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Game Learning Programs
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Challenges: Evolving and Automated Attacks
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@ Challenges:
o Evolving & automated attacks

o Complex infrastructures
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Goal: Automation and Learning
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@ Our Goal:
o Automate security tasks
o Adapt to changing attack methods
Observations Actions
Security Agent Controller
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Approach: Game Model & Reinforcement Learning

Va
v

L)

%m 18.1.0/24

@ Our Approach: ﬂ
e Model network as Markov Game
Me=(S8,A1,...,An, T, R1,... R Eﬁ J
o Compute policies 7 for Mg
o Incorporate 7 in self-learning systems Secu,ityﬂgi?tec)omrdk,
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Related Work

o Game-Learning Programs:
o TD-Gammon?, AlphaGo Zero3, OpenAl Five etc.
e — Impressive empirical results of RL and self-play
o Network Security:
o Automated threat modeling*, automated intrusion detection etc.
e — Need for automation and better security tooling
@ Game Theory:

o Network Security: A Decision and Game-Theoretic Approach®.
e = Many security operations involves strategic decision making
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Use Case: Intrusion Prevention

o A Defender owns a network infrastructure

B
a
o Consists of connected components

e Components run network services
e Defends by monitoring and patching

@ An Attacker seeks to intrude on the infrastructure

e Has a partial view of the infrastructure
o Wants to compromise a specific component
o Attacks by reconnaissance and exploitation
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Markov Game Model for Intrusion Prevention

(1) Network Infrastructure
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Markov Game Model for Intrusion Prevention

(1) Network Infrastructure  (2) Graph G = (N, €)
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Markov Game Model for Intrusion Prevention

(1) Network Infrastructure  (2) Graph G = (N, &) (3) State space |S| = (w + 1)W|'m'(m+1)
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Markov Game Model for Intrusion Prevention

(2) Graph G = (V&)  (3) State space |S| = (w + 1)VI-m(m+1)
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Markov Game Model for Intrusion Prevention

(1) Network Infrastructure
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(4) Action space |.A

»AA

A

Kim Hammar & Rolf Stadler (KTH)

(2) Graph G = (V&)  (3) State space |S| = (w + 1)VI-m(m+1)
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Markov Game Model for Intrusion Prevention

(1) Network Infrastructure ~ (2) Graph G N,E) (3) State space |S| = (w 4 1),\‘ m-(m+1)

(4) Action space |A| = [N|-(m+1) (5) Game Dynamics T, R1,Ra2, po

DIIDIDIODID) (a0f (10) ki - Markov game
S adS ¢ i, i - Zero-sum
&), - 2 players
& - ,/v - Partially observed
L)L) )) - Stochastic elements
TN

- Round-based
M =(S, A1, A2, T,R1,R2,7, po)
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o Finding strategies for the Markov game model:

e Evolutionary methods

o Computational game theory
e Self-Play Reinforcement learning
@ Attacker vs Defender

@ Strategies evolve without human intervention
@ Motivation for Reinforcement Learning:

e Strong empirical results in related work
o Can adapt to new attack methods and threats
o Can be used for complex domains that are hard to model exactly
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The Reinforcement Learning Problem

o Goal: Agent

o Approximate 7* = argmax, E [Z;o 'ytrtﬂ}

Environment
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The Reinforcement Learning Problem

Agent

Environment

@ Learning Algorithm:

o Represent 7 by my

o Define objective J(0) = Eon~pmo,anm, [R]

o Maximize J(6) by stochastic gradient ascent with gradient
VoJ(0) = Eonpro anm, [Vo log mg(alo)A™ (o, a)]
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The Reinforcement Learning Problem

Agent

Environment

e Domain-Specific Challenges:
e Partial observability: captured in the model
o Large state space |S| = (w + 1)VIm(m+1)
o Large action space |A| = [N (m+ 1)
e Non-stationary Environment due to presence of adversary
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Our Reinforcement Learning Method

Attacker m(als; 62)

e Policy Gradient & Function Approximation

e To deal with large state space S
o my parameterized by weights # € R of NN.
e PPO & REINFORCE (stochastic )

St+1 1.2
re+1 (ap, a;

Markov Game
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Our Reinforcement Learning Method

Attacker m(als; 62)

@ Auto-Regressive Policy Representation
e To deal with large action space A Str1
o To minimize interference ft+l
o 7(a, nlo) = m(a|n, o) - w(n|o)

Markov Game
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Our Reinforcement Learning Method

Attacker m(als; 62)

St+1
re+1

Markov Game

e Opponent Pool @—@—@

e To avoid overfitting
e Want agent to learn a general strategy
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Experimentation: Learning from Zero Knowledge

0 AttackerAgent vs DEFENDMINIMAL, scenario 1 o AttackerAgent vs DEFENDMINIMAL, scenario 2 0 AttackerAgent vs DEFENDMINIMAL, scenario 3
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Experimentation: Learning from Zero Knowledge

Attacker vs Defender self-play training, scenario 1 Attacker vs Defender self-play training, scenario 2 Attacker vs Defender self-play training, scenario 3
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Conclusion & Future Work

e Conclusions:
e We have proposed a Method to automatically find security strategies
e — Model as Markov game & evolve strategies using self-play
reinforcement learning

o Addressed domain-specific challenges with Auto-regressive policy,
opponent pool, and function approximation.

o Challenges of applied reinforcement learning

@ Stable convergence remains a challenge
@ Sample-efficiency is a problem
@ Generalization is a challenge

o Current & Future Work:
e Study techniques for mitigation of identified RL challenges
e Learn security strategies by interacion with a cyber range
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Thank you

@ All code for reproducing the results is open source:
https://github.com/Limmen/gym-idsgame

Kim Hammar & Rolf Stadler (KTH) November 3, 2020 12 /12


https://github.com/Limmen/gym-idsgame

