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Use Case: Intrusion Prevention

» A Defender owns an infrastructure

» Consists of connected components

» Components run network services

» Defender defends the infrastructure
by monitoring and active defense

> An Attacker seeks to intrude on the
infrastructure

» Has a partial view of the
infrastructure

» Wants to compromise specific
components

P Attacks by reconnaissance,
exploitation and pivoting
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Our Method for Finding Effective Security Strategies

SIMULATION SYSTEM

Policy Mapping

EMULATION SYSTEM

Imple

TEcecmey
===

"\ Reinforcement Learning &
|

; Generalization

b

l

TSystem Iden

Model Creation &

tification

™ Policy evaluation &

; Model estimation

b

Policy

mentation ©

Selective

l

Replication

TARGET
INFRASTRUCTURE

=58 oooo ooon

)

]

- Automation &

; Self-learning systems

b




Our Method for Finding Effective Security Strategies

DN
E==I

TARGET Y\I Automation &

s
INFRASTRUCTURE .‘E .‘ @ 8 @ K Self-learning systems




Our Method for Finding Effective Security Strategies

™ Policy evaluation &
|
; Model estimation

b

EMULATION SYSTEM

Selective

—

Replication



Our Method for Finding Effective Security Strategies

Model Creation &
System Identification

e

" o e e ey

™ Policy evaluation &

3
|
; Model estimation

EMULATION SYSTEM

b




Our Method for Finding Effective Security Strategies

T (]
?&g”?&' @ Y\I Reinforcement Learning &

)
?&.&?&gg? / Generalization
G G G0 X0

SIMULATION SYSTEM

Model Creation &
System ldentification



Our Method for Finding Effective Security Strategies

Policy Mappingl
s

™ Policy evaluation &
|
; Model estimation

b

L i
EMULATION SYSTEM d




Our Method for Finding Effective Security Strategies

Implementation 7

TARGET
INFRASTRUCTURE

Policy

l

.E

.E

=58 oooo ooon

.E

.E

]

Y\I Automation &
; Self-learning systems

T




Our Method for Finding Effective Security Strategies

SIMULATION SYSTEM

Policy Mapping

EMULATION SYSTEM

Imple

TEcecmey
===

"\ Reinforcement Learning &
|

; Generalization

b

l

TSystem Iden

Model Creation &

tification

™ Policy evaluation &

; Model estimation

b

Policy

mentation ©

Selective

l

Replication

TARGET
INFRASTRUCTURE

=58 oooo ooon

)

]

- Automation &

; Self-learning systems

b




Outline
» Use Case & Approach:

» Intrusion Prevention
» System identification
» Reinforcement learning and dynamic programming



Outline
» Use Case & Approach:

» Intrusion Prevention
» System identification
» Reinforcement learning and dynamic programming

» Formal Model & Background:

» Background: POMDPs and optimal stopping
» Multiple Stopping Problem POMDP



Outline
» Use Case & Approach:

» Intrusion Prevention
» System identification
» Reinforcement learning and dynamic programming

» Formal Model & Background:

» Background: POMDPs and optimal stopping
» Multiple Stopping Problem POMDP

» Structure of 7*

» Structural result: Multi-Threshold policy

» Stopping sets .} are connected and nested

» Conditions for Bayesian filter to be monotone in b
> Existence of optimal multi-threshold policy 7}



Outline
» Use Case & Approach:

» Intrusion Prevention
» System identification
» Reinforcement learning and dynamic programming

» Formal Model & Background:

» Background: POMDPs and optimal stopping
» Multiple Stopping Problem POMDP

» Structure of 7*

» Structural result: Multi-Threshold policy

» Stopping sets .} are connected and nested

» Conditions for Bayesian filter to be monotone in b
> Existence of optimal multi-threshold policy 7}

» Conclusion

» Numerical evaluation results
» Conclusion & Future work



Background: POMDPs

Hidden Markov Model (HMM)

| - state ' observation
i | Stochastic s No : o
: System 2t s oISy ﬁ—t>
| (Markov) ensor |,

|
|

|
|

POMDP Controller
action a; (Decision Maker)

belief
Bayesian by
>
Filter
- |

> POMDP: (S, A, P

St,St+17

Rgrt75t+1 Y1, T 0, Z>

» Controlled hidden Markov model, states s; € S are hidden

» Agent observes history hy = (p1,a1,01,...,3t-1,0t) € H
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Background: POMDPs
» s;: is Markov: P[sii1|st] = P[st41]s1,-- -, St]
> — W*(at‘ht) = W*(at‘P[St’ht]) = W*(at‘bt)
» Optimality (Bellman) Eq:

7*(b) € arg max Zb YRZ+7 > Z(o,s',a)b(s)P2 V*(b3)

acA o0,s,s’



Background: POMDPs

P[s¢| he] = P[s¢|os, ag—1, he—1]
_ Plot|st, ar—1, he—1]P[st|at—1, he—1]
B P[0t|at—1, ht—l]
Z(0t,8t,at-1) D, ,Pjtt:llstp[stfl‘htfl]

= Markov
Zs’ Zs Z(ot7 Sl? atfl)P[stfl ‘ htfl]

Bayes




Background: POMDPs

» P[s;_1|h:—1] with a;, o; is a sufficient statistic for s;
» b, 2 P[s;_1|h:_1]: belief state at time t
> b; computed recursively using the equation above



Background: POMDPs

B(3): 2-dimensional unit-simplex
(0,0,1)

(0.25,0.55,0.2)

B(2): 1-dimensional unit-simplex

(04,0.6)
0.4 0.6
—_— g
(1,0) ¢ (0,1) (1,0,0) (0,1,0)

» b e B, Bis the unit (|S| — 1)-simplex



Background: POMDPs

B(3): 2-dimensional unit-simplex
e

Switching curve

€1 €

» b e B, Bis the unit (|S| — 1)-simplex

» To characterize 7*, partition 5 based on 7*(a|b)
> e.g. stopping set . and continuation set €
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1.{a1, 01} 1.{a1, 0} 1.{a1, 03}
F a a



Background: POMDPs

» |B| = 0o, high-dimensional (|S|) continuous vector

> Infinite set of deterministic policies: max g4 Er[>; re]
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Background: POMDPs

» For each conditional plan 5 €T
» Define vector o € RIS| such that of = V(i)
> — VB(b) = bTa? (linear in b).
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Background: POMDPs

» For each conditional plan 5 €T
> Define vector o € RISI such that of = VA(J)
> — VP(b)=b"a” (linearin b).

» Thus, V*(b) = maxger b” o (piece-wise linear and convex®)

3Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:
Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282-304. 1ssN: 0030364X, 15265463. URL
http://www. jstor.org/stable/169635.
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Background: POMDPs

» For each conditional plan g €T
> Define vector o € RIS such that of = VA(J)
> — VP(b)=b"a” (linearin b).
» Thus, V*(b) = maxger b” o (piece-wise linear and convex?)

bat
bo
bar

bat

ba®

\4



http://www.jstor.org/stable/169635

Background: POMDPs

» For each conditional plan g €T
> Define vector o € RIS! such that of = VA(J)
> — VP(b)=b"a” (linearin b).
» Thus, V*(b) = maxger b” o (piece-wise linear and convex®)
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Background: Optimal Stopping

> History:
» Studied in the 18th century to analyze a gambler’s fortune
» Formalized by Abraham Wald in 1947°
> Since then it has been generalized and developed by (Chow’,
Shiryaev & Kolmogorov®, Bather?, Bertsekas!, etc.)

SEQUENTIAL
ANALYSIS

% Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.
7Y. Chow, H. Robbins, and D. Siegmund. “Great expectations: The theory of optimal stopping”. In: 1971.

8 Albert N. Shirayev. Optimal Stopping Rules. Reprint of russian edition from 1969. Springer-Verlag Berlin,
2007.

9 John Bather. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. USA
John Wiley and Sons, Inc., 2000. 1SBN: 0471976490.

10Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. |. Belmont, MA, USA: Athena
Scientific, 2005.



Background: Optimal Stopping

» The General Problem:
> A stochastic process (s;)/_; is observed sequentially
> Two options per t: (i) continue to observe; or (ii) stop
» Find the optimal stopping time T*:

7—1
* t—1pC —-1pS
7" = argmaxE, E y RStSM—&—vT Ry s,
T
t=1

where R2

>, & RE, are the stop/continue rewards



Background: Optimal Stopping

» Solution approaches: the Markovian approach and the
martingale approach.



Background: Optimal Stopping

» The Markovian approach:

» Model the problem as a MDP or POMDP
» A policy 7* that satisfies the Bellman-Wald equation is
optimal:

7*(s) = argmax | E[RZ],E[RE +4V*(s')] | VseS
{s.¢} |[>—~—

stop continue

» Solve by backward induction, dynamic programming, or
reinforcement learning



Background: Optimal Stopping

» The Markovian approach:

» Assume all rewards are received upon stopping: Rg’

> V*(s) majorizes R? if V*(s) > RV Vsc S

> V*(s) is excessive if V*(s) > >, PS V*(s') Vs e S

» Theorem: V*(s) is the minimal excessive function which
majorizes RY.



Background: Optimal Stopping

> The Markovian approach:

P> Assume all rewards are received upon stopping: R_f’

> V*(s) majorizes R? if V*(s) > R? Vs e S

> V*(s) is excessive if V*(s) > >, PS V*(s')Vse€ S

» V*(s) is the minimal excessive function which majorizes RY.

A

— R — X, PLVH(S)
—V*(s)




Background: Optimal Stopping

> The martingale approach:
» Model the state process as an arbitrary stochastic process

» The reward of the optimal stopping time is given by the
smallest supermartingale that stochastically dominates the

process, called the Snell envelope!.

) L. Snell. “Applications of martingale system theorems”. In: Transactions of the American Mathematical

Society 73 (1952), pp. 293-312.



Background: Optimal Stopping

> Applications & Use Cases:

> Hypothesis testing!?
» Change detection?3,

» Selling decisions'*,

» Queue management®®,

» Industrial control'®,

> Advertisement scheduling”, etc.

12 Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.

13 Alexander G. Tartakovsky et al. “Detection of intrusions in information systems by sequential change-point
methods”. In: Statistical Methodology 3.3 (2006). 1ssN: 1572-3127. por:
https://doi.org/10.1016/j.stamet.2005.05.003. URL:
https://www.sciencedirect.com/science/article/pii/S1572312705000493.

14Jacques du Toit and Goran Peskir. “Selling a stock at the ultimate maximum”. In: The Annals of Applied
Probability 19.3 (2009). 1ssN: 1050-5164. DoI: 10.1214/08-aap566. URL:
http://dx.doi.org/10.1214/08-AAP566.

1‘L—’Arghyadip Roy et al. “Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision
Processes”. In: CoRR (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

16Maben Rabi and Karl H. Johansson. “Event-Triggered Strategies for Industrial Control over Wireless
Networks". In: Proceedings of the 4th Annual International Conference on Wireless Internet. WICON '08. Maui,
Hawaii, USA: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
2008. 18BN: 9789639799363.

17Vikram Krishnamurthy, Anup Aprem, and Sujay Bhatt. “Multiple stopping time POMDPs: Structural results
& application in interactive advertising on social media”. In: Automatica 95 (2018), pp. 385-398. Issn:
0005-1098. DOI: https://doi.org/10.1016/j.automatica.2018.06.013. URL:
https://www.sciencedirect.com/science/article/pii/S0005109818303054.
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http://dx.doi.org/10.1214/08-AAP566
http://arxiv.org/abs/1912.10325
1912.10325
https://doi.org/https://doi.org/10.1016/j.automatica.2018.06.013
https://www.sciencedirect.com/science/article/pii/S0005109818303054

Background: Optimal Stopping

» Applications & Use Cases:

Hypothesis testing!®
Change detection®®,
Selling decisions®,

Queue management?!,
Industrial control??,
Advertisement scheduling,

Intrusion prevention® etc

VYyVVYYVYYVYY

18 Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.

19 Alexander G. Tartakovsky et al. “Detection of intrusions in information systems by sequential change-point
methods”. In: Statistical Methodology 3.3 (2006). 1ssN: 1572-3127. por:
https://doi.org/10.1016/j.stamet.2005.05.003. URL:
https://www.sciencedirect.com/science/article/pii/S1572312705000493.

2oJacques du Toit and Goran Peskir. “Selling a stock at the ultimate maximum”. In: The Annals of Applied
Probability 19.3 (2009). 1ssN: 1050-5164. DoI: 10.1214/08-aap566. URL:
http://dx.doi.org/10.1214/08-AAP566.

21Arghyadip Roy et al. “Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision
Processes”. In: CoRR (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

22Maben Rabi and Karl H. Johansson. “Event-Triggered Strategies for Industrial Control over Wireless
Networks". In: Proceedings of the 4th Annual International Conference on Wireless Internet. WICON '08. Maui,
Hawaii, USA: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
2008. 1SBN: 9789639799363.

23Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
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Episode
A

e

-~
time-step t =1

P> The system evolves in discrete time-steps.



Formulating Intrusion Prevention as a Stopping Problem

Episode
A

e

-~
time-step t =1

» Defender observes the infrastructure (IDS, log files, etc.).



Formulating Intrusion Prevention as a Stopping Problem

Episode
A

~

T
Intrusion event :Intrusion ongoing

—

I 1 1 1 1 1 1 \
[ I I I I I /N1 I I
|
|
1
[

time-step t =1

> An intrusion occurs at an unknown time.



Formulating Intrusion Prevention as a Stopping Problem

Episode
A : ~
time-step t = jIntrusion event lIntrusion ongoing
¢ \ |/_H

I 1 1 1 1 1 1 \ 1 1 1 1 t

Early stopping times 1 Stopping times that
affect the intrusion

» The defender can make L stops.
» Each stop is associated with a defensive action
» The final stop shuts down the infrastructure.




Formulating Intrusion Prevention as a Stopping Problem

Episode
A : ~
time-step t = jIntrusion event lIntrusion ongoing
¢ \ |/_H

I 1 1 1 1 1 1 \ 1 1 1 1 t

Early stopping times 1 Stopping times that
affect the intrusion

> Based on the observations, when is it optimal to stop?



Formulating Intrusion Prevention as a Stopping Problem

Episode
A : ~
time-step t = jIntrusion event lIntrusion ongoing
¢ \ |/_H

I 1 1 1 1 1 1 \ 1 1 1 1 t

Early stopping times 1 Stopping times that
affect the intrusion

» We formalize this problem with a POMDP




A Partially Observed MDP Model for the Defender

» States:

» Intrusion state s; € {0,1}, terminal (.
t>1 t>

le>0 intrusion starts

intrusion prevented
=0



A Partially Observed MDP Model for the Defender

» Observations:

» Severe/Warning IDS Alerts (Ax, Ay),
Login attempts Az, stops remaining
I € {1,.., L}, fxyz(Ax, Ay, Az|s;)



A Partially Observed MDP Model for the Defender

> Actions:
> “Stop” (S) and “Continue” (C)



A Partially Observed MDP Model for the Defender

> Rewards:

» Reward: security and service. Penalty:
false alarms and intrusions



A Partially Observed MDP Model for the Defender

» Transition probabilities:

» Bernoulli process (Q;)/_; ~ Ber(p)
defines intrusion start I; ~ Ge(p)

Iy~ Ge(p=10.2)

CDFy(t)
S

0.

15 2
intrusion start time ¢

25
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A Partially Observed MDP Model for the Defender

> States:
» Intrusion state s; € {0,1}, terminal (.
» Observations:
» Severe/Warning IDS Alerts (Ax, Ay),
Login attempts Az, stops remaining
I € {1,.., L}, fxyz(Ax, Ay, Az|s;)
» Actions:
> “Stop” (S) and “Continue” (C)
> Rewards:

» Reward: security and service. Penalty:
false alarms and intrusions

t>1 t>
>0

intrusion prevented
=0

> Transition probabilities: L

» Bernoulli process (Q;)/_; ~ Ber(p)
defines intrusion start I; ~ Ge(p)

Objective and Horizon: ’ Cintrusion start time ¢ ?
T
> maxE,, [Zt:‘z’l r(se;ae)|, To

CDFy,(t
N
N
~
\
\
\
\
)
e

v



We analyze the structure of 7* using POMDP & stopping theory
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Structural Result: Optimal Multi-Threshold Policy

Theorem
Given the intrusion prevention POMDP, the following holds:

2. If L =1, there exists an optimal threshold o* € [0, 1] and an
optimal policy of the form:

mi(b(1)) =S < b(1) = o (7)



Structural Result: Optimal Multi-Threshold Policy

Theorem
Given the intrusion prevention POMDP, the following holds:

3. If L > 1 and fxyyz is totally positive of order 2 (TP2), there
exists L optimal thresholds o;f € [0, 1] and an optimal policy
of the form:

mi(b(1) =S < b(l)>al, I=1,....L (10)

where o is decreasing in |.



Structural Result: Optimal Multi-Threshold Policy
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belief space B = [0, 1]
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Structural Result: Optimal Multi-Threshold Policy
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Structural Result: Optimal Multi-Threshold Policy

L
:5”2
- A~ Y
A
| — —b(1)
Ojl‘i...a;ai‘ ;
~

belief space B = [0, 1]



Proofs: .7 is convex®*

> .7 is convex if:

» for any two belief states by, b, € .7
» any convex combination of by, by is also in %)
> ie by,by €. = Ab +(1 7)\)[)2 € .S for \ e [0,1]

24v/ikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.
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Proofs: .7 is convex®

» Since V*(b) is convex:

V*(Aby 4 (1 — A)ba) < AV*(by) + (1 — A)V(by)

2yikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.
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Proofs: .7 is convex?®

» Since V*(b) is convex:

V*(Aby 4 (1 — A)ba) < AV*(by) + (1 — A)V(by)

» Since by, by € Y1:

V*(b1) = Q*(b1,S) S=stop
V*(by) = Q" (b2, S) S=stop

26\/ikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.
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Proofs: .7 is convex®’

Proof.
Assume by, by € 1. Then for any A € [0, 1]:

VE(AbL(L) + (1 = A)ba(1)) < AV (br(1)) + (1 = NV (b2(1))
= AQ"(b1,5) + (1 = N)Q*(b2,5)

2Tvjikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.
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Proofs: .7 is convex?®

Proof.
Assume by, by € ;1. Then for any X € [0, 1]:

V*(Ab1(1) + (1 = A)ba(1)) < AV*(br(1)) + (1 — A)V*(b2(1))
= AQ*(b1, S) + (1 — \)Q*(by, S)
=AR) + (1 - NR),
= > (Abi(s) + (1 = \)ba(s))RY

28y/ikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.
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Proofs: .7 is convex®

Proof.
Assume by, by € .#1. Then for any A € [0, 1]:

VE(Ab1(1) + (1 = A)ba(1)) < AV*(be(1)) + (1 — A)V*(b2(1))
= AQ*(b1,S) + (1 — N\)Q*(b2, S)
=AR) + (1 - NR),
=3 "(Abi(s) + (1 — A)ba(s))RY

= Q*(\by + (1 — \)by, S)

29V/ikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.
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Proofs: .7 is convex®°

Proof.
Assume by, by € .#1. Then for any A € [0, 1]:

VF(Aby(1) + (1 = A)b2(1)) < AV*(br(1)) + (1 — A)V*(b2(1))
= AQ* (b, S) + (1 — N)Q*(b2, S)
=AR) + (1 - NRY,
= > (Abi(s) + (1 = N)ba(s)) RS
= Q*(A\by + (1 — \)by, S)
< VE(Aby(1) + (1 = A)ba(1))

the last inequality is because V* is optimal. The second-to-last is
because there is just a single stop. O

30Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.
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Proofs: .7 is convex3!

Proof.
Assume by, by € 1. Then for any X € [0, 1]:

VE(Aby(1) + (1 = A)bz(1)) < AV*(b1(1)) + (1 = A)V*(b2(1))
=AQ*(b1,S) + (1 — N)Q*(b2,5)
= Q" (Ab1 + (1= N)b, S)
< VF(Aby(1) + (1 — A\)bo(1))

the last inequality is because V* is optimal. The second-to-last is
because there is just a single stop. Hence:

Q*(Ab1+ (1 = N)bp, S) = V*(Ab1(1) + (1 — N)ba(1))

bi, by € S = (Ab1+ (1 — 1)) € .71. Therefore .7 is
convex. L]
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Proofs: .7 is convex3?

A
| ————
ES *
Q, 0q 51

~

belief space B = [0, 1]

I >b(1)
1
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Proofs: Single-threshold policy is optimal if L = 133

» In our case, B = [0,1]. We know .77 is a convex subset of 3.
» Consequence, .1 = [a*, *]. We show that f* = 1.

33Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In
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Proofs: Single-threshold policy is optimal if L = 13*

» If b(1) =1, using our definition of the reward function, the
Bellman equation states:

150 + V*(0),-90 + > Z(o,1, C)V*(b2(1))
ocO

(1) € arg max
{s.¢}

a=S$S

a=C

= arg max [150, —90 + V*(l)} =S ien”"(1l)=Stop

N~
S,.C —_———
5o 15—z
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Proofs: Single-threshold policy is optimal if L = 13

» Hence 1 € ;. It follows that .7 = [a*, 1] and:
S if b(1) > *

C otherwise

= (b(1)) =

35Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In
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Proofs: Single-threshold policy is optimal if L =1

~

belief space B = [0, 1]



Proofs: Nested stopping sets . C .#;,,%°

> If b(1) € ./_1, we use the Bellman eq. to obtain:
>

Ria) — Ry = ZP3(1)<V[11(13°(1)) - V,tz(b"(l)))

» We show that LHS is non-decreasing in / and RHS is
non-increasing in /.

36T Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425—442. 1ssN: 1573-2878. DoI: 10.1007/BF00938445.
URL: https://doi.org/10.1007/BF00938445.
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Proofs: Nested stopping sets . C .%, /%

Ria) — Ry = ZP3(1)<V[11(’3°(1)) - \/,tz(b"(l)))

» LHS is non-decreasing by definition of reward function.

37T Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425—442. 1ssN: 1573-2878. DOI: 10.1007/BF00938445.
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Proofs: Nested stopping sets . C .%;,,%®

Ria) — Ry = ZP3(1)<V[11(’3°(1)) - \/,tz(b"(l)))

» We show that RHS is non-increasing by induction on
k=0,1... where k is the iteration of value iteration.

> We know limy_,o, VX(b) = V*(b).

38T Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425—442. 1ssN: 1573-2878. DoI: 10.1007/BF00938445.
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Proofs: Nested stopping sets . C .%, /%

> Define W/ (b(1)) = V/(b(1)) — V/< (b(1))

39T Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425—-442. 1ssN: 1573-2878. DoI: 10.1007/BF00938445.
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Proofs: Nested stopping sets .7 C .%;, /%

Proof.
WP (b(1)) = 0 V. Assume W/*(b(1)) — Wf1(b(1)) >0. O

40T Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425—-442. 1ssN: 1573-2878. DoI: 10.1007/BF00938445.
URL: https://doi.org/10.1007/BF00938445.


https://doi.org/10.1007/BF00938445
https://doi.org/10.1007/BF00938445

Proofs: Nested stopping sets . C . /*!

Proof.
WP (b(1)) = 0 VI. Assume W/ 7' (b(1)) — W/1(b(1)) > 0.

Wiy (b(1)) — Wi(b(1)) = 2V/<y — V&, — Vi

T Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425—442. 1ssN: 1573-2878. DOI: 10.1007/BF00938445.
URL: https://doi.org/10.1007/BF00938445.
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Proofs: Nested stopping sets . C .%;, /%

Proof.
WP (b(1)) = 0 V. Assume W71 (b(1)) — W/ (b(1)) > 0.
aj_,
1)~ R

Wi (1) — WE(b(L) = 2V, — Vi, — V= 2R1) — R
+ 30 Py (Vi (1) = VH () — Vi (6(1)))

ocO

Want to show that the above is non-negative. This depends on

k _k k
af,a’ 1,a . L]
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Proofs: Nested stopping sets . C .%,/®

Proof.
WP (b(1)) = 0 V. Assume W/ (b(1)) — W/ (b(1)) > 0.

K
&)

ak
Wlk—l(b(]')) — Wi (b(1)) =2Vf, — Vi, — Vf = 2Rbl(1; — Ry

+ 3 By (2Vi9h, (1) - VEE(b) - Vi (b(D)))
o€

Want to show that the above is non-negative. This depends on

k ok ok
459115912

There are four cases to consider:
L. b(1) € Zf NI NI
2. b(1) € S NEEL NE,
3. b(1) € S NI NG,
4. b(1) € G NELL NG,

3;12
— Rpq)
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Proofs: Nested stopping sets .7 C . /*

Proof.
If b(1) € Sk N 7K, N7k, then:

WL (b(1)) = W (b(1)) = D Poy (WS (6°(1)) — W/ (6°(1))
oeO

which is non-negative by the induction hypothesis. UJ
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Proofs: Nested stopping sets .7 C .7 /™

Proof.
If b(1) € ZF N7k N FK,, then:

WL (b(1)) = W (b(1)) = D Pgy (WSS (6°(1) — WS (6°(1))
o€

which is non-negative by the induction hypothesis.
If b(1) € SFNEK, NEF,, then:

WH(b(1)) — Wi (b(1)) = Ry, )+ D0 Poy (WS (6°(1)))
o€

O]
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Proofs: Nested stopping sets .7 C .%;.,/*°
Proof.
If b(1) € SF N KN A, then:

W (b(1)) — W (b(1)) = 3 Pgay (W/SH(6°(1) — W3 (6°(1))
o€

which is non-negative by the induction hypothesis.
If b(1) € 5’," N ‘K,k_l OCK,"_Q, then:

W (b(1)) — W4 (b(1)) = Rfqy — Riwy + D Pgu)(W/ﬁl(bo(l)))

ocO
Bellman eq. implies, if b(1) € €)_1, then:
Ri) )+ D Pey (WS (6°(1))) > 0

o€


https://doi.org/10.1007/BF00938445
https://doi.org/10.1007/BF00938445

Proofs: Nested stopping sets .7 C .7 /%

Proof.
If b(1) € .} N.FK, NE),, then:

W1 (b(1)) — WK (b(1)) = Ry — Ria) %P‘;m( Wi (b°(1))

OJ

47T Nakai. “The problem of optimal stopping in a partially observable Markov chain”. In: Journal of
Optimization Theory and Applications 45.3 (1985), pp. 425—-442. 1ssN: 1573-2878. DoI: 10.1007/BF00938445.
URL: https://doi.org/10.1007/BF00938445.


https://doi.org/10.1007/BF00938445
https://doi.org/10.1007/BF00938445

Proofs: Nested stopping sets . C .%;, /%

Proof.
If b(1) € .} N.FKNE),, then:
Wi (b(1)) — W (b(1)) = Riuy — Ry — O Poq (W/k—il(bo(l)))
o€

Bellman eq. implies, if b(1) € %lil then:

Riwy — Ry — 2 Pga)(W/’:l(bo(l))) >0

ocO
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Proofs: Nested stopping sets . C .%, /%

Proof.
If b(1) € .7} NSk NE),, then:

WL (b(1)) — WE(b(1)) = Ry — Riwy — O Poay (WIS (6°(1))

(1@

Bellman eq. implies, if b(1) € .7/ ;, then:

Ry = R = 2 By (Wi (6°(1))) > 0

ocO

If b(1) € € NEF,NEE,, then:

WL (b(1)) — W (b(1)) = D Pgay (W/SH (6°(1)) — W1 (6°(1))
ocO
which is non-negative by the induction hypothesis. O
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Proofs: Nested stopping sets . C .%;,,>°

Hence, we have shown that W/ is non-increasing in /.

It follows that b(1) € .1 = b(1) € .
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Proofs: Nested stopping sets .7 C .%;4,°!

A C S still allows:
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Proofs: Necessary Condition, Total Positivity of Order 2

» A row-stochastic matrix is totally positive of order 2 (TP2) if:

» The rows of the matrix are stochastically monotone
» Equivalently, all second-order minors are non-negative.

52Samuel Karlin. “Total positivity, absorption probabilities and applications”. In: Transactions of the American
Mathematical Society 111 (1964).



Proofs: Necessary Condition, Total Positivity of Order 23

> Example:
0.3 05 0.2
A=102 04 04 (13)
0.1 0.2 0.7

2 .
There are (3)° second-order minors:

03 05 02 04
det lo.z 0.41—0‘02’ det [0‘1 0'2] —0,..etc.  (14)

Since all minors are non-negative, the matrix is TP2

53Samuel Karlin. “Total positivity, absorption probabilities and applications”. In: Transactions of the American
Mathematical Society 111 (1964).



Proofs: Monotone belief update®
Theorem (Monotone belief update)

Given two beliefs b1 (1) > by(1), if the transition probabilities and
the observation probabilities are TP2, then bg (1) > bg,(1),
where bg1(1) and bg,(1) denote the beliefs updated with the
Bayesian filter after taking action a € A and observing o € O.

See Theorem 10.3.1 and proof on pp 225,238 in>*
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Proofs: Connected stopping sets .#,>°
> .7 is connected if b(1) € .7, b'(1) > b(1) = b'(1) € .7

56Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
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Proofs: Connected stopping sets .#;°’

> .7 is connected if b(1) € .7, b'(1) > b(1) = b'(1) € .7
> If b(1) € .} we use the Bellman eq. to obtain:

Riay = Ry + 2 Py (Vi (6°(1) = Vi (6°(1)) 2 0
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Proofs: Connected stopping sets .72

> .7 is connected if b(1) € .7, b'(1) > b(1) = b'(1) € .7
> If b(1) € .} we use the Bellman eq. to obtain:

Riay = Ry + 2 Py (Vi (6°(1) = Vi (6°(1)) 2 0

» The inequality above should also hold for any b'(1) > b(1)

58Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: (). 2021,
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Proofs: Connected stopping sets .7;>°

» Transition probabilities are TP2 by definition
» We assume observation probabilities are TP2
> It follows that the belief updates are monotone
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Proofs: Connected stopping sets .7,

» Hence, it is sufficient to show that:
Rg(l) - Rg(l) + Vit (b(1)) = Vi (b(1))

is weakly increasing in b(1).
» We prove this by induction on k.
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Proofs: Connected stopping sets .#,%!

Assume Rf(l) - Rg(l) + VEH(b(1)) — VFE(b(1)) is weakly
increasing in b(1).
Ry — Rby + Via(b(1) = VI (b(1)) = Ry — Riy+
3y

af k—1 k—1
Rpay = Rpny + %Pg(l)(vl_l_af 1(bo(l)) - V,_alk(bo(l)))
oc
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Proofs: Connected stopping sets .#,%2

Assume ’Rg(l) - Rg(l) + VL (b(1)) — VFH(b(1)) is weakly
increasing in b(1).

Ry — Riy + Vi1 (b(1)) = VI (b(1)) = Ry — Ry +

akf1 af o - o - o

by~ Ray + 2 By (V5L (0°() = ViEH 7))
oc

Want to show that the above is weakly-increasing in b(1). This
depends on a;‘ and 8;(,1-
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Proofs: Connected stopping sets .#,%

Assume Ry — Ry + Vi1 (b(1)) — V/H(b(1)) is weakly
increasing in b(1).

Ry — Rby + Vi1 (b(1)) = VE(b(1)) = Ry — Ria)+
aj_ af o k—1 o k=110
Rpa) — Rpay + %Pb(l)(v/1afl(b (1) - V,,alk(b (1)))
oc

Want to show that the above is weakly-increasing in b(1). This
depends on af and 3;:1-

There are three cases to consider:
1. b(1) e SNk
2. b(1) e SFNEk,
3. b(1) € GF N,
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Proofs: Connected stopping sets .#;%

Proof.
If b(1) € 1N .7_1, then:
Ry — Ry + Vi1 (b(1)) — VF(b(1)) =

Rawy) — Rey 2 Pg(n(\//k__zl(bo(l)) - V/k__ll(bo(l)))
oeO

which is weakly increasing in b(1) by the induction hypothesis. [
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Proofs: Connected stopping sets .7,
Proof.

If b(1) € 5’/‘ N 5”,"_1 then:
Rg( 1y — Ry + VIS (b(1)) — VF(b(1)) =
Sy D Poy (VIS (6°(1) — Vi (6°(2)))

OGO

which is weakly increasing in b(1) by the induction hypothesis.
If b(1) € SKNEK,, then:

Riy — Ry + Vi1 (b(1)) — VI (b(1)) =
> Poy (VAL (6°(1) — VIS (6°(1)) ) = 0

ocO

which is trivially weakly increasing in b(1).
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Proofs: Connected stopping sets .#,%

Proof.
If b(1) € €< NEX,, then:
Ri) — Ry + ViE1(b(1)) — VF(b(1)) =

Riwy — Réwy X Pg(l)(vlﬁl(bo(l)) - V/kfl(bo(l)))
o€

which is weakly increasing in b(1) by the induction hypothesis. [

Hence, if b(1) € .} and b'(1) > b(1) then b'(1) € .7).
Therefore, .7} is connected.
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Proofs: Optimal multi-threshold policy 7}°’
We have shown that:

> SN = [O‘Ia 1]
> 1 C S
» .7 is connected (convex) for [ =1,...,L
It follows that, .} = [}, 1] and of > a5 > ... > af.

L
:yz
/—H
A
| | > 5p(1)

belief space B = [0, 1]
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Conclusions & Future Work

» Conclusions:

» We develop a method to automatically learn security policies

> (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement
learning and (5) domain randomization and generalization.

» We apply the method to an intrusion prevention use case

» We formulate intrusion prevention as a multiple stopping
problem
> We present a POMDP model of the use case
> We apply the stopping theory to establish structural results of the optimal policy

P We show numerical results in realistic emulation environment (not included in this
presentation)

» QOur research plans:
» Extending the model

P Active attacker: Partially Observed Stochastic Game, Equilibrium analysis
P Less restrictions on defender
Scaling up the emulation system:
»  More realistic traffic emulation
»  Non-static infrastructures



