Distributed Deep Learning Using Hopsworks EIT Big Data Summer School

INTRO

Kim Hammar kim@logicalclocks.com

Intro Hopsworks Distributed DL Black-Box Optimization Summary Break Demo/Workshop

DISTRIBUTED COMPUTING + DEEP LEARNING = ?

Distributed Computing

"A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable. - Leslie Lamport

Deep Learning

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P," improves with experience E.

- Tom Mitchell

Why Combine the two?

DISTRIBUTED COMPUTING IN 2 MINUTES

DEEP LEARNING IN 2 MINUTES

DISTRIBUTED COMPUTING + DEEP LEARNING = ?

Distributed Computing

INTRO

Deep Learning

Why Combine the two?

2em1 Chen Sun et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era". In: CoRR abs/1707.02968 (2017). arXiv: 1707.02968. URL: http://arxiv.org/abs/1707.02968.

2em1² Jeffrey Dean et al. "Large Scale Distributed Deep Networks". In: Advances in Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1223–1231. « 🗆 » « 👼 » « ছ » « ছ » » «

DISTRIBUTED COMPUTING + DEEP LEARNING = ?

Distributed Computing

INTRO

Deep Learning

Why Combine the two?

▶ We like challenging problems ☺

2em1² Jeffrey Dean et al. "Large Scale Distributed Deep Networks". In: Advances in Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1223–1231. « 🗆 » « 📑 » « 🖹 » « 🖹 » » 🥞 » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « 🧸 » » « « 🔭 » « « « » » » « « » » » « « » » » « » » « « » » » « »

²em1 Chen Sun et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era". In: CoRR abs/1707.02968 (2017). arXiv: 1707.02968. URL: http://arxiv.org/abs/1707.02968.

DISTRIBUTED COMPUTING + DEEP LEARNING = ?

Distributed Computing

Deep Learning

Why Combine the two?

- ► We like challenging problems ©
- ► More productive data science
- Unreasonable effectiveness of data¹
- ► To achieve state-of-the-art results²

2em1 Chen Sun et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era". In: CoRR abs/1707.02968 (2017). arXiv: 1707.02968. URL: http://arxiv.org/abs/1707.02968.

DISTRIBUTED DEEP LEARNING (DDL): PREDICTABLE SCALING

DISTRIBUTED DEEP LEARNING (DDL): PREDICTABLE SCALING

HOPSWORKS DISTRIBUTED DL BLACK-BOX OPTIMIZATION SUMMARY BREAK DEMO/WORKSHOP

DDL IS NOT A SECRET ANYMORE

INTRO

(b) Training with Single vs. Multiple Nodes

2em1⁴ Tal Ben-Nun and Torsten Hoefler. "Demystifying Parallel and Distributed Deep Learning: An In-Deepth Concurrency Analysis". In: CoRR abs/1802.09941 (2018). arXiv: 1802.09941. URL: http://arxiv.org/abs/1802.09941.

DDL IS NOT A SECRET ANYMORE

Frameworks for DDL

Amazon SageMaker

Chainer MN

Companies using DDL

DDL REQUIRES AN ENTIRE SOFTWARE/INFRASTRUCTURE STACK

OUTLINE

- 1. **Hopsworks**: Background of the platform
- 2. **Managed Distributed Deep Learning** using HopsYARN, HopsML, PySpark, and Tensorflow
- 3. **Black-Box Optimization (Hyperparameter Tuning)** using Hopsworks, Metadata Store and PySpark
- 4. Short Break
- 5. Demo, end-to-end ML pipeline
- 6. **Hands-on Workshop**, try out Hopsworks on SICS ICE cluster

HopsYARN

(GPU/CPU as a resource)

Hopsworks

(ML/Data)

PYT<mark>Ö</mark>RCH

HopsYARN

(GPU/CPU as a resource)

INTRO HOPSWORKS DISTRIBUTED DL **BLACK-BOX OPTIMIZATION** BREAK DEMO/WORKSHOP

Hopsworks

APIs

```
from hops import featurestore
from hops import experiment
featurestore.get_features([
                     average_attendance",
                    "average_player_age"])
experiment.collective_all_reduce(features, model)
```

ML/AI Assets

Feature Store Pipelines

Frameworks

(ML/Data)

PYT 6 RCH

HopsYARN

(GPU/CPU as a resource)

HOPSWORKS DISTRIBUTED DL **BLACK-BOX OPTIMIZATION** DEMO/WORKSHOP

Hopsworks

INTRO

APIs

from hops import featurestore from hops import experiment featurestore.get features(['average_attendance", "average_player_age"])
experiment.collective_all_reduce(features, model)

ML/AI Assets

Frameworks

(ML/Data)

PYT 6RCH

HopsYARN

(GPU/CPU as a resource)

Distributed Metadata

(Available from REST API)

HopsFS

THE TEAM

HOPS & HOPSWORKS HISTORY

"If you're working with big data and Hadoop, **this one paper could repay your investment**in the Morning Paper many times over... **HopFS is a huge win**."

Adrian Colver. The Morning Paper

INNER AND OUTER LOOP OF LARGE SCALE DEEP LEARNING

Intro Hopsworks **Distributed DL** Black-Box Optimization Summary Break Demo/Workshop

INNER AND OUTER LOOP OF LARGE SCALE DEEP LEARNING

200

INNER AND OUTER LOOP OF LARGE SCALE DEEP LEARNING

INNER LOOP: DISTRIBUTED DEEP LEARNING

INNER LOOP: DISTRIBUTED DEEP LEARNING

INNER LOOP: DISTRIBUTED DEEP LEARNING

DISTRIBUTED DEEP LEARNING IN PRACTICE

- Implementation of distributed algorithms is becoming a commodity (TF, PyTorch etc)
- ► The hardest part of DDL is now:
 - Cluster management
 - Allocating GPUs
 - Data management
 - Operations & performance

from hops import experiment
experiment.collective_all_reduce(train_fn)

YARN container

HOPSWORKS DDL SOLUTION

INTRO

Hops Distributed File System (HopsFS)

OUTER LOOP: BLACK BOX OPTIMIZATION Example Use-Case from one of our clients:

- ► Goal: Train a One-Class GAN model for fraud detection
- ► <u>Problem</u>: GANs are extremely sensitive to hyperparameters and there exists a very large space of possible hyperparameters.
- Example hyperparameters to tune: learning rates η , optimizers, layers.. etc.

Search Space

Intro Hopsworks Distributed DL Black-Box Optimization Summary Break Demo/Workshop

OUTER LOOP: BLACK BOX OPTIMIZATION

4 D > 4 P > 4 E > 4 E >

Search Space

Shared Task Queu

Parallel Workers

MAGGY: A FRAMEWORK FOR SYNCHRONOUS ASYNCHRONOUS HYPERPARAMETER TUNING ON HOPSWORKS⁵

INTRO

A flexible framework for running different black-box optimization algorithms on Hopsworks

► ASHA, Hyperband, Differential Evolution, Random search, Grid search, etc.

MAGGY: A FRAMEWORK FOR SYNCHRONOUS ASYNCHRONOUS HYPERPARAMETER TUNING ON HOPSWORKS⁵

INTRO

A flexible framework for running different black-box optimization algorithms on Hopsworks

► ASHA, Hyperband, Differential Evolution, Random search, Grid search, etc.

FRAMEWORK SUPPORT FOR SYNCHRONOUS SEARCH ALGORITHMS

- ► Parallel undirected/synchronous search is trivial using Spark and a distributed file system
- Example of un-directed search algorithms: random and grid search
- ► Example of synchronous search algorithms: **differential evolution**

INTRO HOPSWORKS DISTRIBUTED DL BLACK-BOX OPTIMIZATION SUMMARY BREAK DEMO/WORKSHOP

FRAMEWORK SUPPORT FOR SYNCHRONOUS SEARCH

ALGORITHMS

- ► Parallel un-directed/synchronous search is trivial using Spark and a distributed file system
- ► Example of un-directed search algorithms: random and grid search
- ► Example of synchronous search algorithms: **differential evolution**

PROBLEM WITH THE BULK-SYNCHRONOUS PROCESSING MODEL FOR PARALLEL SEARCH

- ► Synchronous search is sensitive to stragglers and not suitable for early stopping
- ▶ ... For large scale search problems we need asynchronous search
- ► **Problem:** Asynchronous search is much harder to implement with big data processing tools such as Spark

ENTER MAGGY: A FRAMEWORK FOR RUNNING ASYNCHRONOUS SEARCH ALGORITHMS ON HOPS

ENTER MAGGY: A FRAMEWORK FOR RUNNING ASYNCHRONOUS SEARCH ALGORITHMS ON HOPS

Soork 1 spark task/worker, many async tasks inside

ENTER MAGGY: A FRAMEWORK FOR RUNNING ASYNCHRONOUS SEARCH ALGORITHMS ON HOPS

Soork 1 spark task/worker, many async tasks inside

ENTER MAGGY: A FRAMEWORK FOR RUNNING ASYNCHRONOUS SEARCH ALGORITHMS ON HOPS

Soork 1 spark task/worker, many async tasks inside

ENTER MAGGY: A FRAMEWORK FOR RUNNING ASYNCHRONOUS SEARCH ALGORITHMS ON HOPS

- Robust against stragglers
- Supports early stopping
- ► Fault tolerance with checkpointing
- Monitoring with Tensorboard
- Log aggregation with HopsFS
- ► Simple API and extendable

PARALLEL EXPERIMENTS

SUMMARY

INTRO

- ► Deep Learning is going distributed
- ► Algorithms for DDL are available in several frameworks
- ► Applying DDL in practice brings a lot of operational complexity
- ► Hopsworks is a platform for scale out deep learning and big data processing
- ► Hopsworks makes DDL simpler by providing simple abstractions for distributed training, parallel experiments and much more..

We are open source:

https://github.com/logicalclocks/hopsworks https://github.com/hopshadoop/hops

Thanks to Logical Clocks Team: Jim Dowling, Seif Haridi, Theo Kakantousis, Fabio Buso, Gautier Berthou, Ermias Gebremeskel, Mahmoud Ismail, Salman Niazi, Antonios Kouzoupis, Robin Andersson, Alex Ormenisan, Rasmus Toivonen and Steffen Grohsschmiedt.

During the break..

- 1. Register for an account at: www.hops.site
- 2. Follow the instructions at: http://bit.ly/20I4Ggt
- 3. Cheatsheet (for copy-paste):

 http://snurran.sics.

 se/hops/kim/workshop_

 cheat.txt.

INTRO

Demo-Setting

Hands-on Workshop

- 1. If you haven't registered, do it now on hops.site
- 2. Cheatsheet: http://snurran.sics.se/hops/
 kim/workshop_cheat.txt
- 3. Python API Docs: http://hops-py.logicalclocks.com/

INTRO

EXERCISE 1 (HELLO HOPSWORKS)

- 1. Create a Deep Learning Tour Project on Hopsworks
- 2. Start a Jupyter Notebook with the config:
 - "Experiment" Mode
 - ► 1 GPU
 - ► 4000 (MB) memory for the driver (appmaster)
 - ► 8000 (MB) memory for the executor
 - ► Rest can be default
- 3. Create a new "PySpark" notebook
- 4. In the first cell, write:

```
print("Hello Hopsworks")
```

5. Execute the cell (Ctrl + <Enter>)

EXERCISE 2 (DISTRIBUTED HELLO HOPSWORKS WITH GPU)

1. Add a new cell with the contents:

```
def executor():
    print("Hello from GPU")
```

2. Add a new cell with the contents:

```
from hops import experiment
experiment.launch(executor)
```

- 3. Execute the two cells in order (Ctrl + <Enter>)
- 4. Go to the Application UI

EXERCISE 2 (DISTRIBUTED HELLO HOPSWORKS WITH GPU)

EXERCISE 2 (DISTRIBUTED HELLO HOPSWORKS WITH GPU)

EXERCISE 3 (SAVE DATA IN THE FEATURE STORE)

- 1. Enable the Feature Store service in your project
- 2. Add a new cell with the contents:

```
from hops import featurestore
import numpy as np
featurestore.create_featuregroup(np.random.rand(20,10), "eit_school")
```

3. Add a new cell with the contents:

```
featurestore.get_featuregroup("eit_school").show(5)
```

4. Add a new cell with the contents:

```
%%local
%matplotlib inline
from hops import featurestore
featurestore.visualize_featuregroup_correlations("eit_school")
```

5. Execute the cells in order and then go to the featurestore registry

EXERCISE 4 (LOAD MNIST FROM HOPSFS)

1. Add a new cell with the contents:

INTRO

```
from hops import hdfs
import tensorflow as tf
def create_tf_dataset():
    train_files = [hdfs.project_path() +
                 "TestJob/data/mnist/train/train.tfrecords"]
    dataset = tf.data.TFRecordDataset(train_files)
    def decode(example):
        example = tf.parse single example(example.{
                       'image raw': tf.FixedLenFeature([]. tf.string).
                       'label': tf.FixedLenFeature([], tf.int64)})
        image = tf.reshape(tf.decode_raw(example['image_raw'],
                          tf.uint8). (28.28.1))
        label = tf.one hot(tf.cast(example['label'], tf.int32), 10)
        return image, label
    return dataset.map(decode).batch(128).repeat()
                                             4□ > 4□ > 4□ > 4□ > 4□ > 900
```

EXERCISE 4 (LOAD MNIST FROM HOPSFS)

2. Add a new cell with the contents:

```
create_tf_dataset()
```

3. Execute the two cells in order (Ctrl + <Enter>)

EXERCISE 5 (DEFINE CNN MODEL)

```
from tensorflow import keras
def create_model():
    model = keras.Sequential()
    model.add(keras.layers.Conv2D(filters=32, kernel_size=3, padding='same',
                                  activation='relu', input_shape=(28,28,1)))
   model.add(keras.lavers.BatchNormalization())
    model.add(keras.layers.MaxPooling2D(pool_size=2))
    model.add(keras.lavers.Dropout(0.3))
    model.add(keras.layers.Conv2D(filters=64, kernel_size=3,
                             padding='same', activation='relu'))
   model.add(keras.layers.BatchNormalization())
    model.add(keras.layers.MaxPooling2D(pool_size=2))
    model.add(keras.layers.Dropout(0.3))
    model.add(keras.layers.Flatten())
    model.add(keras.layers.Dense(128, activation='relu'))
    model.add(keras.layers.Dropout(0.5))
    model.add(keras.lavers.Dense(10. activation='softmax'))
    return model
```

EXERCISE 5 (DEFINE CNN MODEL)

2. Add a new cell with the contents:

```
create_model().summary()
```

3. Execute the two cells in order (Ctrl + <Enter>)

EXERCISE 6 (DEFINE & RUN THE EXPERIMENT)

1. Add a new cell with the contents:

```
from hops import tensorboard
from tensorflow.python.keras.callbacks import TensorBoard
def train_fn():
    dataset = create_tf_dataset()
    model = create_model()
    model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adam().metrics=['accuracy'])
    tb_callback = TensorBoard(log_dir=tensorboard.logdir())
    model_ckpt_callback = keras.callbacks.ModelCheckpoint(
                              tensorboard.logdir(). monitor='acc')
    history = model.fit(dataset, epochs=50,
                    steps per epoch=80. callbacks=[tb callback])
    return history.history["acc"][-1]
```

EXERCISE 6 (DEFINE & RUN THE EXPERIMENT)

2. Add a new cell with the contents:

```
experiment.launch(train_fn)
```

- 3. Execute the two cells in order (Ctrl + <Enter>)
- 4. Go to the Application UI and monitor the training progress

HOPSWORKS DISTRIBUTED DL BLACK-BOX OPTIMIZATION SUMMARY BREAK DEMO/WORKSHOP

REFERENCES

INTRO

► Example notebooks https: //github.com/logicalclocks/hops-examples

- ► HopsML⁶
- ► Hopsworks⁷
- ► Hopsworks' feature store⁸
- ► Maggy https://github.com/logicalclocks/maggy
- ► HopsFS⁹

2em1 Logical Clocks AB. HopsML: Python-First ML Pipelines. https://hops.readthedocs.io/en/latest/hopsml/hopsML.html. 2018.

2em1⁷ Jim Dowling. Introducing Hopsworks. https://www.logicalclocks.com/introducing-hopsworks/.2018.

2em1⁸ Kim Hammar and Jim Dowling. Feature Store: the missing data layer in ML pipelines? https://www.logicalclocks.com/feature-store/. 2018.

2em1⁹ Salman Niazi et al. "HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases". In: 15th USENIX Conference on File and Storage Technologies (FAST 17). Santa Clara, CA: USENIX Association, 2017, pp. 89–104. ISBN: 978-1-931971-36-2. URL: https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi.