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Use Case: Intrusion Response

I A defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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System Model

I G = 〈{gw} ∪ V, E〉: directed tree
representing the virtual infrastructure

I V: finite set of virtual components.

I E : finite set of component
dependencies.

I Z: finite set of zones.
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State Space

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i )i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t ) are the actions.

s1 s2 s3

s4 s5 s4

... ... ...
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Workflows

I Services are connected into workflows W = {w1, . . . ,w|W|}.
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Workflows
I Services are connected into workflows W = {w1, . . . ,w|W|}.

gw fw idps lb

http
servers

auth
server

search
engine

db

cache

Dependency graph of an example workflow representing a web
application; gw, fw, idps, lb, and db are acronyms for gateway,
firewall, intrusion detection and prevention system, load balancer, and
database, respectively.
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Workflows

I Services are connected into
workflows
W = {w1, . . . ,w|W|}.

I Each w ∈ W is realized as a
subtree Gw = 〈{gw} ∪ Vw, Ew〉
of G

I W = {w1, . . . ,w|W|} induces a
partitioning

V =
⋃

wi∈W
Vwi such that i 6= j =⇒ Vwi ∩ Vwj = ∅

Zone a

Zone b Zone c

gw

1 2 3

4 5 6

7

A workflow tree
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Clients
Client population

. . .Arrival rate λ Departure

Service time µ

. . .

...
...

...

w1 w2 w|W|

Workflows (Markov processes)

I Homogeneous client population
I Clients arrive according to Po(λ), Service times Exp( 1µ)
I Workflow selection: uniform
I Workflow interaction: Markov process
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Observations

I idpss inspect network traffic and
generate alert vectors:

ot ,
(
ot,1, . . . , ot,|V|

)
∈ N|V|0

ot,i is the number of alerts related to
node i ∈ V at time-step t.

I ot = (ot,1, . . . , ot,|V|) is a realization
of the random vector Ot with joint
distribution Z
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Defender
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii) stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control
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Attacker
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii) compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution
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The Intrusion Response Problem

maximize
πD∈ΠD

minimize
πA∈ΠA

E(πD,πA) [J ] (1a)

subject to s(D)
t+1 ∼ fD

(
· | A(D)

t ,A(D)
t
)

∀t (1b)

s(A)
t+1 ∼ fA

(
· | S(A)

t ,At
)

∀t (1c)

ot+1 ∼ Z
(
· | S(D)

t+1,A
(A)
t ) ∀t (1d)

a(A)
t ∼ πA

(
· | H(A)

t
)
, a(A)

t ∈ AA(st) ∀t (1e)

a(D)
t ∼ πD

(
· | H(D)

t
)
, a(D)

t ∈ AD ∀t (1f)
E(πD,πA) denotes the expectation of the random vectors
(St ,Ot ,At)t∈{1,...,T} when following the strategy profile (πD, πA).

(1) can be formulated as a zero-sum Partially Observed Stochastic
Game with Public Observations (a PO-POSG):

Γ = 〈N , (Si )i∈N , (Ai )i∈N , (fi )i∈N , u, γ, (b(i)
1 )i∈N ,O,Z 〉
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Existence of a Solution

Theorem
Given the po-posg Γ (2), the following holds:
(A) Γ has a mixed Nash equilibrium and a value function

V ∗ : BD × BA → R that maps each possible initial pair of
belief states (b(D)

1 ,b(A)
1 ) to the expected utility of the

defender in the equilibrium.

(B) For each strategy pair (πA, πD) ∈ ΠA ×ΠD, the best response
sets BD(πA) and BA(πD) are non-empty and correspond to
optimal strategies in two Partially Observed Markov Decision
Processes (pomdps): M (D) and M (A). Further, a pair of
pure best response strategies (π̃D, π̃A) ∈ BD(πA)× BA(πD)
and a pair of value functions (V ∗D,πA

,V ∗A,πD
) exist.
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The Curse of Dimensionality
I While Γ has a value, computing it is intractable. The state,

action, and observation spaces of the game grow
exponentially with |V|.

1 2 3 4 5

104

105
2

105

|S|
|O|
|Ai |

|V|

Growth of |S|, |O|, and |Ai | in function of the number of nodes |V|



14/33

The Curse of Dimensionality
I While (1) has a solution (i.e the game Γ has a value (Thm

1)), computing it is intractable since the state, action, and
observation spaces of the game grow exponentially with |V|.
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Growth of |S|, |O|, and |Ai | in function of the number of nodes |V|

We tackle the scability challenge with decomposition
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Intuitively..
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Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently
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Additive Structure Across Workflows (Intuition)

“=”

I If there is no path between i and j in G, then i and j are
independent in the following sense:
I Compromising i has no affect on the state of j .
I Compromising i does not make it harder or easier to

compromise j .
I Compromising i does not affect the service provided by j .
I Defending i does not affect the state of j .
I Defending i does not affect the service provided by j .
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Additive Structure Across Workflows
Definition (Transition independence)
A set of nodes Q are transition independent iff the transition
probabilities factorize as

f (St+1 | St ,At) =
∏
i∈Q

f (St+1,i | St,i ,At,i )

Definition (Utility independence)
A set of nodes Q are utility independent iff there exists functions
u1, . . . , u|Q| such that the utility function u decomposes as

u(St ,At) = f (u1(St,1,At,1), . . . , u1(St,|Q|,At,Q))

and

ui ≤ u′i ⇐⇒ f (u1, . . . , ui , . . . , u|Q|) ≤ f (u1, . . . , u′i , . . . , u|Q|)
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Additive Structure Across Workflows
Theorem (Additive structure across workflows)
(A) All nodes V in the game Γ are transition independent.
(B) If there is no path between i and j in the topology graph G,
then i and j are utility independent.

Corollary
Γ decomposes into |W| additive subproblems that can be solved
independently and in parallel.

π
(w1)
k

π
(w2)
k

π
(w|W|)
k

ot,w1

ot,w2

ot,w|W|

...
⊕

a(k)
w1

a(k)
w2

a(k)
w|W|

a(k)
t
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Additive Structure Across Workflows: Example

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

a) IT infrastructure b) Transition dependencies
St ,At St+1,Ot+1

S(D)
t+1,1S(D)

t,1

A(D)
t,1 S(A)

t+1,1

S(A)
t,1 Ot,1

A(A)
t,1

S(D)
t+1,2S(D)

t,2

A(D)
t,2 S(A)

t+1,2

S(A)
t,2 Ot,2

A(A)
t,2

S(D)
t+1,3S(D)

t,3

A(D)
t,3 S(A)

t+1,3

S(A)
t,3 Ot,1

A(A)
t,3

c) Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3
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Optimal Substructure Within a Workflow
I Nodes in the same workflow are utility

dependent.

I =⇒ Locally-optimal strategies for
each node can not simply be added
together to obtain an optimal strategy
for the workflow.

I However, the locally-optimal strategies
satisfy the optimal substructure
property.

I =⇒ there exists an algorithm for
constructing an optimal workflow
strategy from locally-optimal
strategies for each node.
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

(π(i)
D )i∈Vw : local strategies in the same workflow w ∈ W
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

Can redefine the utility function for each node i
to take into account the utility impact on its ancestors.

e.g. utility of node 6 need to include utility impact for 1, 3, 5.
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

Can prove that this utility transformation makes the nodes utility independent.
=⇒ Optimal substructure.
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Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently
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Threshold Properties of Local Defender Strategies.
I The local problem of the defender can be decomposed in the

temporal domain as

max
πD

T∑
t=1

J = max
πD

τ1∑
t=1

J1 +
τ2∑

t=1
J2 + . . . (2)

where τ1, τ2, . . . are stopping times.
I =⇒ (1) selection of defensive actions is simplified; and (2)

the optimal stopping times are given by a threshold strategy
that can be estimated efficiently:

Belief space B(j)
D

Switching curve
Υ

Continuation set
C

Stopping set
S

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised
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Threshold Properties of Local Defender Strategies.

Belief space B(j)
D

Switching curve
Υ

Continuation set
C

Stopping set
S

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised

I A node can be in three attack states s(A)
t : Healthy,

Discovered, Compromised.
I The defender has a belief state b(D)

t
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Proof Sketch (Threshold Properties)
I Let L(e1, b̂) denote the line segment

that starts at the belief state
e1 = (1, 0, 0) and ends at b̂, where b̂ is
in the sub-simplex that joins e2 and e3.

I All beliefs on L(e1, b̂) are totally
ordered according to the Monotone
Likelihood Ratio (MLR) order. =⇒ a
threshold belief state αb̂ ∈ L(e1, b̂)
exists where the optimal strategy
switches from C to S.

I Since the entire belief space can be
covered by the union of lines L(e1, b̂),
the threshold belief states αb̂1 , αb̂2 , . . .
yield a switching curve Υ.

Belief space B(j)
D

(the 2-dimensional unit simplex)

sub-simplex B(j)
D,e1

joining e2 and e3b̂5
b̂4

b̂3
b̂2

b̂1

b̂6
b̂7
b̂8
b̂9

L(e1, b̂5)

Switching curve
Υ

Threshold
belief state αb̂9

e1
(1, 0, 0)

e2
(0, 1, 0)

e3
(0, 0, 1)
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Scalable Learning through Decomposition

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

linear
measured

# parallel processes n

|V| = 10

Sp
ee

du
p
S
n

Speedup of completion time when computing best response strategies for
the decomposed game with |V| = 10 nodes and different number of
parallel processes; the subproblems in the decomposition are split evenly
across the processes; let Tn denote the completion time when using n
processes, the speedup is then calculated as Sn = T1

Tn
; the error bars

indicate standard deviations from 3 measurements.
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Decompositional Fictitious Play (DFSP)

π̃2 ∈ B2(π1)

π2

π1

π̃1 ∈ B1(π2)

π̃′2 ∈ B2(π′1)

π′2

π′1

π̃′1 ∈ B1(π′2)

. . .

π∗2 ∈ B2(π∗1)

π∗1 ∈ B1(π∗2)

Fictitious play: iterative averaging of best responses.

I Learn best response strategies iteratively through the parallel
solving of subgames in the decomposition

I Average best responses to approximate the equilibrium
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Learning Equilibrium Strategies

0 20 40 60 80 100
running time (h)

0

5

δ̂ = 0.4

Approximate exploitability δ̂

0 20 40 60 80 100
running time (h)

0.0

0.5

1.0
Defender utility per episode

dfsp simulation dfsp digital twin upper bound oi,t > 0 random defense

Learning curves obtained during training of dfsp to find optimal
(equilibrium) strategies in the intrusion response game; red and blue
curves relate to dfsp; black, orange and green curves relate to baselines.
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Comparison with NFSP

0 10 20 30 40 50 60 70 80
running time (h)

0.0

2.5

5.0

7.5

Approximate exploitability

dfsp nfsp

Learning curves obtained during training of dfsp and nfsp to find
optimal (equilibrium) strategies in the intrusion response game; the red
curve relate to dfsp and the purple curve relate to nfsp; all curves show
simulation results.
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Conclusions

I We study an intrusion response use
case.

I We formulate the use case as a POSG

I We design a novel decompositional
approach to approximate equilibria

I We show that the decomposition
allows scalable approximation of
equilibria.

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n
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