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Use Case: Intrusion Tolerance
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I A replicated system offers a service to a client population.
I The system should provide service without disruption.
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Use Case: Intrusion Tolerance
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I An attacker seeks to intrude on the system and disrupt service.
I The system should tolerate intrusions.
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Intrusion Tolerance (Simplified)

Intrusion event Time of full recovery
Time

Recovery time
Survivability

Lo
ss

Normal
performance

Sy
st
em

pe
rfo

rm
an
ce

Tolerance

Cumulative
performance loss

(want to minimize)



4/35

Increasing Demand for Intrusion-Tolerant Systems
I As our reliance on online services grows, there is an

increasing demand for intrusion-tolerant systems.
I Example applications:

Flight control
computer

Sensors and
actuators

Power grids
e.g., scada systems1.

Safety-critical IT systems
e.g., banking systems,

e-commerce applications2,
healthcare systems, etc.

Real-time control systems
e.g., flight control computer3.

1Amy Babay et al. “Network-Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid”. In: 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). 2018, pp. 255–266. doi:
10.1109/DSN.2018.00036.

2Jukka Soikkeli et al. “Redundancy Planning for Cost Efficient Resilience to Cyber Attacks”. In: IEEE
Transactions on Dependable and Secure Computing 20.2 (2023), pp. 1154–1168. doi:
10.1109/TDSC.2022.3151462.

3J.H. Wensley et al. “SIFT: Design and analysis of a fault-tolerant computer for aircraft control”. In:
Proceedings of the IEEE 66.10 (1978), pp. 1240–1255. doi: 10.1109/PROC.1978.11114.

https://doi.org/10.1109/DSN.2018.00036
https://doi.org/10.1109/TDSC.2022.3151462
https://doi.org/10.1109/PROC.1978.11114


5/35

Theoretical Foundations of Intrusion Tolerance
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Building Blocks of An Intrusion-Tolerant System
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1. Intrusion-tolerant consensus protocol

A quorum needs to reach agreement
to tolerate f compromised replicas.

2. Replication strategy

Cost-reliability trade-off.

3. Recovery strategy

Compromises will occur as t →∞.
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- No recoveries

Published 1995
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- No recoveries

Published 1998
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2002
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2004
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Prior Work on Intrusion-Tolerant Systems

- Adaptive replication based on heuristics
- Periodic recoveries

Published 2006
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2006
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Supports both periodic and reactive recoveries
- Does not provide reactive recovery strategies

Published 2007
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2011
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2018
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2023
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2023

Can we do better by leveraging decision theory and optimal control?
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The tolerance Architecture

Two-level recovery and replication control with feedback.
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Definition 1 (Correct service)
The system provides correct service if the healthy replicas satisfy
the following properties:

Each request is eventually executed. (Liveness)
Each executed request was sent by a client. (Validity)
Each replica executes the same request sequence. (Safety)
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Proposition 1 (Correctness of tolerance)
A system that implements the tolerance architecture provides
correct service if

Network links are authenticated.
At most f nodes are compromised or crashed simultaneously.
Nt ≥ 2f + 1.
The system is partially synchronous.
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Intrusion Tolerance as a Two-Level Control Problem
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I The local level models intrusion recovery.
I The global level models replication control.



12/35

Assumption 1
The probability that the system controller fails is negligible.

Assumption 2
Compromise and crash events are statistically independent across
nodes.
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The Local Control Problem

I Partially observed Markov decision process Γi .
I Controller actions: (R)ecover and (W)ait. ai ,t ∈ {R,W}.

I Node states: SN = {(H)ealthy, (C)ompromised, ∅}. si ,t ∈ SN.
I State transition function: f (si ,t | si ,t , ai ,t).
I pC,i : crash probability, pA,i : intrusion probability.

I Observation oi ,t ∼ zi (·|si ,t): e.g., ids alerts at time t.

H C

∅

Crashed

Healthy Compromised

pC,i pC,i
a(C)

i = R

a(A)
i = A
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Node Controller Strategy

I The controller computes the belief

bi ,t(s) , P[Si ,t = C|ht ].
ht , (bi ,1, ai ,1, oi ,2, ai ,2, oi ,3, . . . , ai ,t−1, oi ,t).

I Controller strategy:

π : [0, 1]→ {W,R}.
Controller

Belief
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Node Controller Objective
I Cost: Ji , ηT (R)

i + F (R)
i .

I T (R)
i is the average time-to-recovery.

I F (R)
i is the recovery frequency.

I η > 1 is a scaling factor.

I Bounded-time-to-recovery constraint: The time between two
recoveries can be at most ∆R.

10 20 30 40 50 60 70 80 90 100

0.5

1

p = 0.1 p = 0.05 p = 0.025 p = 0.01 p = 0.005

t

Failure (crash or compromise) probability.

p is the failure probability per time-step.
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Threshold Structure of the Optimal Control Strategy
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The controller’s optimal cost function.

Theorem 2
There exists an optimal control strategy that satisfies

π?i ,t(bi ,t) = R ⇐⇒ bi ,t ≥ α?i ,t ∀t,

where α?i ,t ∈ [0, 1] is a threshold.
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Efficient Computation of Optimal Recovery Strategies

Algorithm 1: Threshold Optimization
1 Input: Objective function Ji , parametric optimizer po.
2 Output: An approximate optimal control strategy π̂i ,θ.
3 Algorithm
4 Θ← [0, 1].
5 For each θ ∈ Θ, define πi ,θ(bi ,t) as

6 πi ,θ(bi ,t) ,
{
R if bi ,t ≥ θ
W otherwise.

7 Jθ ← Eπi,θ [Ji ].
8 π̂i ,θ ← po(Θ, Jθ).
9 return π̂i ,θ.

I Examples of parameteric optimization algorithmns: cem, bo,
cma-es, de, spsa, etc.
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Efficient Computation of Optimal Recovery Strategies
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Mean compute time to obtain an optimal recovery strategy for different
values of the bounded-time-to-recovery constraint ∆R.
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The Benefit of Optimal Recovery Control
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Ji (4)
Benefit of optimal recovery

Optimal recovery control can significantly reduce opera-
tional cost given that an intrusion detection model is
available.

Key insight
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Intrusion Tolerance as a Two-Level Control Problem
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The Global Control Problem

I Constrained Markov decision process Γ.
I States: SS = {0, 1, . . . , smax}, the number of healthy nodes.

I Controller actions: Add a(C)
t ∈ {0, 1} nodes.

I Dynamics f : depend on the local nodes.

I Markov strategy:

π : SS → {0, 1}.
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System Controller Objective

I Cost: J , limT→∞
∑T

t=1
at
T .

I Constraint: T (A) ≥ εA, where T (A) is the availability.

εA Allowed service downtime per year

0.9 36 days
0.95 18 days
0.99 3 days
0.999 8 hours
0.9999 52 minutes
0.99999 5 minutes
1 0 minutes
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System Reliability Analysis
I The Mean-time-to-failure (mttf) is the mean hitting time

of a state where st ≤ f :

E[T (F) | S1 = s1] = E(St)t≥1

[
inf {t ≥ 1 | St ≤ f } | S1 = s1

]
.

10 20 30 40 50 60 70 80 90 100

100

200

300

pi = 0.05 pi = 0.025 pi = 0.01

N1

E[T (F)]

The mttf in function of the number of initial nodes N1 and failure
probability per node pi .
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Theorem 3 (Optimal Control Strategy Existence)
Assuming
(A) The Markov chain induced by any control strategy is

unichain.
(B) The availability constraint is feasible.

Then the following holds.
1. There exists an optimal stationary replication control strategy.
2. The optimal strategy has a threshold structure.
3. An optimal replication control strategy can be computed by

using linear programming.
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Efficient Computation of Optimal Replication Control
Strategies
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The Benefit of Optimal Replication Control
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Availability Benefit of optimal replication control

Optimal replication control can guarantee a high service
availability in expectation. The benefit of optimal repli-
cation is mainly prominent for long-running systems.

Key insight
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Summary of the Control-Theoretic Model
I Intrusion recovery control.

I Partially observed Markov decision process.
I Threshold structure of optimal control strategies.
I Efficient computation through stochastic approximation.

I Replication control.
I Constrained Markov decision process.
I Threshold structure of optimal control strategies.
I Efficient computation through linear programming.
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Experiment Setup - Testbed
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The tolerance Architecture
Two-level recovery and replication control with feedback.
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I A replicated web service which offers two operations:
I A read operation that returns the service state.
I A write operation that updates the state.
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Intrusion-Tolerant Consensus Protocol (minbft)

Client
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Replica 1

Replica 2

Replica 3

checkpoint Controller

Replica 1
(compromised)

Replica 2

Replica 3

recover request
state state

New replica

Replica 1
(leader v)

(leader v + 1)
Replica 2

Replica 3

join-request join new-view join-reply System
controller
Replica 1
(leader v)

(leader v + 1)
Replica 2

Replica 3

evict-request evict new-view exit-reply

a) Normal operation b) View change

c) Checkpoint
d) State transfer

e) Join f) Evict
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Experiment Setup - Emulated Intrusions

Replica ID Intrusion steps

1 tcp syn scan, ftp brute force
2 tcp syn scan, ssh brute force
3 tcp syn scan, telnet brute force
4 icmp scan, exploit of cve-2017-7494
5 icmp scan, exploit of cve-2014-6271
6 icmp scan, exploit of cwe-89 on dvwa
7 icmp scan, exploit of cve-2015-3306
8 icmp scan, exploit of cve-2016-10033
9 icmp scan, ssh brute force, exploit of cve-2010-0426
10 icmp scan, ssh brute force, exploit of cve-2015-5602

Table 1: Intrusion steps.
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Experiment Setup - Background Traffic

Background services Replica ID(s)

ftp, ssh, mongodb, http, teamspeak 1
ssh, dns, http 2
ssh, telnet, http 3
ssh, samba, ntp 4
ssh 5, 7, 8, 10
dvwa, irc, ssh 6
teamspeak, http, ssh 9

Table 2: Background services.
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Estimated Distributions of Intrusion Alerts
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ẑ i
(o
i
|a

(A
)

i
)

cwe-89

0 2000 4000 6000 8000

cve-2017-7494

0 2000 4000 6000 8000
oi ∈ O
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I We estimate the observation distribution z with the
empirical distribution Ẑ based on M samples.

I ẑ →a.s z as M →∞ (Glivenko-Cantelli theorem).
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Comparison with State-of-the-art Intrusion-Tolerant
Systems
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N1.
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Conclusion

I We present a control-theoretic model of intrusion
tolerance.

I We establish structural results.
I We evaluate the optimal control strategies on a testbed.
I Our control-theoretic strategies have stronger theoretical

guarantees and significantly better practical performance than
the heuristic control strategies used in state-of-the-art
intrusion-tolerant systems.
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