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Before we start..

1. Register for an account at:
WWww.hops.site

2. Follow the instructions at:
http://bit.ly/2EnZQgW


www.hops.site
http://bit.ly/2EnZQgW
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DISTRIBUTED COMPUTING + DEEP LEARNING = ?

Distributed Computing Deep Learning

®
@

Why Combine the two?

2em1!  Chen Sun et al. “Revisiting Unreasonable Effectiveness of Data in Deep Learning Era”.  In: CoRR
abs/1707.02968 (2017). arXiv: 1707.02968. URL: http://arxiv.org/abs/1707.02968.

2em1?  Jeffrey Dean et al. “Large Scale Distributed Deep Networks”. In: Advances in Neural Information Processing
Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1223-1231.


http://arxiv.org/abs/1707.02968
http://arxiv.org/abs/1707.02968
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abs/1707.02968 (2017). arXiv: 1707.02968. URL:
Jeffrey Dean et al. “Large Scale Distributed Deep Networks”. In: Advances in Neural Information Processing
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Chen Sun et al. “Revisiting Unreasonable Effectiveness of Data in Deep Learning Era”.

http://arxiv.org/abs/1707.02968.

Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1223-1231.
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DISTRIBUTED COMPUTING + DEEP LEARNING =

Distributed Computing Deep Learning

OO

Why Combine the two?

» We like challenging problems ©

» More productive data science

» Unreasonable effectiveness of data’
» To achieve state-of-the-art results?

2em1!  Chen Sun et al. “Revisiting Unreasonable Effectiveness of Data in Deep Learning Era”.  In: CoRR
abs/1707.02968 (2017). arXiv: 1707.02968. URL: http://arxiv.org/abs/1707.02968.

2em1?  Jeffrey Dean et al. “Large Scale Distributed Deep Networks”. In: Advances in Neural Information Processing
Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1223-1231.


http://arxiv.org/abs/1707.02968
http://arxiv.org/abs/1707.02968
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DISTRIBUTED DEEP LEARNING (DDL): PREDICTABLE
SCALING

Now

A more

[
[
Accuracy compute

neural networks

other approaches

Scale (data size, model size)

2em1®  Jeff Dean. Building Intelligent Systems withLarge Scale Deep Learning. https : //www . scribd . com/

document /355752799/Jeff-Dean-s-Lecture-for-YC-AI. 2018. ] = = = Q>


https://www.scribd.com/document/355752799/Jeff-Dean-s-Lecture-for-YC-AI
https://www.scribd.com/document/355752799/Jeff-Dean-s-Lecture-for-YC-AI
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DISTRIBUTED DEEP LEARNING (DDL): PREDICTABLE
SCALING

Reduced

Generalization
Error
Better Better
Regularization — Optimization
Hyper Design Larger .
Methods Parameter Better Training Algorithms
Optimization Models Datasets
Distribution

RN Ge
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DDL 1S NOT A SECRET ANYMORE

I Single Node Multiple Nodes

100

80 A

60 -

40 A

20 1

Reported Experiments [%]

Pre- 2010 2011 2012 2013 2014 2015 2016 2017-
2010 Present
Year

(b) Training with Single vs. Multiple Nodes 4

2em1*  Tal Ben-Nun and Torsten Hoefler. “Demystifying Parallel and Distributed Deep Learning: An In-Depth
Concurrency Analysis”. In: CoRR abs/1802.09941 (2018). arXiv: 1802.09941. URL: http://arxiv.org/abs/
1802.09941. =] F = E £ DA


http://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.09941
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DDL 1S NOT A SECRET ANYMORE

Frameworks for DDL

n ~ CNTK

Kubeflow _. - ||
o LT DL

Amazon Sagebaker TensorflowOnSpark
Distributed TF f

CaffeOnSpark PYTORCH

Companies using DDL
facebook (GO gle
UBER ’
YAHOQO! S nerrux
amazon
Linked [ Bai'C%EE

B® Microsoft
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DDL REQUIRES AN ENTIRE
SOFTWARE /INFRASTRUCTURE STACK

Distributed Systems
Data Validation A/B
Testing
Distributed Training
Gradient V = Gradient V Model
Data Collection m m@ Serving
HyperParameter
Gradient V - Gradient V Tl Monitori
Sradient Sradient onitorin;
Hardware 8
Management

Feature Engineering

Pipeline Management
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OUTLINE

1. Hopsworks: Background of the platform

2. Managed Distributed Deep Learning using HopsYARN,
HopsML, PySpark, and Tensorflow

3. Black-Box Optimization (Hyperparameter Tuning) using
Hopsworks, Metadata Store, PySpark, and Maggy®

Feature Store data management for machine learning
Coffee Break
Demo, end-to-end ML pipeline

N o o

Hands-on Workshop, try out Hopsworks on our cluster in
Lulea

2em1®  Moritz Meister and Sina Sheikholeslami. Maggy. https://github.com/logicalclocks/maggy.
2019.


https://github.com/logicalclocks/maggy
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(GPU/CPU as a resource)

@ HopsFS

FoaDeE




INTRO HOPSWORKS DISTRIBU
!

D DL BLACK-BOX OPTIMIZATION  FEATURE STOR
HOPSWORKS

SUMMARY DEMO/WORKSHOP

Frameworks

spa *
(ML/Data)

PYTHRCH

HopsYARN  m ma ma @ (@
(GPU/CPU as a resource)

Groers B9 O E D
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ML/AI Assets Ej IQ;

Feature Store Pipelines

Frameworks

sk 8
(ML/Data)

PYTORCH
HopsYARN

(GPU/CPU as a resource)

O @
Experiments Models
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HOPSWORKS

from hops import featurestore
from hops import experiment
API featurestore.get_features ([
S "average_attendance",
"average_player_age"]

- )
experiment.collective_all_reduce(features, model)

ML/AI Assets | ° IQ’ -~

Feature Store Plpehnes

Experlments Models

Frameworks .
S ‘/5 ¥

pQI' PYTHRCH m
(ML/Data) W

HopsYARN
P G
(GPU/CPU as a resource)

£y HopsFS E% % %
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HOPSWORKS from hops import featurestore

from hops import experiment
API featurestore.get_features ([
S "average_attendance”

"average_player_age"])
experiment.collective_all_reduce(features, model)

ML/AI Assets Ej IQ. &8

Feature Store PlpE:lmes

Experlments Models

Frameworks Spofl'(\z T eieen @

(ML/Data)

HopsYARN g gn 8] @) @
(GPU/CPU as a resource) : y !

Distributed Metadata ——

[ [ I A
(Available from REST API) N S I I A

Grers 8 B
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INNER AND OUTER LOOP OF LARGE SCALE DEEP
LEARNING

worker, worker, workery
© ©, ©
v v 2 v
Y
L Synchronization
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INNER AND OUTER LOOP OF LARGE SCALE DEEP
LEARNING

Inner loop

/i

Data
— wo#kﬂ”’l wor‘kerz
hparams i E;%g g;g
| |ddte
Search Method $$$® $$$O
JEBO| | GUBO
4{ . Syncvhrzonization

Metric 7
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INNER AND OUTER LOOP OF LARGE SCALE DEEP
LEARNING

Inner loop
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Gradient
VoL(y.y)
X1 .
Loy —— Ly, y)
X />N /
Features Model 6 Prediction Loss
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Data Partition -

A

Gradient V

€+ \ Gradient V
Data Partition -< ------ i+ | i+ | ‘ ------ >- Data Partition
IF
Gradient V Gradient V

\ )

- Data Partition
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DISTRIBUTED DEEP LEARNING IN PRACTICE

» Implementation
of distributed
algorithms is
becoming a
commodity (TF,
PyTorch etc)

» The hardest part
of DDL is now:
» Cluster
management
» Allocating
GPUs
» Data
management
» Operations &
performance

—,o-g

Moc‘lels
OO,
ONO;
OFO)

GPUs

) =

Data

]

Distribution
B ]
]
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from hops import experiment

experiment.collective_all_reduce(train_£fn)
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HoOPSWORKS DDL SOLUTION

from hops
import experiment

experiment.

HopsYARN RM

|
Resource requests |

YARN container

collective_all_reduce(

train_fn

)

Client API

L
GPU as a resource

YARN container

|
GPU as a resource

YARN container

YARN container

|
GPU as a resource

YARN container

]
GPU as a resource
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HopsYARN RM
GPU as a resource
| |
Resource requests | |
| I
| v - -
£rom hops YARN container
) YARN container
import experiment
experiment.
collective_all_reduce( s‘u(nt
train_fn a0 F F
N i i
GPU as a resource
Client API

GPU as a resource

YARN container

1|
GPU as a resource
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HopsYARN RM
GPU as a resource
A | conda env :
I R
Resource requests | |
L
£rom hops s Spark executor
import experiment
T L
collective_all_reduce( Sparl
train_fn e 9 L L
> | condaeny CPU 22 resource CRUe 2 v
_______ ]
! | condaenv ! | condaenv !
Client API ORI 1 R 1

GPU as a resource
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HoOPSWORKS DDL SOLUTION

Here is my ip: 192.168.1.1 --‘V
BN @ i+ |
o7 GPU as a resource
’ 3
I
I
I

Resource requests

é

TR
Spark driver _F,

from hops

|

import experiment

experiment.
collective_all_reduce( Spar
train_fn % u
y | condaeny ! GPU as a resource
[ I [ |
| condaenv !
Client API v 1

Here is my ip: 192.168.1.4

Here is my ip: 192.168.1.2

1\!
p
]
GPU as a resource

1
| condaenv !
. ]

Here is my ip: 192.168.1.3

w
i
5
2

)
¥l
o)
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HOPSWORKS DDL SOLUTION

|

Gradient V
==
. &
7z
’ X 1
’ ) |
/ Resource requests | |
’ ! ‘
from hops YARN container
import experiment
Cpark driver > ©
experiment. i: b
collective_all_reduce( Spor
train_fn [ N
b)) | condaenv !
Rt ]
Client APT

Gradient V

't Gradient V

< -]
GPU as a resource
sl
| condaenv !
[

!
v 1

C r\
Gradient V

1|
GPU as a resource

|

=] F

i
5
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HoPSWORKS DDL SOLUTION

Spark executor

N Gradient V

Gradient V u
- i
- @ GPU as a resource

I
’ £y )
) I
Resource requests | |
I
I

YARN container
YARN container

import experiment @~ P
experinent. 7,(? ¢ b
collective_all_reduce( Spor
train_fn ——— . L
) | condaenv ! GPU asa resource
I | condaenv !
ClientAPr oS0
> Hide complexity behind simple API
P Allocate resources using pyspark v r‘
P Allocate GPUs for spark executors using HopsYARN Gradient v Gradient V
P Serve sharded training data to workers from HopsFS i
GPU as a resource
P Use HopsFS for aggregating logs, checkpoints and results |m—————— "
| condaenv !
P Store experiment metadata in metastore ~~~ GCTTL L ]
>

Use dynamic allocation for interactive resource management
S Hops Distributed File System (HopsFS) 3

= = = 9

u}
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OUTER LOOP: BLACK BOX OPTIMIZATION

— worker, worker, workery

hparams I ? ?? &
o(ajolc

?’j o)

Search Method (?(?(?@

O @ @ ©

g
4{ - Syncvhrom'zation ' ‘

Metric 7
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OUTER LOOP: BLACK BOX OPTIMIZATION

Outer loop

hparams h

Search Method

Metric 7
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OUTER LOOP: BLACK BOX OPTIMIZATION

Gradient
Hyperparameters VoL (y,y)
(n, num_layers, neurons)
\—>
-
3 ey L. Y)
Xn
Features Model ¢ Prediction

Loss
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OUTER LOOP: BLACK BOX OPTIMIZATION

Example Use-Case from one of our clients:
» Goal: Train a One-Class GAN model for fraud detection

» Problem: GANs are extremely sensitive to
hyperparameters and there exists a very large space of
possible hyperparameters.

» Example hyperparameters to tune: learning rates 7,
optimizers, layers.. etc.

Real input x Discriminator

oNo}
<DG(—:rICegator C 3 N
Random Noise z N
— O, —— U
S oy o=
OO

5
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OUTER LOOP: BLACK BOX OPTIMIZATION

Gradient
Vol (y, )

Hyp
(n, num_layers, newrons)

Features Model 6 Prediction Loss

0.10

® 008 £

4< 0.06 z‘

e 0.04 g

L a 0.02 =
e 0.00

30

Nuy ’

3 40
DS L

Search Space
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OUTER LOOP: BLACK BOX OPTIMIZATION

Gradient
Hyperparameters VoL(y.9)
(1, num_layers, neurons)

RENONION
(EJ% i L)

Features Model 6 Prediction Loss

008 =
5
0.06 ‘EO
004 £
L, 0.02 =
0.00
12
30 d I
\ 35 4 o N
Nup, N"‘”mns/L:V PR
wer
Search Space Shared Task Queue Parallel Workers

u]

]
I
w

i
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OUTER LOOP: BLACK BOX OPTIMIZATION

Gradient
Hyperparameters VoL(y.9)
(1, num_layers, neurons)

RENONION
(EJ% i L)

Features Model 6 Prediction Loss

008 =
5
0.06 ‘EO
004 £
L, 0.02 =
0.00
12
30 d I
\ 35 4 o N
Nup, N"‘”mns/L:V PR
wer
Search Space Shared Task Queue Parallel Workers

u]

]
I
w

i
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OUTER LOOP: BLACK BOX OPTIMIZATION

Gradient
Hyperparameters VoL(y.$)
(n, num_layers, neurons)

o Which algorith f h?
: p £0.9) [ ch algorithm to use for searc ]

(Y‘J
e
Features Model & Prediction Loss //JL\
A
0.10
008 = .
0.04 .
0.02
0.00 .

—/

0.06

Learning Rate

L—

30
Nugg

35
Nex 4
Urong
S/ Layer

Search Space Shared Task Queue Parallel Workers
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OUTER LOOP: BLACK BOX OPTIMIZATION

Gradient

How to monitor progress?]

Hyperparameters ViLy.5)
(7, num_Jayers, neurons)
®
RINC S ON ) ) [Which algorithm to use for search?]
(J i AD—y——L(y.y) 8

Features Model ¢ Prediction Loss /JL\

0.10 .
008 = .
0.02 .
0.00 .

—/

0.06
0.04

Learning Rate

Search Space Shared Task Queue Parallel Workers
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OUTER LOOP: BLACK BOX OPTIMIZATION

%How to aggregate results?]
Gradient

Hyperparameters Vol (y. )

(n, num_layers, neurons) H 3 P
\. ala ——— How to monitor progress.]

RO v O o S A
() y " [Which algorithm to use for search?]

OOz

Features Model 6 Prediction Loss

Learning Rate

@000

Search Space Shared Task Queue Parallel Workers
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OUTER LOOP: BLACK BOX OPTIMIZATION

Fault Tolerance?

Gradient
Hyperparameters VoL(y.§)

(n. num_layers, neurons) .
alo ——— How to monitor progress?]

(] — O

Features Model ¢ Prediction Loss

Learning Rate

@000

N 35
um l\ourozm/l j:] 4:)
“ayer

Search Space Shared Task Queue Parallel Workers



This should be managed with platform support!
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from hops import experiment

experiment.random_search(train_£fn)
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ASYNCHRONOUS SEARCH WORKFLOW

—I

)\ Suggestions

L o

—II

[ Men

Workers

Suggested tasks

Coordinator

il

Suggestions

© OTrial

o} Metric

L New

OTrial

Metric

Suggestions

Metric

Heartbeats

Results

Suggested tasks

Heartbeats

Results

Suggested tasks

Heartbeats

Results

Accuracy

) Y
Epochs

Trials Progress

miny f(x)
x€ES

Black-Box Optimziers

Global Task Queue

o [=3

100
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ASYNCHRONOUS SEARCH WORKFLOW

Workers Coordinator
Suggested tasks
)\ Suggestions oLy

Early Stop

0
)
Y
(2
o]
7
2
=
g
&
Accursey

Metric

L New

)
Epocs
M Suggested tasks Trials Progress
li -~

Results

100

Suggestions Early St
e L R min £(x)
GG OTrial ___ Meartboats EEE
& Me:tric _ Results Black-Box Optimziers
]m Suggested tasks
li -t
)\ Suggestions
9 JoJo) 5
TEO OTrial
o] Metric Results Global Task Queue
oy —T———————>

=] = =
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ASYNCHRONOUS SEARCH WORKFLOW

Workers Coordinator
]]] Suggested tasks
)\ SUggEStiO“S Early Stop .
el s
T O Trial Heartbeats H
o] Metric Results
e o 20 40 6 80 100
Epochs
M Suggested tasks Trials Progress
17 -t
)\ Suggestions Early Stop . Checkpoints
D miny f(x) >
1 Heartbeat: xes
GOV OTrial ___ Meartbeats
?—%ric —&, Black-Box Optimziers
]m Suggested tasks
li -~
Suggestions
Heartbeats
ko Metric Results Global Task Queue
\—>05 -1

0
)
I
w
i
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INNER AND OUTER LOOP OF LARGE SCALE DEEP
LEARNING

Inner loop

/i

Data
— wo#kﬂ”’l wor‘kerz
hparams i E;%g g;g
| |ddte
Search Method $$$® $$$O
JEBO| | GUBO
4{ . Syncvhrzonization

Metric 7
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FEATURE STORE

—_ X1,1 X1n\ (W1

\_)_ /T ’
P o
.
Xn,1

2em1°

scaling_michelangelo.
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FEATURE STORE

/ x171 xl,,, VA1

{7\_(\\/)— A B N atd) —Y

Xnl .o Xuu)\Yn

“Data is the hardest part of ML and the most important
piece to get right.

Modelers spend most of their time selecting and
transforming features at training time and then building
the pipelines to deliver those features to production models.”

- Uber®

2em1®  scaling_michelangelo.
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FEATURE STORE

%> SR I p(x) =Y

Xnl - Xuu)\Yn

“Data is the hardest part of ML and the most important
piece to get right.

Modelers spend most of their time selecting and
transforming features at training time and then building
the pipelines to deliver those features to production models.”

- Uber”

2em1” scaling_michelangelo.
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WHAT IS A FEATURE?
A feature is a measurable property of some data-sample

A feature could be..

» An aggregate value (min, max, mean, sum)

» A raw value (a pixel, a word from a piece of text)

» A value from a database table (the age of a customer)

» A derived representation: e.g an embedding or a cluster
Features are the fuel for Al systems:

Gradient
VoL (y, )
X1 @ l
() e L)
& ®

Features Model 6 Prediction Loss
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DISENTANGLE YOUR ML PIPELINES WITH A FEATURE
STORE

Data Sources

Feature Store
A data management platform for machine learning.
The interface between data engineering and data science.

Models
Models are trained using sets of features. |
The features are fetched from the feature store |[*
and can overlap between models.
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SUMMARY

» Deep Learning is going distributed

» Algorithms for DDL are available in several frameworks

» Applying DDL in practice brings a lot of operational
complexity

» Hopsworks is a platform for scale out deep learning and
big data processing

» Hopsworks makes DDL simpler by providing simple
abstractions for distributed training, parallel experiments
and much more..

N Ghopshadoop ologicalcocks ff [OG CALCLOCKS

www.hops.io www.logicalclocks.com

We are open source:
https://github.com/logicalclocks/hopsworks
https://github.com/hopshadoop/hops

Thanks to Logical Clocks Team: Jim Dowling, Seif Haridi, Theo Kakantousis, Fabio Buso,
Gautier Berthou, Ermias Gebremeskel, Mahmoud Ismail, Salman Niazi, Antonios Kouzoupis, Robin Andersson,
Alex Ormenisan, Rasmus Toivonen and Steffen Grohsschmiedt.


www.hops.io
www.logicalclocks.com
https://github.com/logicalclocks/hopsworks
https://github.com/hopshadoop/hops
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Hands-on Workshop

1. If you haven’t registered, do it now on hops.site

2. Cheatsheet: http://snurran.sics.se/hops/
kim/workshop_cheat.txt


hops.site
http://snurran.sics.se/hops/kim/workshop_cheat.txt
http://snurran.sics.se/hops/kim/workshop_cheat.txt
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EXERCISE 1 (HELLO HOPSWORKS)

1.

Create a Deep Learning Tour Project on Hopsworks

. Start a Jupyter Notebook with the config:

» “Experiment” Mode

1GPU

4000 (MB) memory for the driver (appmaster)
8000 (MB) memory for the executor

Rest can be default

vV vy vVvYy

. Create a new “PySpark” notebook

. In the first cell, write:

print("Hello Hopsworks")

. Execute the cell (Ctrl + <Enter>)
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EXERCISE 2 (DISTRIBUTED HELLO HOPSWORKS WITH
GPU)

1. Add a new cell with the contents:

def executor():

print("Hello from GPU")

2. Add a new cell with the contents:

from hops import experiment

experiment.launch(executor)

3. Execute the two cells in order (Ctrl + <Enter>)
4. Go to the Application Ul
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print(“Hello from GPU”)

print(“Hello from GPU”)

print(“Hello from GPU"™)
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¢ 1 In[]: {481 ) H In[]:
def executor(): def executor(): def executor(): def executor():
print(”Hello from GPU”) print(”Hello from GPU™) print(”Hello from GPU”) print(”Hello from GPU”)
In[ ]:

from hops import experiment
experiment.launch(executor)
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EXERCISE 3 (LOAD MNIST FROM HOPSFS)
1. Add a new cell with the contents:

from hops import hdfs
import tensorflow as tf
def create_tf_dataset():

train_files

[hdfs.project_path() +
"TestJob/data/mnist/train/train.tfrecords"]
dataset = tf.data.TFRecordDataset(train_files)
def decode(example):

example = tf.parse_single_example (example, {
’image_raw’: tf.FixedLenFeature([], tf.string),
’label’: tf.FixedLenFeature([], tf.int64)})
image = tf.reshape(tf.decode_raw(example[’image_raw’],
tf.uint8), (28,28,1))
label = tf.one_hot(tf.cast(example[’label’], tf.int32), 10)
return image, label

return dataset.map(decode).batch(128).repeat()
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1. Add a new cell with the contents:

create_tf_dataset ()

2. Execute the two cells in order (Ctrl + <Enter>)
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EXERCISE 4 (DEFINE CNN MODEL)

from tensorflow import keras

def create_model():
model = keras.Sequential ()
model.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding=’'same’,

activation="relu’, input_shape=(28,28,1)))
model.add (keras.layers.BatchNormalization())
model.add(keras.layers.MaxPooling2D(pool_size=2))
model.add (keras.layers.Dropout(0.3))
model.add(keras.layers.Conv2D(filters=64, kernel_size=3,
padding="same’, activation='relu’))

model.add(keras.layers.BatchNormalization())
model.add(keras.layers.MaxPooling2D(pool_size=2))
model.add (keras.layers.Dropout (8.3))
model.add (keras.layers.Flatten())
model.add(keras.layers.Dense (128, activation=’'relu’))
model.add(keras.layers.Dropout (8.5))
model.add(keras.layers.Dense (10, activation=’'softmax’))

return model
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FEATURE STORE
EXERCISE 4 (DEFINE CNN MODEL)

1. Add a new cell with the contents:

create_model (). summary ()

2. Execute the two cells in order (Ctrl + <Enter>)
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EXERCISE 5 (DEFINE & RUN THE EXPERIMENT)

1. Add a new cell with the contents:

from hops import tensorboard

from tensorflow.python.keras.callbacks import TensorBoard

def train_fn(Q):
dataset = create_tf_dataset()
model = create_model ()
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adam() ,metrics=[’accuracy’])
tb_callback = TensorBoard(log_dir=tensorboard.logdir())
model_ckpt_callback = keras.callbacks.ModelCheckpoint (
tensorboard.logdir (), monitor=’acc’)
history = model.fit(dataset, epochs=50,
steps_per_epoch=80, callbacks=[tb_callback])

return history.history["acc"][—1]
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EXERCISE 5 (DEFINE & RUN THE EXPERIMENT)

1. Add a new cell with the contents:

experiment.launch(train_£fn)

2. Execute the two cells in order (Ctrl + <Enter>)

3. Go to the Application UI and monitor the training progress
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