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Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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Our Method for Finding Effective Security Strategies
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Outline
I Use Case & Approach:

I Intrusion Prevention
I System identification
I Reinforcement learning and dynamic programming

I Formal Model & Background:
I Background: POMDPs and optimal stopping
I Multiple Stopping Problem POMDP

I Structure of π∗
I Structural result: Multi-Threshold policy
I Stopping sets Sl are connected and nested
I Conditions for Bayesian filter to be monotone in b
I Existence of optimal multi-threshold policy π∗l

I Conclusion
I Numerical evaluation results
I Conclusion & Future work
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Background: POMDPs

Stochastic
System
(Markov)

Noisy
Sensor

Bayesian
Filter

POMDP Controller
(Decision Maker)action at

observation
ot

Hidden Markov Model (HMM)

state
st

belief
bt

I POMDP: 〈S,A,Pat
st ,st+1 ,R

at
st ,st+1 , γ, ρ1,T ,O,Z〉

I Controlled hidden Markov model, states st ∈ S are hidden
I Agent observes history ht = (ρ1, a1, o1, . . . , at−1, ot) ∈ H
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Background: POMDPs
I st is Markov: P [st+1|st ] = P [st+1|s1, . . . , st ]
I =⇒ π∗(at |ht) = π∗(at |P[st |ht ]) = π∗(at |bt)
I Optimality (Bellman) Eq:

π∗(b) ∈ arg max
a∈A

[∑
s

b(s)Ra
s + γ

∑
o,s,s′
Z(o, s ′, a)b(s)Pa

ss′V ∗(bo
a )
]

I

P[st |ht ] = P[st |ot , at−1, ht−1]

= P[ot |st , at−1, ht−1]P[st |at−1, ht−1]
P[ot |at−1, ht−1] Bayes

=
Z(ot , st , at−1)

∑
st−1 P

at−1
st−1stP[st−1|ht−1]∑

s′
∑

s Z(ot , s ′, at−1)P[st−1|ht−1] Markov

I P[st−1|ht−1] with at , ot is a sufficient statistic for st
I bt , P[st−1|ht−1]: belief state at time t
I bt computed recursively using the equation above
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Background: POMDPs

B(3): 2-dimensional unit-simplex

0.25 0.55

0.2

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(0.25, 0.55, 0.2)

B(2): 1-dimensional unit-simplex

(1, 0) (0, 1)

0.4 0.6
(0.4, 0.6)

I b ∈ B, B is the unit (|S| − 1)-simplex

I To characterize π∗, partition B based on π∗(a|b)
I e.g. stopping set S and continuation set C
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B(3): 2-dimensional unit-simplex

Stopping set S

Switching curve
Γ

e1 e2

e3
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Background: POMDPs

I |B| =∞, high-dimensional (|S|) continuous vector
I Infinite set of deterministic policies: maxπ:B→A Eπ

[∑
t rt
]

I However, only finite set of belief points b ∈ B are “reachable”.
I Finite horizon =⇒ finite set of “conditional plans” H → A
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Background: POMDPs

I For each conditional plan β ∈ Γ:
I Define vector αβ ∈ R|S| such that αβi = V β(i)
I =⇒ V β(b) = bTαβ (linear in b).

I Thus, V ∗(b) = maxβ∈Γ bTαβ (piece-wise linear and convex1)

1Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:
Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282–304. issn: 0030364X, 15265463. url:
http://www.jstor.org/stable/169635.

http://www.jstor.org/stable/169635
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Background: Optimal Stopping

I History:
I Studied in the 18th century to analyze a gambler’s fortune
I Formalized by Abraham Wald in 19476
I Since then it has been generalized and developed by (Chow7,

Shiryaev & Kolmogorov8, Bather9, Bertsekas10, etc.)

6Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.
7Y. Chow, H. Robbins, and D. Siegmund. “Great expectations: The theory of optimal stopping”. In: 1971.
8Albert N. Shirayev. Optimal Stopping Rules. Reprint of russian edition from 1969. Springer-Verlag Berlin,

2007.
9John Bather. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. USA:

John Wiley and Sons, Inc., 2000. isbn: 0471976490.
10Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena

Scientific, 2005.
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Background: Optimal Stopping

I The General Problem:
I A stochastic process (st)T

t=1 is observed sequentially
I Two options per t: (i) continue to observe; or (ii) stop
I Find the optimal stopping time τ∗:

τ∗ = arg max
τ

Eτ

[
τ−1∑
t=1

γt−1RC
st st+1

+ γτ−1RS
sτ sτ

]
(1)

where RS
ss′ & RC

ss′ are the stop/continue rewards

I Solution approaches: the Markovian approach and the
martingale approach.



10/29

Background: Optimal Stopping

I The General Problem:
I A stochastic process (st)T

t=1 is observed sequentially
I Two options per t: (i) continue to observe; or (ii) stop
I Find the optimal stopping time τ∗:

τ∗ = arg max
τ

Eτ

[
τ−1∑
t=1

γt−1RC
st st+1

+ γτ−1RS
sτ sτ

]
(2)

where RS
ss′ & RC

ss′ are the stop/continue rewards

I Solution approaches: the Markovian approach and the
martingale approach.



10/29

Background: Optimal Stopping

I The Markovian approach:
I Model the problem as a MDP or POMDP
I A policy π∗ that satisfies the Bellman-Wald equation is

optimal:

π∗(s) = arg max
{S,C}

[
E
[
RS

s
]︸ ︷︷ ︸

stop

,E
[
RC

s + γV ∗(s ′)
]︸ ︷︷ ︸

continue

]
∀s ∈ S

I Solve by backward induction, dynamic programming, or
reinforcement learning

I The martingale approach:
I Model the state process as an arbitrary stochastic process
I The reward of the optimal stopping time is given by the

smallest supermartingale that stochastically dominates the
process, called the Snell envelope [13].
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11J. L. Snell. “Applications of martingale system theorems”. In: Transactions of the American Mathematical
Society 73 (1952), pp. 293–312.
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Background: Optimal Stopping
I Applications & Use Cases:

I Hypothesis testing12
I Change detection13,
I Selling decisions14,
I Queue management15,
I Industrial control16,
I Advertisement scheduling17, etc.

12Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.
13Alexander G. Tartakovsky et al. “Detection of intrusions in information systems by sequential change-point

methods”. In: Statistical Methodology 3.3 (2006). issn: 1572-3127. doi:
https://doi.org/10.1016/j.stamet.2005.05.003. url:
https://www.sciencedirect.com/science/article/pii/S1572312705000493.

14Jacques du Toit and Goran Peskir. “Selling a stock at the ultimate maximum”. In: The Annals of Applied
Probability 19.3 (2009). issn: 1050-5164. doi: 10.1214/08-aap566. url:
http://dx.doi.org/10.1214/08-AAP566.
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Formulating Intrusion Prevention as a Stopping Problem
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I The system evolves in discrete time-steps.
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can make L stops.
I Each stop is associated with a defensive action
I The final stop shuts down the infrastructure.
I Based on the observations, when is it optimal to stop?
I We formalize this problem with a POMDP
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A Partially Observed MDP Model for the Defender
I States:

I Intrusion state st ∈ {0, 1}, terminal ∅.
I Observations:

I Severe/Warning IDS Alerts (∆x ,∆y),
Login attempts ∆z , stops remaining
lt ∈ {1, .., L}, fXYZ (∆x ,∆y ,∆z |st)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service. Penalty:

false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅
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We analyze the structure of π∗ using POMDP & stopping theory
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Structural Result: Optimal Multi-Threshold Policy

Theorem
Given the intrusion prevention POMDP, the following holds:
1. Sl−1 ⊆ Sl for l = 2, . . . L.
2. If L = 1, there exists an optimal threshold α∗ ∈ [0, 1] and an

optimal policy of the form:

π∗L(b(1)) = S ⇐⇒ b(1) ≥ α∗ (3)

3. If L ≥ 1 and fXYZ is totally positive of order 2 (TP2), there
exists L optimal thresholds α∗l ∈ [0, 1] and an optimal policy
of the form:

π∗l (b(1)) = S ⇐⇒ b(1) ≥ α∗l , l = 1, . . . , L (4)

where α∗l is decreasing in l .
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Structural Result: Optimal Multi-Threshold Policy
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Proofs: S1 is convex24

I S1 is convex if:
I for any two belief states b1, b2 ∈ S1
I any convex combination of b1, b2 is also in S1
I i.e. b1, b2 ∈ S1 =⇒ λb1 + (1− λ)b2 ∈ S1 for λ ∈ [0, 1].

I Since V ∗(b) is convex:

V ∗(λb1 + (1− λ)b2) ≤ λV ∗(b1) + (1− λ)V (b2)

I Since b1, b2 ∈ S1:

V ∗(b1) = Q∗(b1, S) S=stop
V ∗(b2) = Q∗(b2, S) S=stop

24Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104
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Proofs: S1 is convex27

Proof.
Assume b1, b2 ∈ S1. Then for any λ ∈ [0, 1]:

V ∗
(
λb1(1) + (1− λ)b2(1)

)
≤ λV ∗

(
b1(1)) + (1− λ)V ∗(b2(1)

)
= λQ∗(b1, S) + (1− λ)Q∗(b2,S)

27Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104
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Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104
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Proofs: S1 is convex30

Proof.
Assume b1, b2 ∈ S1. Then for any λ ∈ [0, 1]:

V ∗
(
λb1(1) + (1− λ)b2(1)

)
≤ λV ∗

(
b1(1)) + (1− λ)V ∗(b2(1)

)
= λQ∗(b1, S) + (1− λ)Q∗(b2,S)
= λR∅b1 + (1− λ)R∅b2
=
∑

s
(λb1(s) + (1− λ)b2(s))R∅s

= Q∗
(
λb1 + (1− λ)b2,S

)
≤ V ∗

(
λb1(1) + (1− λ)b2(1)

)
the last inequality is because V ∗ is optimal. The second-to-last is
because there is just a single stop.

30Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.
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Proofs: S1 is convex31

Proof.
Assume b1, b2 ∈ S1. Then for any λ ∈ [0, 1]:

V ∗
(
λb1(1) + (1− λ)b2(1)

)
≤ λV ∗

(
b1(1)) + (1− λ)V ∗(b2(1)

)
= λQ∗(b1,S) + (1− λ)Q∗(b2, S)
= Q∗

(
λb1 + (1− λ)b2,S

)
≤ V ∗

(
λb1(1) + (1− λ)b2(1)

)
the last inequality is because V ∗ is optimal. The second-to-last is
because there is just a single stop. Hence:

Q∗
(
λb1 + (1− λ)b2,S

)
= V ∗

(
λb1(1) + (1− λ)b2(1)

)
b1, b2 ∈ S1 =⇒ (λb1 + (1− λ)) ∈ S1. Therefore S1 is
convex.
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Proofs: S1 is convex32

b(1)
0 1

belief space B = [0, 1]

S1

α∗1 β∗1

32Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104
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Proofs: Single-threshold policy is optimal if L = 133
I In our case, B = [0, 1]. We know S1 is a convex subset of B.
I Consequence, S1 = [α∗, β∗]. We show that β∗ = 1.
I If b(1) = 1, using our definition of the reward function, the

Bellman equation states:

π∗(1) ∈ arg max
{S,C}

[
150 + V ∗(∅)︸ ︷︷ ︸

a=S

,−90 +
∑
o∈O
Z(o, 1,C)V ∗

(
bo

C (1)
)

︸ ︷︷ ︸
a=C

]

= arg max
{S,C}

[
150︸︷︷︸
a=S

,−90 + V ∗(1)︸ ︷︷ ︸
a=C

]
= S i.e π∗(1) =Stop

I Hence 1 ∈ S1. It follows that S1 = [α∗, 1] and:

π∗
(
b(1)

)
=
{
S if b(1) ≥ α∗

C otherwise

33Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In:
International Conference on Network and Service Management (CNSM 2021).
https://arxiv.org/pdf/2106.07160.pdf. Izmir, Turkey, 2021.

https://arxiv.org/pdf/2106.07160.pdf
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Proofs: Single-threshold policy is optimal if L = 134
I In our case, B = [0, 1]. We know S1 is a convex subset of B.
I Consequence, S1 = [α∗, β∗]. We show that β∗ = 1.
I If b(1) = 1, using our definition of the reward function, the

Bellman equation states:

π∗(1) ∈ arg max
{S,C}

[
150 + V ∗(∅)︸ ︷︷ ︸

a=S

,−90 +
∑
o∈O
Z(o, 1,C)V ∗

(
bo

C (1)
)

︸ ︷︷ ︸
a=C

]

= arg max
{S,C}

[
150︸︷︷︸
a=S

,−90 + V ∗(1)︸ ︷︷ ︸
a=C

]
= S i.e π∗(1) =Stop

I Hence 1 ∈ S1. It follows that S1 = [α∗, 1] and:

π∗
(
b(1)

)
=
{
S if b(1) ≥ α∗

C otherwise

34Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In:
International Conference on Network and Service Management (CNSM 2021).
https://arxiv.org/pdf/2106.07160.pdf. Izmir, Turkey, 2021.
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Proofs: Single-threshold policy is optimal if L = 135
I In our case, B = [0, 1]. We know S1 is a convex subset of B.
I Consequence, S1 = [α∗, β∗]. We show that β∗ = 1.
I If b(1) = 1, using our definition of the reward function, the

Bellman equation states:

π∗(1) ∈ arg max
{S,C}

[
150 + V ∗(∅)︸ ︷︷ ︸

a=S

,−90 +
∑
o∈O
Z(o, 1,C)V ∗

(
bo

C (1)
)

︸ ︷︷ ︸
a=C

]

= arg max
{S,C}

[
150︸︷︷︸
a=S

,−90 + V ∗(1)︸ ︷︷ ︸
a=C

]
= S i.e π∗(1) =Stop

I Hence 1 ∈ S1. It follows that S1 = [α∗, 1] and:

π∗
(
b(1)

)
=
{
S if b(1) ≥ α∗

C otherwise

35Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In:
International Conference on Network and Service Management (CNSM 2021).
https://arxiv.org/pdf/2106.07160.pdf. Izmir, Turkey, 2021.

https://arxiv.org/pdf/2106.07160.pdf


19/29

Proofs: Single-threshold policy is optimal if L = 1

b(1)
0 1

belief space B = [0, 1]

S1

α∗1
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Proofs: Nested stopping sets Sl ⊆ S1+l
36

I If b(1) ∈ Sl−1, we use the Bellman eq. to obtain:
I

RS
b(1) −R

C
b(1) ≥

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l−2

(
bo(1)

))

I We show that LHS is non-decreasing in l and RHS is
non-increasing in l .

I LHS is non-decreasing by definition of reward function.
I We show that RHS is non-increasing by induction on

k = 0, 1 . . . where k is the iteration of value iteration.
I We know limk→∞ V k(b) = V ∗(b).
I Define W k

l
(
b(1)

)
= V k

l
(
b(1)

)
− V k

l−1
(
b(1)

)
36T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of

Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.

https://doi.org/10.1007/BF00938445
https://doi.org/10.1007/BF00938445
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Proofs: Nested stopping sets Sl ⊆ S1+l
37

I If b(1) ∈ Sl−1, we use the Bellman eq. to obtain:
I

RS
b(1) −R

C
b(1) ≥

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l−2

(
bo(1)

))

I We show that LHS is non-decreasing in l and RHS is
non-increasing in l .

I LHS is non-decreasing by definition of reward function.
I We show that RHS is non-increasing by induction on

k = 0, 1 . . . where k is the iteration of value iteration.
I We know limk→∞ V k(b) = V ∗(b).
I Define W k

l
(
b(1)

)
= V k

l
(
b(1)

)
− V k

l−1
(
b(1)

)
37T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of

Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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Proofs: Nested stopping sets Sl ⊆ S1+l
38

I If b(1) ∈ Sl−1, we use the Bellman eq. to obtain:
I

RS
b(1) −R

C
b(1) ≥

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l−2

(
bo(1)

))

I We show that LHS is non-decreasing in l and RHS is
non-increasing in l .

I LHS is non-decreasing by definition of reward function.
I We show that RHS is non-increasing by induction on

k = 0, 1 . . . where k is the iteration of value iteration.
I We know limk→∞ V k(b) = V ∗(b).
I Define W k

l
(
b(1)

)
= V k

l
(
b(1)

)
− V k

l−1
(
b(1)

)
38T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of

Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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Proofs: Nested stopping sets Sl ⊆ S1+l
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I If b(1) ∈ Sl−1, we use the Bellman eq. to obtain:
I

RS
b(1) −R

C
b(1) ≥

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l−2

(
bo(1)

))

I We show that LHS is non-decreasing in l and RHS is
non-increasing in l .

I LHS is non-decreasing by definition of reward function.
I We show that RHS is non-increasing by induction on

k = 0, 1 . . . where k is the iteration of value iteration.
I We know limk→∞ V k(b) = V ∗(b).
I Define W k

l
(
b(1)

)
= V k

l
(
b(1)

)
− V k

l−1
(
b(1)

)
39T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of

Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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Proofs: Nested stopping sets Sl ⊆ S1+l
40

Proof.
W 0

l
(
b(1)

)
= 0 ∀l . Assume W k−1

l−1
(
b(1)

)
−W k−1

l
(
b(1)

)
≥ 0.

40T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.

https://doi.org/10.1007/BF00938445
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Proofs: Nested stopping sets Sl ⊆ S1+l
41

Proof.
W 0

l
(
b(1)

)
= 0 ∀l . Assume W k−1

l−1
(
b(1)

)
−W k−1

l
(
b(1)

)
≥ 0.

W k
l−1
(
b(1)

)
−W k

l (b(1)) = 2V k
l−1 − V k

l−2 − V k
l

41T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.

https://doi.org/10.1007/BF00938445
https://doi.org/10.1007/BF00938445
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Proofs: Nested stopping sets Sl ⊆ S1+l
42

Proof.
W 0

l
(
b(1)

)
= 0 ∀l . Assume W k−1

l−1
(
b(1)

)
−W k−1

l
(
b(1)

)
≥ 0.

W k
l−1
(
b(1)

)
−W k

l (b(1)) = 2V k
l−1 − V k

l−2 − V k
l = 2Rak

l−1
b(1) −R

ak
l

b(1) −R
ak

l−2
b(1)

+
∑
o∈O

Po
b(1)

(
2V k−1

l−1−ak
l−1

(
b(1)

)
− V k−1

l−ak
l

(
b(1)

)
− V k−1

l−2−ak
l−2

(
b(1)

))
Want to show that the above is non-negative. This depends on
ak

l , ak
l−1, ak

l−2.

42T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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Proofs: Nested stopping sets Sl ⊆ S1+l
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Proof.
W 0

l
(
b(1)

)
= 0 ∀l . Assume W k−1

l−1
(
b(1)

)
−W k−1

l
(
b(1)

)
≥ 0.

W k
l−1
(
b(1)

)
−W k

l (b(1)) = 2V k
l−1 − V k

l−2 − V k
l = 2Rak

l−1
b(1) −R

ak
l

b(1) −R
ak

l−2
b(1)

+
∑
o∈O

Po
b(1)

(
2V k−1

l−1−ak
l−1

(
b(1)

)
− V k−1

l−ak
l

(
b(1)

)
− V k−1

l−2−ak
l−2

(
b(1)

))
Want to show that the above is non-negative. This depends on
ak

l , ak
l−1, ak

l−2.

There are four cases to consider:
1. b(1) ∈ S k

l ∩S k
l−1 ∩S k

l−2
2. b(1) ∈ S k

l ∩ C k
l−1 ∩ C k

l−2
3. b(1) ∈ S k

l ∩S k
l−1 ∩ C k

l−2
4. b(1) ∈ C k

l ∩ C k
l−1 ∩ C k

l−2

The other cases, e.g. b(1) ∈ S k
l ∩ C k

l−1 ∩S k
l−2, can be discarded

due to the induction assumption.
43T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of

Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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Proofs: Nested stopping sets Sl ⊆ S1+l
44

Proof.
If b(1) ∈ S k

l ∩S k
l−1 ∩S k

l−2, then:

W k
l−1
(
b(1)

)
−W k

l
(
b(1)

)
=
∑
o∈O

Po
b(1)

(
W k−1

l−2
(
bo(1)

)
−W k−1

l−1
(
bo(1)

))
which is non-negative by the induction hypothesis.

44T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
url: https://doi.org/10.1007/BF00938445.
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(
bo(1)
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which is non-negative by the induction hypothesis.

If b(1) ∈ S k
l ∩ C k

l−1 ∩ C k
l−2, then:

W k
l
(
b(1)

)
−W k

l−1
(
b(1)

)
= RC

b(1) −R
S
b(1) +

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))

45T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
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Proofs: Nested stopping sets Sl ⊆ S1+l
46

Proof.
If b(1) ∈ S k

l ∩S k
l−1 ∩S k

l−2, then:

W k
l−1
(
b(1)

)
−W k

l
(
b(1)

)
=
∑
o∈O

Po
b(1)

(
W k−1

l−2
(
bo(1)

)
−W k−1

l−1
(
bo(1)

))
which is non-negative by the induction hypothesis.

If b(1) ∈ S k
l ∩ C k

l−1 ∩ C k
l−2, then:

W k
l
(
b(1)

)
−W k

l−1
(
b(1)

)
= RC

b(1) −R
S
b(1) +

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))
Bellman eq. implies, if b(1) ∈ Cl−1, then:

RC
b(1) −R

S
b(1) +

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))
≥ 0

46T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425–442. issn: 1573-2878. doi: 10.1007/BF00938445.
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C
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∑
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Po
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l−1
(
bo(1)
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≥ 0
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l−1, then:

RS
b(1) −R

C
b(1) −

∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

))
≥ 0

If b(1) ∈ C k
l ∩ C k

l−1 ∩ C k
l−2, then:

W k
l−1
(
b(1)

)
−W k

l
(
b(1)

)
=
∑
o∈O

Po
b(1)

(
W k−1

l−1
(
bo(1)

)
−W k−1

l
(
bo(1)

))
which is non-negative by the induction hypothesis.
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Proofs: Nested stopping sets Sl ⊆ S1+l
50

Hence, we have shown that W k
l is non-increasing in l .

It follows that b(1) ∈ Sl−1 =⇒ b(1) ∈ Sl .

50T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
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Proofs: Nested stopping sets Sl ⊆ S1+l
51

S1 ⊆ S2 still allows:

b(1)
0 1

S1

S2S2

51T. Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
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Proofs: Necessary Condition, Total Positivity of Order 252

I A row-stochastic matrix is totally positive of order 2 (TP2) if:
I The rows of the matrix are stochastically monotone
I Equivalently, all second-order minors are non-negative.

I Example:

A =

0.3 0.5 0.2
0.2 0.4 0.4
0.1 0.2 0.7

 (11)

There are
(3
2
)2 second-order minors:

det
[
0.3 0.5
0.2 0.4

]
= 0.02, det

[
0.2 0.4
0.1 0.2

]
= 0, ...etc. (12)

Since all minors are non-negative, the matrix is TP2

52Samuel Karlin. “Total positivity, absorption probabilities and applications”. In: Transactions of the American
Mathematical Society 111 (1964).
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Proofs: Monotone belief update55
Theorem (Monotone belief update)
Given two beliefs b1(1) ≥ b2(1), if the transition probabilities and
the observation probabilities are TP2, then bo

a,1(1) ≥ bo
a,2(1),

where bo
a,1(1) and bo

a,2(1) denote the beliefs updated with the
Bayesian filter after taking action a ∈ A and observing o ∈ O.

See Theorem 10.3.1 and proof on pp 225,238 in54

54Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

55Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

https://doi.org/10.1017/CBO9781316471104
https://doi.org/10.1017/CBO9781316471104
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Proofs: Connected stopping sets Sl
56

I Sl is connected if b(1) ∈ Sl , b′(1) ≥ b(1) =⇒ b′(1) ∈ Sl
I If b(1) ∈ Sl we use the Bellman eq. to obtain:

RS
b(1) −R

C
b(1) +

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l

(
bo(1)

))
≥ 0

I The inequality above should also hold for any b′(1) ≥ b(1)
I Transition probabilities are TP2 by definition
I We assume observation probabilities are TP2
I It follows that the belief updates are monotone

I Hence, it is sufficient to show that:

RS
b(1) −R

C
b(1) + V ∗l−1

(
b(1)

)
− V ∗l

(
b(1)

)
is weakly increasing in b(1).

I We prove this by induction on k.
56Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,

https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

http://arxiv.org/abs/2111.00289
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57

I Sl is connected if b(1) ∈ Sl , b′(1) ≥ b(1) =⇒ b′(1) ∈ Sl
I If b(1) ∈ Sl we use the Bellman eq. to obtain:
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I It follows that the belief updates are monotone

I Hence, it is sufficient to show that:

RS
b(1) −R

C
b(1) + V ∗l−1

(
b(1)

)
− V ∗l

(
b(1)

)
is weakly increasing in b(1).

I We prove this by induction on k.
57Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,

https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
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Proofs: Connected stopping sets Sl
58

I Sl is connected if b(1) ∈ Sl , b′(1) ≥ b(1) =⇒ b′(1) ∈ Sl
I If b(1) ∈ Sl we use the Bellman eq. to obtain:

RS
b(1) −R

C
b(1) +

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l

(
bo(1)

))
≥ 0

I The inequality above should also hold for any b′(1) ≥ b(1)
I Transition probabilities are TP2 by definition
I We assume observation probabilities are TP2
I It follows that the belief updates are monotone

I Hence, it is sufficient to show that:

RS
b(1) −R

C
b(1) + V ∗l−1

(
b(1)

)
− V ∗l

(
b(1)

)
is weakly increasing in b(1).

I We prove this by induction on k.
58Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,

https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
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Proofs: Connected stopping sets Sl
59

I Sl is connected if b(1) ∈ Sl , b′(1) ≥ b(1) =⇒ b′(1) ∈ Sl
I If b(1) ∈ Sl we use the Bellman eq. to obtain:

RS
b(1) −R

C
b(1) +

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l

(
bo(1)

))
≥ 0

I The inequality above should also hold for any b′(1) ≥ b(1)
I Transition probabilities are TP2 by definition
I We assume observation probabilities are TP2
I It follows that the belief updates are monotone

I Hence, it is sufficient to show that:

RS
b(1) −R

C
b(1) + V ∗l−1

(
b(1)

)
− V ∗l

(
b(1)

)
is weakly increasing in b(1).

I We prove this by induction on k.
59Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,

https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
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Proofs: Connected stopping sets Sl
60

I Sl is connected if b(1) ∈ Sl , b′(1) ≥ b(1) =⇒ b′(1) ∈ Sl
I If b(1) ∈ Sl we use the Bellman eq. to obtain:

RS
b(1) −R

C
b(1) +

∑
o

Po
b(1)

(
V ∗l−1

(
bo(1)

)
− V ∗l

(
bo(1)

))
≥ 0

I The inequality above should also hold for any b′(1) ≥ b(1)
I Transition probabilities are TP2 by definition
I We assume observation probabilities are TP2
I It follows that the belief updates are monotone

I Hence, it is sufficient to show that:

RS
b(1) −R

C
b(1) + V ∗l−1

(
b(1)

)
− V ∗l

(
b(1)

)
is weakly increasing in b(1).

I We prove this by induction on k.
60Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
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Proofs: Connected stopping sets Sl
61

Assume RS
b(1) −R

C
b(1) + V k−1

l−1
(
b(1)

)
− V k−1

l
(
b(1)

)
is weakly

increasing in b(1).

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
= RS

b(1) −R
C
b(1)+

R
ak

l−1
b(1) −R

ak
l

b(1) +
∑
o∈O

Po
b(1)

(
V k−1

l−1−ak
l−1

(
bo(1)

)
− V k−1

l−ak
l

(
bo(1)

))

61Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
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Proofs: Connected stopping sets Sl
62

Assume RS
b(1) −R

C
b(1) + V k−1

l−1
(
b(1)

)
− V k−1

l
(
b(1)

)
is weakly

increasing in b(1).

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
= RS

b(1) −R
C
b(1)+

R
ak

l−1
b(1) −R

ak
l

b(1) +
∑
o∈O

Po
b(1)

(
V k−1

l−1−ak
l−1

(
bo(1)

)
− V k−1

l−ak
l

(
bo(1)

))
Want to show that the above is weakly-increasing in b(1). This
depends on ak

l and ak
l−1.

62Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
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Proofs: Connected stopping sets Sl
63

Assume RS
b(1) −R

C
b(1) + V k−1

l−1
(
b(1)

)
− V k−1

l
(
b(1)

)
is weakly

increasing in b(1).

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
= RS

b(1) −R
C
b(1)+

R
ak

l−1
b(1) −R

ak
l

b(1) +
∑
o∈O

Po
b(1)

(
V k−1

l−1−ak
l−1

(
bo(1)

)
− V k−1

l−ak
l

(
bo(1)

))
Want to show that the above is weakly-increasing in b(1). This
depends on ak

l and ak
l−1.

There are three cases to consider:
1. b(1) ∈ S k

l ∩S k
l−1

2. b(1) ∈ S k
l ∩ C k

l−1
3. b(1) ∈ C k

l ∩ C k
l−1

63Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
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Proofs: Connected stopping sets Sl
64

Proof.
If b(1) ∈ Sl ∩Sl−1, then:

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
=

RS
b(1) −R

C
b(1)

∑
o∈O

Po
b(1)

(
V k−1

l−2
(
bo(1)

)
− V k−1

l−1
(
bo(1)

))
which is weakly increasing in b(1) by the induction hypothesis.

64Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
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Proofs: Connected stopping sets Sl
65

Proof.
If b(1) ∈ S k

l ∩S k
l−1, then:

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
=

RS
b(1) −R

C
b(1)

∑
o∈O

Po
b(1)

(
V k−1

l−2
(
bo(1)

)
− V k−1

l−1
(
bo(1)

))
which is weakly increasing in b(1) by the induction hypothesis.

If b(1) ∈ S k
l ∩ C k

l−1, then:

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
=∑

o∈O
Po

b(1)

(
V k−1

l−1
(
bo(1)

)
− V k−1

l−1
(
bo(1)

))
= 0

which is trivially weakly increasing in b(1).
65Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
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Proofs: Connected stopping sets Sl
66

Proof.
If b(1) ∈ C k

l ∩ C k
l−1, then:

RS
b(1) −R

C
b(1) + V k

l−1
(
b(1)

)
− V k

l
(
b(1)

)
=

RS
b(1) −R

C
b(1)

∑
o∈O

Po
b(1)

(
V k−1

l−1
(
bo(1)

)
− V k−1

l
(
bo(1)

))
which is weakly increasing in b(1) by the induction hypothesis.

Hence, if b(1) ∈ Sl and b′(1) ≥ b(1) then b′(1) ∈ Sl .
Therefore, Sl is connected.

66Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
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Proofs: Optimal multi-threshold policy π∗l 67
We have shown that:
I S1 = [α∗1, 1]
I Sl ⊆ Sl+1
I Sl is connected (convex) for l = 1, . . . , L

It follows that, Sl = [α∗l , 1] and α∗1 ≥ α∗2 ≥ . . . ≥ α∗L.

b(1)
0 1

belief space B = [0, 1]

S1

S2

...

SL

α∗1α∗2α∗L . . .

67Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
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Conclusions & Future Work

I Conclusions:

I We develop a method to automatically learn security policies
I (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement

learning and (5) domain randomization and generalization.

I We apply the method to an intrusion prevention use case

I We formulate intrusion prevention as a multiple stopping
problem

I We present a POMDP model of the use case
I We apply the stopping theory to establish structural results of the optimal policy
I We show numerical results in realistic emulation environment (not included in this

presentation)

I Our research plans:
I Extending the model

I Active attacker: Partially Observed Stochastic Game, Equilibrium analysis
I Less restrictions on defender

Scaling up the emulation system:
I More realistic traffic emulation
I Non-static infrastructures


