Finding Effective Security Strategies through Reinforcement Learning and Self-Play¹ CNSM 2020 | International Conference on Network and Service Management

Kim Hammar & Rolf Stadler

kimham@kth.se & stadler@kth.se

Division of Network and Systems Engineering KTH Royal Institute of Technology

November 3, 2020

¹Kim Hammar and Rolf Stadler. "Finding Effective Security Strategies through Reinforcement Learning and Self-Play". In: International Conference on Network and Service Management (CNSM 2020) (CNSM 2020). Izmir, Turkey, Nov. 2020.

Game Learning Programs

Challenges: Evolving and Automated Attacks

• Challenges:

- Evolving & automated attacks
- Complex infrastructures

Goal: Automation and Learning

- Challenges
 - Evolving & automated attacks
 - Complex infrastructures
- Our Goal:
 - Automate security tasks
 - Adapt to changing attack methods

Approach: Game Model & Reinforcement Learning

• Challenges:

- Evolving & automated attacks
- Complex infrastructures

• Our Goal:

- Automate security tasks
- Adapt to changing attack methods

Our Approach:

- Model network as Markov Game $\mathcal{M}_{G} = \langle \mathcal{S}, \mathcal{A}_{1}, \dots, \mathcal{A}_{N}, \mathcal{T}, \mathcal{R}_{1}, \dots \mathcal{R}_{N} \rangle$
- ullet Compute policies π for $\mathcal{M}_{\mathcal{G}}$
- Incorporate π in self-learning systems

Related Work

Game-Learning Programs:

- TD-Gammon², AlphaGo Zero³, OpenAl Five etc.
- \implies Impressive empirical results of *RL and self-play*

Network Security:

- Automated threat modeling⁴, automated intrusion detection etc.
- Need for <u>automation</u> and better security tooling

Game Theory:

- Network Security: A Decision and Game-Theoretic Approach⁵.
- \implies Many security operations involves *strategic decision making*

²Gerald Tesauro. "TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play". In: Neural Comput. 6.2 (Mar. 1994), 215–219. ISSN: 0899-7667. DOI: 10.1162/neco.1994.6.2.215. URL: https://doi.org/10.1162/neco.1994.6.2.215.

³David Silver et al. "Mastering the game of Go without human knowledge". In: *Nature* 550 (Oct. 2017), pp. 354—. URL: http://dx.doi.org/10.1038/nature24270.

⁴Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. "A Meta Language for Threat Modeling and Attack Simulations". In: *Proceedings of the 13th International Conference on Availability, Reliability and Security.* ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. ISBN: 9781450364485. DOI: 10.1145/3230833.3232799. URL: https://doi.org/10.1145/3230833.3232799.

⁵Tansu Alpcan and Tamer Basar. *Network Security: A Decision and Game-Theoretic Approach*. 1st. USA: Cambridge University Press, 2010. ISBN: 0521119324.

Outline

- Use Case
- Markov Game Model for Intrusion Prevention
- Reinforcement Learning Problem
- Method
- Results
- Conclusions

Use Case: Intrusion Prevention

- A **Defender** owns a network infrastructure
 - Consists of connected components
 - Components run network services
 - Defends by monitoring and patching
- An Attacker seeks to intrude on the infrastructure
 - Has a partial view of the infrastructure
 - Wants to compromise a specific component
 - Attacks by reconnaissance and exploitation

(1) Network Infrastructure

(1) Network Infrastructure

(1) Network Infrastructure (2) Graph $\mathcal{G} = \langle \mathcal{N}, \mathcal{E} \rangle$ (3) State space $|\mathcal{S}| = (w+1)^{|\mathcal{N}| \cdot m \cdot (m+1)}$

- (1) Network Infrastructure
 (2) Graph $\mathcal{G} = \langle \mathcal{N}, \mathcal{E} \rangle$
 (3) State space $|\mathcal{S}| = (w+1)^{|\mathcal{N}| \cdot m \cdot (m+1)}$

(4) Action space $|\mathcal{A}| = |\mathcal{N}| \cdot (m+1)$

- (1) Network Infrastructure
 (2) Graph $\mathcal{G} = \langle \mathcal{N}, \mathcal{E} \rangle$
 (3) State space $|\mathcal{S}| = (w+1)^{|\mathcal{N}| \cdot m \cdot (m+1)}$

(4) Action space $|\mathcal{A}| = |\mathcal{N}| \cdot (m+1)$ (5) Game Dynamics $\mathcal{T}, \mathcal{R}_1, \mathcal{R}_2, \rho_0$

- (1) Network Infrastructure
 (2) Graph $\mathcal{G} = \langle \mathcal{N}, \mathcal{E} \rangle$ (3) State space $|\mathcal{S}| = (w+1)^{|\mathcal{N}| \cdot m \cdot (m+1)}$

(4) Action space $|\mathcal{A}| = |\mathcal{N}| \cdot (m+1)$ (5) Game Dynamics $\mathcal{T}, \mathcal{R}_1, \mathcal{R}_2, \rho_0$

- Markov game
- Zero-sum
- 2 players
- Partially observed
- Stochastic elements
- Round-based
- $\mathcal{M}_{G} = \langle \mathcal{S}, \mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{T}, \mathcal{R}_{1}, \mathcal{R}_{2}, \gamma, \rho_{0} \rangle$

Automatic Learning of Security Strategies

• Finding strategies for the Markov game model:

- Evolutionary methods
- Computational game theory
- Self-Play Reinforcement learning
 - Attacker vs Defender
 - Strategies evolve without human intervention

Motivation for Reinforcement Learning:

- Strong empirical results in related work
- Can adapt to new attack methods and threats
- Can be used for complex domains that are hard to model exactly

The Reinforcement Learning Problem

Goal:

• Approximate $\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t=0}^T \gamma^t r_{t+1}\right]$

• Learning Algorithm:

- Represent π by π_{θ}
- Define objective $J(\theta) = \mathbb{E}_{o \sim \rho^{\pi_{\theta}}, a \sim \pi_{\theta}}[R]$
- Maximize $J(\theta)$ by stochastic gradient ascent with gradient $\nabla_{\theta}J(\theta) = \mathbb{E}_{o \sim \rho^{\pi_{\theta}}, a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|o) A^{\pi_{\theta}}(o, a) \right]$

Domain-Specific Challenges:

- Partial observability: captured in the model
- Large state space $|S| = (w+1)^{|\mathcal{N}| \cdot m \cdot (m+1)}$
- Large action space $|\mathcal{A}| = |\mathcal{N}| \cdot (m+1)$
- Non-stationary Environment due to presence of adversary

The Reinforcement Learning Problem

Goal:

• Approximate $\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t=0}^T \gamma^t r_{t+1}\right]$

Learning Algorithm:

- Represent π by π_{θ}
- Define objective $J(\theta) = \mathbb{E}_{o \sim \rho^{\pi_{\theta}}, a \sim \pi_{\theta}}[R]$
- Maximize $J(\theta)$ by stochastic gradient ascent with gradient $\nabla_{\theta}J(\theta) = \mathbb{E}_{o \sim \rho^{\pi_{\theta}}, a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|o) A^{\pi_{\theta}}(o, a) \right]$

Domain-Specific Challenges:

- Partial observability: captured in the model
- Large state space $|S| = (w+1)^{|\mathcal{N}| \cdot m \cdot (m+1)}$
- Large action space $|\mathcal{A}| = |\mathcal{N}| \cdot (m+1)$
- Non-stationary Environment due to presence of adversary

The Reinforcement Learning Problem

Goal:

• Approximate $\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t=0}^T \gamma^t r_{t+1}\right]$

• Learning Algorithm:

- Represent π by π_{θ}
- Define objective $J(\theta) = \mathbb{E}_{o \sim \rho^{\pi_{\theta}}, a \sim \pi_{\theta}}[R]$
- Maximize $J(\theta)$ by stochastic gradient ascent with gradient $\nabla_{\theta}J(\theta) = \mathbb{E}_{o \sim \rho^{\pi_{\theta}}, a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|o) A^{\pi_{\theta}}(o, a) \right]$

Domain-Specific Challenges:

- Partial observability: captured in the model
- Large state space $|S| = (w+1)^{|\mathcal{N}| \cdot m \cdot (m+1)}$
- Large action space $|\mathcal{A}| = |\mathcal{N}| \cdot (m+1)$
- Non-stationary Environment due to presence of adversary

Our Reinforcement Learning Method

Policy Gradient & Function Approximation

- ullet To deal with large state space ${\cal S}$
- π_{θ} parameterized by weights $\theta \in \mathbb{R}^d$ of NN.
- PPO & REINFORCE (stochastic π)

Auto-Regressive Policy Representation

- ullet To deal with large action space ${\cal A}$
- To minimize interference
- $\pi(a, n|o) = \pi(a|n, o) \cdot \pi(n|o)$

Opponent Pool

- To avoid overfitting
- Want agent to learn a general strategy

Our Reinforcement Learning Method

- Policy Gradient & Function Approximation
 - ullet To deal with large state space ${\cal S}$
 - ullet $\pi_{ heta}$ parameterized by weights $heta \in \mathbb{R}^d$ of NN
 - PPO & REINFORCE (stochastic π

Auto-Regressive Policy Representation

- ullet To deal with large action space ${\cal A}$
- To minimize interference
- $\pi(a, n|o) = \pi(a|n, o) \cdot \pi(n|o)$

Opponent Pool

- To avoid overfitting
- Want agent to learn a general strategy

Our Reinforcement Learning Method

- Policy Gradient & Function Approximation
 - ullet To deal with large state space ${\cal S}$
 - π_{θ} parameterized by weights $\theta \in \mathbb{R}^d$ of NN
 - PPO & REINFORCE (stochastic π)
- Auto-Regressive Policy Representation
 - ullet To deal with large action space ${\cal A}$
 - To minimize interference
 - $\pi(a, n|o) = \pi(a|n, o) \cdot \pi(n|o)$
- Opponent Pool
 - To avoid overfitting
 - Want agent to learn a general strategy

Experimentation: Learning from Zero Knowledge

Experimentation: Learning from Zero Knowledge

Conclusion & Future Work

Conclusions:

- We have proposed a Method to automatically find security strategies
- Model as Markov game & evolve strategies using self-play reinforcement learning
- Addressed domain-specific challenges with Auto-regressive policy, opponent pool, and function approximation.
- Challenges of applied reinforcement learning
 - Stable convergence remains a challenge
 - Sample-efficiency is a problem
 - Generalization is a challenge

• Current & Future Work:

- Study techniques for mitigation of identified RL challenges
- Learn security strategies by interacion with a cyber range

Thank you

• All code for reproducing the results is open source:

https://github.com/Limmen/gym-idsgame