k−1

l−1−ak
l−1

(
b(1)

)
− V k−1

l−ak
l

(
b(1)

)
− V k−1

l−2−ak
l−2

(
b(1)

))
Want to show that the above is non-negative. This depends on
ak

l , ak
l−1, ak

l−2.

30T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.

https://doi.org/10.1007/BF00938445
https://doi.org/10.1007/BF00938445


23/43

Proofs: Nested stopping sets Sl ⊆ S1+l
31

Proof.
W 0

l
(
b(1)

)
= 0 ∀l . Assume W k−1

l−1
(
b(1)

)
−W k−1

l
(
b(1)

)
≥ 0.

W k
l−1
(
b(1)

)
−W k

l (b(1)) = 2V k
l−1 − V k

l−2 − V k
l =

2Rak
l−1

b(1) −R
ak

l
b(1) −R

ak
l−2

b(1)

+
∑
o∈O

Po
b(1)

(
2V k−1

l−1−ak
l−1

(
b(1)

)
− V k−1

l−ak
l

(
b(1)

)
− V k−1

l−2−ak
l−2

(
b(1)

))
Want to show that the above is non-negative. This depends on
ak

l , ak
l−1, ak

l−2.

There are four cases to consider: (1) b(1) ∈ S k
l ∩S k

l−1 ∩S k
l−2;

(2) b(1) ∈ S k
l ∩ C k

l−1 ∩ C k
l−2; (3) b(1) ∈ S k

l ∩S k
l−1 ∩ C k

l−2; (4)
b(1) ∈ C k

l ∩ C k
l−1 ∩ C k

l−2.

The other cases, e.g. b(1) ∈ S k
l ∩ C k

l−1 ∩S k
l−2, can be discarded

due to the induction assumption.
31T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
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Proof.
If b(1) ∈ S k

l ∩S k
l−1 ∩S k

l−2, then:

W k
l−1
(
b(1)

)
−W k

l
(
b(1)

)
=
∑
o∈O

Po
b(1)

(
W k−1

l−2
(
bo(1)

)
−W k−1

l−1
(
bo(1)

))
which is non-negative by the induction hypothesis.

32T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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Proof.
If b(1) ∈ S k

l ∩S k
l−1 ∩S k

l−2, then:

W k
l−1
(
b(1)

)
−W k

l
(
b(1)

)
=
∑
o∈O

Po
b(1)

(
W k−1

l−2
(
bo(1)

)
−W k−1

l−1
(
bo(1)

))
which is non-negative by the induction hypothesis.

If b(1) ∈ S k
l ∩ C k

l−1 ∩ C k
l−2, then:

W k
l
(
b(1)

)
−W k

l−1
(
b(1)

)
= RC

b(1) −R
S
b(1) +

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))

33T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
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Proof.
If b(1) ∈ S k

l ∩S k
l−1 ∩S k

l−2, then:

W k
l−1
(
b(1)

)
−W k

l
(
b(1)

)
=
∑
o∈O

Po
b(1)

(
W k−1

l−2
(
bo(1)

)
−W k−1

l−1
(
bo(1)

))
which is non-negative by the induction hypothesis.

If b(1) ∈ S k
l ∩ C k

l−1 ∩ C k
l−2, then:

W k
l
(
b(1)

)
−W k

l−1
(
b(1)

)
= RC

b(1) −R
S
b(1) +

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))
Bellman eq. implies, if b(1) ∈ Cl−1, then:

RC
b(1) −R

S
b(1) +

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))
≥ 0

34T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
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Proof.
If b(1) ∈ S k

l ∩S k
l−1 ∩ C k

l−2, then:

W k
l−1
(
b(1)

)
−W k

l
(
b(1)

)
= RS

b(1) −R
C
b(1) −

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))

35T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
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Proof.
If b(1) ∈ S k

l ∩S k
l−1 ∩ C k

l−2, then:

W k
l−1
(
b(1)

)
−W k

l
(
b(1)

)
= RS

b(1) −R
C
b(1) −

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))

Bellman eq. implies, if b(1) ∈ S k
l−1, then:

RS
b(1) −R

C
b(1) −

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))
≥ 0

36T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
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Proof.
If b(1) ∈ S k

l ∩S k
l−1 ∩ C k

l−2, then:

W k
l−1
(
b(1)

)
−W k

l
(
b(1)

)
= RS

b(1) −R
C
b(1) −

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))

Bellman eq. implies, if b(1) ∈ S k
l−1, then:

RS
b(1) −R

C
b(1) −

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))
≥ 0

If b(1) ∈ C k
l ∩ C k

l−1 ∩ C k
l−2, then:

W k
l−1
(
b(1)

)
−W k

l
(
b(1)

)
=
∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

)
−W k−1

l
(
bo(1)

))
which is non-negative by the induction hypothesis.

37T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.

https://doi.org/10.1007/BF00938445
https://doi.org/10.1007/BF00938445


24/43

Proofs: Nested stopping sets Sl ⊆ S1+l
38

S1 ⊆ S2 still allows:

b(1)
0 1

S1

S2S2

We need to show that Sl is connected, for all l ∈ {1, . . . , L}.

38T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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Proofs: Connected stopping sets Sl
39

I Sl is connected if b(1) ∈ Sl , b′(1) ≥ b(1) =⇒ b′(1) ∈ Sl

I If b(1) ∈ Sl we use the Bellman eq. to obtain:

RS
b(1) −R

C
b(1) +

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l

(
bo(1)

))
≥ 0

I We need to show that the above inequality holds for any
b′(1) ≥ b(1)

39Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

https://doi.org/10.1109/TNSM.2022.3176781
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Proofs: Monotone belief update

Lemma (Monotone belief update)
Given two beliefs b1(1) ≥ b2(1), if the transition probabilities and
the observation probabilities are Totally Positive of Order 2
(TP2), then bo

a,1(1) ≥ bo
a,2(1), where bo

a,1(1) and bo
a,2(1) denote

the beliefs updated with the Bayesian filter after taking action
a ∈ A and observing o ∈ O.

See Theorem 10.3.1 and proof on pp 225,238 in40

40Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104
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Proofs: Necessary Condition, Total Positivity of Order 241

I A row-stochastic matrix is totally positive of order 2 (TP2) if:
I The rows of the matrix are stochastically monotone
I Equivalently, all second-order minors are non-negative.

I Example:

A =

0.3 0.5 0.2
0.2 0.4 0.4
0.1 0.2 0.7

 (14)

There are
(3
2
)2 second-order minors:

det
[
0.3 0.5
0.2 0.4

]
= 0.02, det

[
0.2 0.4
0.1 0.2

]
= 0, ...etc. (15)

Since all minors are non-negative, the matrix is TP2

41Samuel Karlin. “Total positivity, absorption probabilities and applications”. In: Transactions of the American
Mathematical Society 111 (1964).
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Proofs: Connected stopping sets Sl
42

I Since the transition probabilities are TP2 by definition and we
assume the observation probabilities are TP2, the condition
for showing that the stopping sets are connected reduces to
the following.

I Show that the below expression is weakly increasing in b(1).

RS
b(1) −R

C
b(1) + V ∗l−1

(
b(1)

)
− V ∗l

(
b(1)

)
I We prove this by induction on k.

42Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

https://doi.org/10.1109/TNSM.2022.3176781
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Proofs: Connected stopping sets Sl
43

Assume RS
b(1) −R

C
b(1) + V k−1

l−1
(
b(1)

)
− V k−1

l
(
b(1)

)
is weakly

increasing in b(1).

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
= RS

b(1) −R
C
b(1)+

R
ak

l−1
b(1) −R

ak
l

b(1) +
∑
o∈O

Po
b(1)

(
V k−1

l−1−ak
l−1

(
bo(1)

)
− V k−1

l−ak
l

(
bo(1)

))

43Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.
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Assume RS
b(1) −R

C
b(1) + V k−1

l−1
(
b(1)

)
− V k−1

l
(
b(1)

)
is weakly

increasing in b(1).

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
= RS

b(1) −R
C
b(1)+

R
ak

l−1
b(1) −R

ak
l

b(1) +
∑
o∈O

Po
b(1)

(
V k−1

l−1−ak
l−1

(
bo(1)

)
− V k−1

l−ak
l

(
bo(1)

))
Want to show that the above is weakly-increasing in b(1). This
depends on ak

l and ak
l−1.

44Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.
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Assume RS
b(1) −R

C
b(1) + V k−1

l−1
(
b(1)

)
− V k−1

l
(
b(1)

)
is weakly

increasing in b(1).

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
= RS

b(1) −R
C
b(1)+

R
ak

l−1
b(1) −R

ak
l

b(1) +
∑
o∈O

Po
b(1)

(
V k−1

l−1−ak
l−1

(
bo(1)

)
− V k−1

l−ak
l

(
bo(1)

))
Want to show that the above is weakly-increasing in b(1). This
depends on ak

l and ak
l−1.

There are three cases to consider:
1. b(1) ∈ S k

l ∩S k
l−1

2. b(1) ∈ S k
l ∩ C k

l−1
3. b(1) ∈ C k

l ∩ C k
l−1

45Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.
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46

Proof.
If b(1) ∈ Sl ∩Sl−1, then:

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
=

RS
b(1) −R

C
b(1)

∑
o∈O

Po
b(1)

(
V k−1

l−2
(
bo(1)

)
− V k−1

l−1
(
bo(1)

))
which is weakly increasing in b(1) by the induction hypothesis.

46Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

https://doi.org/10.1109/TNSM.2022.3176781
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Proofs: Connected stopping sets Sl
47

Proof.
If b(1) ∈ S k

l ∩S k
l−1, then:

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
=

RS
b(1) −R

C
b(1)

∑
o∈O

Po
b(1)

(
V k−1

l−2
(
bo(1)

)
− V k−1

l−1
(
bo(1)

))
which is weakly increasing in b(1) by the induction hypothesis.

If b(1) ∈ S k
l ∩ C k

l−1, then:

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
=∑

o∈O
Po

b(1)

(
V k−1

l−1
(
bo(1)

)
− V k−1

l−1
(
bo(1)

))
= 0

which is trivially weakly increasing in b(1).
47Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on

Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

https://doi.org/10.1109/TNSM.2022.3176781
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Proofs: Connected stopping sets Sl
48

Proof.
If b(1) ∈ C k

l ∩ C k
l−1, then:

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
=

RS
b(1) −R

C
b(1)

∑
o∈O

Po
b(1)

(
V k−1

l−1
(
bo(1)

)
− V k−1

l
(
bo(1)

))
which is weakly increasing in b(1) by the induction hypothesis.

Hence, if b(1) ∈ Sl and b′(1) ≥ b(1) then b′(1) ∈ Sl .
Therefore, Sl is connected.

48Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

https://doi.org/10.1109/TNSM.2022.3176781
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Proofs: Optimal multi-threshold policy π∗l 49
We have shown that:
I S1 = [α∗1, 1]
I Sl ⊆ Sl+1
I Sl is connected (convex) for l = 1, . . . , L

It follows that, Sl = [α∗l , 1] and α∗1 ≥ α∗2 ≥ . . . ≥ α∗L.

b(1)
0 1

belief space B = [0, 1]

S1

S2

...

SL

α∗1α∗2α∗L . . .

49Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

https://doi.org/10.1109/TNSM.2022.3176781
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Structural Result: Best Response Multi-Threshold Attacker
Strategy

Theorem
Given the intrusion MDP, the following holds:
1. Given a defender strategy π1 ∈ Π1 where π1(S|b(1)) is

non-decreasing in b(1) and π1(S|1) = 1, then there exist
values β̃0,1, β̃1,1, . . ., β̃0,L, β̃1,L ∈ [0, 1] and a best response
strategy π̃2 ∈ B2(π1) for the attacker that satisfies

π̃2,l (0, b(1)) = C ⇐⇒ π1,l (S|b(1)) ≥ β̃0,l (16)
π̃2,l (1, b(1)) = S ⇐⇒ π1,l (S|b(1)) ≥ β̃1,l (17)

for l ∈ {1, . . . , L}.

Proof.
Follows the same idea as the proof for the defender case.
See50.

50Kim Hammar and Rolf Stadler. Learning Near-Optimal Intrusion Responses Against Dynamic Attackers. 2023.
doi: 10.48550/ARXIV.2301.06085. url: https://arxiv.org/abs/2301.06085.

https://doi.org/10.48550/ARXIV.2301.06085
https://arxiv.org/abs/2301.06085
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Threshold-SPSA to Learn Best Responses

0.5 1

0.5

1

π̃1,l ,θ̃(1)(S|b(1))
threshold σ(θ̃(1)

l )

b(1)
0

A mixed threshold strategy where σ(θ̃(1)
l ) is the threshold.

I Parameterizes π̃i through threshold vectors according to
Theorem 1:

ϕ(a, b) ,
(
1 +

(b(1− σ(a))
σ(a)(1− b)

)−20)−1
(18)

π̃i ,θ̃(i)
(
S|b(1)

)
, ϕ

(
θ̃

(i)
l , b(1)

)
(19)

I The parameterized strategies are mixed (and differentiable)
strategies that approximate threshold strategies.

I Update threshold vectors θ(i) using SPSA iteratively.



35/43

Threshold-Fictitious Play to Approximate an Equilibrium

π̃2 ∈ B2(π1)

π2

π1

π̃1 ∈ B1(π2)

π̃′2 ∈ B2(π′1)

π′2

π′1

π̃′1 ∈ B1(π′2)

. . .

π∗2 ∈ B2(π∗1)

π∗1 ∈ B1(π∗2)

Fictitious play: iterative averaging of best responses.

I Learn best response strategies iteratively through T-SPSA
I Average best responses to approximate the equilibrium
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Comparison against State-of-the-art Algorithms
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PPO ThresholdSPSA Shiryaev’s Algorithm (α = 0.75) HSVI upper bound
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Creating a Digital Twin of the Target Infrastructure
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Our Approach for Automated Network Security
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System Identification

f̂
O
(o

t
|0
)

Probability distribution of # IPS alerts weighted by priority ot
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Fitted model Distribution st = 0 Distribution st = 1

I The distribution fO of defender observations (system metrics)
is unknown.

I We fit a Gaussian mixture distribution f̂O as an estimate of fO
in the target infrastructure.

I For each state s, we obtain the conditional distribution f̂O|s
through expectation-maximization.
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Learning Curves in Simulation and Digital Twin
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Conclusions

I We develop a method to
automatically learn security strategies.

I We apply the method to an intrusion
response use case.

I We design a solution framework guided
by the theory of optimal stopping.

I We present several theoretical results
on the structure of the optimal
solution.

I We show numerical results in a
realistic emulation environment.
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Current and Future Work

Timest

st+1

st+2

st+3

. . .

rt+1

rt+2

rt+3

rrT

1. Extend use case
I Additional defender actions
I Utilize SDN controller and NFV-based defenses
I Increase observation space and attacker model
I More heterogeneous client population

2. Extend solution framework
I Model-predictive control
I Rollout-based techniques
I Extend system identification algorithm

3. Extend theoretical results
I Exploit symmetries and causal structure
I Utilize theory to improve sample efficiency
I Decompose solution framework hierarchically


