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2Image inspired from Sculley et al. (Google) Hidden Technical Debt in Machine Learning Systems
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“Data is the hardest part of ML and the most important piece to
get right.

Modelers spend most of their time selecting and transforming
features at training time and then building the pipelines to deliver
those features to production models.”

- Uber3

3Jeremy Hermann and Mike Del Balso. Scaling Machine Learning at Uber with Michelangelo.
https://eng.uber.com/scaling-michelangelo/. 2018.
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“Data is the hardest part of ML and the most important piece to
get right.

Modelers spend most of their time selecting and transforming
features at training time and then building the pipelines to deliver
those features to production models.”

- Uber4

4Jeremy Hermann and Mike Del Balso. Scaling Machine Learning at Uber with Michelangelo.
https://eng.uber.com/scaling-michelangelo/. 2018.
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Solution: Disentangle ML Pipelines
with a Feature Store
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A feature store is a central vault for storing documented, curated, and
access-controlled features.

The feature store is the interface between data engineering and data
model development
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What is a Feature?

A feature is a measurable property of some data-sample

A feature could be..
An aggregate value (min, max, mean, sum)
A raw value (a pixel, a word from a piece of text)
A value from a database table (the age of a customer)
A derived representation: e.g an embedding or a cluster

Features are the fuel for AI systems:
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Motivation for the Feature Store

The feature store enables:
Reusability of features between models and teams
Automatic backfilling of features
Automatic feature documentation and analysis
Feature versioning
Standardized access of features between training and serving
Feature discovery

Num. Curated Features in Feature StoreA
vg

.
C
os

t
of

a
ne

w
M

L
P
ro

je
ct

Kim Hammar (Logical Clocks) Hopsworks Feature Store January 29, 2019 10 / 19



Reusing Features
Without a Feature Store is Complex
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Siloed Feature Sets
Without a feature store it is typical to

have feature sets stored in
isolation from each other.

Models
Models are trained using sets of features.

Without a feature store each model typically
defines its own feature definitions,

without feature sharing across models.
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Reusing Features
With a Feature Store is Simple

Data Sources Dataset 1 Dataset 2 . . . Dataset n

Feature Store
Feature Store

A data management platform for machine learning.
The interface between data engineering and data science.

Models
Models are trained using sets of features.

The features are fetched from the feature store
and can overlap between models.
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The Components of a Feature Store

The Storage Layer: For storing feature data in the feature store
The Metadata Layer: For storing feature metadata (versioning,
feature analysis, documentation, jobs)
The Feature Engineering Jobs: For computing features
The Feature Registry: A user interface to share and discover
features
The Feature Store API: For writing/reading to/from the feature
store

Feature Storage

Feature Metadata Jobs

Feature Registry API
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Feature Registry and API
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Summary

Machine learning comes with a high technical cost
Machine learning pipelines needs proper data management
A feature store is a place to store curated and documented features
The feature store serves as an interface between feature engineering
and model development, it can help disentangle complex ML pipelines
Hopsworks5 provides the world’s first open-source feature store

@hopshadoop

www.hops.io

@logicalclocks

www.logicalclocks.com

We are open source:
https://github.com/logicalclocks/hopsworks

https://github.com/hopshadoop/hops

6
5Jim Dowling. Introducing Hopsworks. https://www.logicalclocks.com/introducing-hopsworks/. 2018.
6Thanks to Logical Clocks Team: Jim Dowling, Seif Haridi, Theo Kakantousis, Fabio Buso, Gautier Berthou,

Ermias Gebremeskel, Mahmoud Ismail, Salman Niazi, Antonios Kouzoupis, Robin Andersson, and Alex Ormenisan
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Modeling Data in the Feature Store

A feature group is a logical grouping of features
Typically from the same input dataset and computed with the same job

A training dataset is a set of features suitable for a prediction task
Features in a training dataset are often from several feature groups
E.g features on customers, features on user activities, etc.

Training Datasets d

Feature groups g

Features f f1 f2 f3 f4 f5
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d1 d2
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Training Pipeline in HopsML

1 Create job/notebook to compute features and publish to the feature
store

2 Create job/notebook to read features/labels and save to a training
dataset

3 Read the training dataset into your model for training

HopsFS
Data Lake

Hive
Feature store

Raw data

Feature computation

Feature store features

hops-util
hops-util-py
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Hopsworks Feature Store API

Reading from the Feature Store:

from hops import featurestore

features_df = featurestore.get_features([

"average_attendance",

"average_player_age"

])

Writing to the Feature Store:

from hops import featurestore

raw_data = spark.read.parquet(filename)

pol_features = raw_data.map(lambda x: x^2)

featurestore.insert_into_featuregroup(pol_features , "pol_featuregroup")
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