
1/33

Scalable Learning of Intrusion Response
through Recursive Decomposition

GameSec 2023, Avignon, France
Conference on Decision and Game Theory for Security

Kim Hammar & Rolf Stadler

kimham@kth.se
Division of Network and Systems Engineering

KTH Royal Institute of Technology

Oct 18, 2023

2/33

Use Case: Intrusion Response

I A defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting

Attacker Clients
. . .

Defender

1 IPS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

3/33

System Model

I G = 〈{gw} ∪ V, E〉: directed tree
representing the virtual infrastructure

I V: finite set of virtual components.

I E : finite set of component
dependencies.

I Z: finite set of zones.
r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

4/33

State Space

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i)i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t) are the actions.

s1 s2 s3

s4 s5 s4

...

4/33

State Model

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i)i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t) are the actions.

s1 s2 s3

s4 s5 s4

...

4/33

State Model

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i)i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t) are the actions.

s1 s2 s3

s4 s5 s4

...

5/33

Workflows

I Services are connected into workflows W = {w1, . . . ,w|W|}.

5/33

Workflows
I Services are connected into workflows W = {w1, . . . ,w|W|}.

gw fw idps lb

http
servers

auth
server

search
engine

db

cache

Dependency graph of an example workflow representing a web
application; gw, fw, idps, lb, and db are acronyms for gateway,
firewall, intrusion detection and prevention system, load balancer, and
database, respectively.

6/33

Workflows

I Services are connected into
workflows
W = {w1, . . . ,w|W|}.

I Each w ∈ W is realized as a
subtree Gw = 〈{gw} ∪ Vw, Ew〉
of G

I W = {w1, . . . ,w|W|} induces a
partitioning

V =
⋃

wi∈W
Vwi such that i 6= j =⇒ Vwi ∩ Vwj = ∅

Zone a

Zone b Zone c

gw

1 2 3

4 5 6

7

A workflow tree

6/33

Workflow

I Services are connected into
workflows
W = {w1, . . . ,w|W|}.

I Each w ∈ W is realized as a
subtree Gw = 〈{gw} ∪ Vw, Ew〉
of G

I W = {w1, . . . ,w|W|} induces a
partitioning

V =
⋃

wi∈W
Vwi such that i 6= j =⇒ Vwi ∩ Vwj = ∅

Zone a

Zone b Zone c

gw

1 2 3

4 5 6

7

A workflow tree

7/33

Clients
Client population

. . .Arrival rate λ Departure

Service time µ

. . .

...
...

...

w1 w2 w|W|

Workflows (Markov processes)

I Homogeneous client population
I Clients arrive according to Po(λ), Service times Exp(1µ)
I Workflow selection: uniform
I Workflow interaction: Markov process

8/33

Observations

I idpss inspect network traffic and
generate alert vectors:

ot ,
(
ot,1, . . . , ot,|V|

)
∈ N|V|0

ot,i is the number of alerts related to
node i ∈ V at time-step t.

I ot = (ot,1, . . . , ot,|V|) is a realization
of the random vector Ot with joint
distribution Z

idps

idps

idps

idps

alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

8/33

Observations

I idpss inspect network traffic and
generate alert vectors:

ot ,
(
ot,1, . . . , ot,|V|

)
∈ N|V|0

ot,i is the number of alerts related to
node i ∈ V at time-step t.

I ot = (ot,1, . . . , ot,|V|) is a realization
of the random vector Ot with joint
distribution Z

idps

idps

idps

idps

alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

9/33

p
ro

b
ab

il
it

y

ZO1
ZO2

ZO3
ZO4

ZO5
ZO6

ZO7
ZO8

p
ro

b
ab

il
it

y

ZO9
ZO10

ZO11
ZO12

ZO13
ZO14

ZO15
ZO16

p
ro

b
ab

il
it

y

ZO17
ZO18

ZO19
ZO20

ZO21
ZO22

ZO23
ZO24

p
ro

b
ab

il
it

y

ZO25
ZO26

ZO27
ZO28

ZO29
ZO30

ZO31
ZO32

p
ro

b
ab

il
it

y

ZO33
ZO34

ZO35
ZO36

ZO37
ZO38

ZO39
ZO40

p
ro

b
ab

il
it

y

ZO41
ZO42

ZO43
ZO44

ZO45
ZO46

ZO47
ZO48

p
ro

b
ab

il
it

y

ZO49
ZO50

ZO51
ZO52

ZO53
ZO54

ZO55
ZO56

250 500 750
O

p
ro

b
ab

il
it

y

ZO57

250 500 750
O

ZO58

250 500 750
O

ZO59

250 500 750
O

ZO60

250 500 750
O

ZO61

250 500 750
O

ZO62

250 500 750
O

ZO63

250 500 750
O

ZO64

Distributions of # alerts weighted by priority ZOi
(Oi | S(D)

i ,A
(A)
i) per node i ∈ V

no intrusion intrusion

10/33

Defender
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii) stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control

10/33

Defender
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii) stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control

10/33

Defender
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii) stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control

11/33

Attacker
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii) compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution

11/33

Attacker
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii) compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution

11/33

Attacker
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii) compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution

12/33

The Intrusion Response Problem

maximize
πD∈ΠD

minimize
πA∈ΠA

E(πD,πA) [J] (1a)

subject to s(D)
t+1 ∼ fD

(
· | A(D)

t ,A(D)
t
)

∀t (1b)

s(A)
t+1 ∼ fA

(
· | S(A)

t ,At
)

∀t (1c)

ot+1 ∼ Z
(
· | S(D)

t+1,A
(A)
t) ∀t (1d)

a(A)
t ∼ πA

(
· | H(A)

t
)
, a(A)

t ∈ AA(st) ∀t (1e)

a(D)
t ∼ πD

(
· | H(D)

t
)
, a(D)

t ∈ AD ∀t (1f)
E(πD,πA) denotes the expectation of the random vectors
(St ,Ot ,At)t∈{1,...,T} when following the strategy profile (πD, πA).

(1) can be formulated as a zero-sum Partially Observed Stochastic
Game with Public Observations (a PO-POSG):

Γ = 〈N , (Si)i∈N , (Ai)i∈N , (fi)i∈N , u, γ, (b(i)
1)i∈N ,O,Z 〉

13/33

Existence of a Solution

Theorem
Given the po-posg Γ (2), the following holds:
(A) Γ has a mixed Nash equilibrium and a value function

V ∗ : BD × BA → R that maps each possible initial pair of
belief states (b(D)

1 ,b(A)
1) to the expected utility of the

defender in the equilibrium.

(B) For each strategy pair (πA, πD) ∈ ΠA ×ΠD, the best response
sets BD(πA) and BA(πD) are non-empty and correspond to
optimal strategies in two Partially Observed Markov Decision
Processes (pomdps): M (D) and M (A). Further, a pair of
pure best response strategies (π̃D, π̃A) ∈ BD(πA)× BA(πD)
and a pair of value functions (V ∗D,πA

,V ∗A,πD
) exist.

14/33

The Curse of Dimensionality
I While Γ has a value, computing it is intractable. The state,

action, and observation spaces of the game grow
exponentially with |V|.

1 2 3 4 5

104

105
2

105

|S|
|O|
|Ai |

|V|

Growth of |S|, |O|, and |Ai | in function of the number of nodes |V|

14/33

The Curse of Dimensionality
I While (1) has a solution (i.e the game Γ has a value (Thm

1)), computing it is intractable since the state, action, and
observation spaces of the game grow exponentially with |V|.

1 2 3 4 5

104

105
2

105

|S|
|O|
|Ai |

|V|

Growth of |S|, |O|, and |Ai | in function of the number of nodes |V|

We tackle the scability challenge with decomposition

15/33

Intuitively..

r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 65

The optimal
action here...

Does not directly
depend on the state or

action of a node
down here

15/33

Intuitively..

r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 65

The optimal
action here...

But they are
not completely

independent either.

How can we
exploit this
structure?

Does not directly
depend on the state
or action of a node

down here

16/33

Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently

16/33

Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently

17/33

Additive Structure Across Workflows (Intuition)

“=”

I If there is no path between i and j in G, then i and j are
independent in the following sense:
I Compromising i has no affect on the state of j .
I Compromising i does not make it harder or easier to

compromise j .
I Compromising i does not affect the service provided by j .
I Defending i does not affect the state of j .
I Defending i does not affect the service provided by j .

18/33

Additive Structure Across Workflows
Definition (Transition independence)
A set of nodes Q are transition independent iff the transition
probabilities factorize as

f (St+1 | St ,At) =
∏
i∈Q

f (St+1,i | St,i ,At,i)

Definition (Utility independence)
A set of nodes Q are utility independent iff there exists functions
u1, . . . , u|Q| such that the utility function u decomposes as

u(St ,At) = f (u1(St,1,At,1), . . . , u1(St,|Q|,At,Q))

and

ui ≤ u′i ⇐⇒ f (u1, . . . , ui , . . . , u|Q|) ≤ f (u1, . . . , u′i , . . . , u|Q|)

19/33

Additive Structure Across Workflows
Theorem (Additive structure across workflows)
(A) All nodes V in the game Γ are transition independent.
(B) If there is no path between i and j in the topology graph G,
then i and j are utility independent.

Corollary
Γ decomposes into |W| additive subproblems that can be solved
independently and in parallel.

π
(w1)
k

π
(w2)
k

π
(w|W|)
k

ot,w1

ot,w2

ot,w|W|

...
⊕

a(k)
w1

a(k)
w2

a(k)
w|W|

a(k)
t

20/33

Additive Structure Across Workflows: Example

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

a) IT infrastructure b) Transition dependencies
St ,At St+1,Ot+1

S(D)
t+1,1S(D)

t,1

A(D)
t,1 S(A)

t+1,1

S(A)
t,1 Ot,1

A(A)
t,1

S(D)
t+1,2S(D)

t,2

A(D)
t,2 S(A)

t+1,2

S(A)
t,2 Ot,2

A(A)
t,2

S(D)
t+1,3S(D)

t,3

A(D)
t,3 S(A)

t+1,3

S(A)
t,3 Ot,1

A(A)
t,3

c) Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3

21/33

Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently

22/33

Optimal Substructure Within a Workflow
I Nodes in the same workflow are utility

dependent.

I =⇒ Locally-optimal strategies for
each node can not simply be added
together to obtain an optimal strategy
for the workflow.

I However, the locally-optimal strategies
satisfy the optimal substructure
property.

I =⇒ there exists an algorithm for
constructing an optimal workflow
strategy from locally-optimal
strategies for each node.

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

IT infrastructure

Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3

22/33

Optimal Substructure Within a Workflow
I Nodes in the same workflow are utility

dependent.

I =⇒ Locally-optimal strategies for
each node can not simply be added
together to obtain an optimal strategy
for the workflow.

I However, the locally-optimal strategies
satisfy the optimal substructure
property.

I =⇒ there exists an algorithm for
constructing an optimal workflow
strategy from locally-optimal
strategies for each node.

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

IT infrastructure

Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3

23/33

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

(π(i)
D)i∈Vw : local strategies in the same workflow w ∈ W

24/33

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

(π(i)
D)i∈Vw : local strategies in the same workflow w ∈ W

24/33

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

Can redefine the utility function for each node i
to take into account the utility impact on its ancestors.

e.g. utility of node 6 need to include utility impact for 1, 3, 5.

24/33

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

Can prove that this utility transformation makes the nodes utility independent.
=⇒ Optimal substructure.

25/33

Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently

26/33

Threshold Properties of Local Defender Strategies.
I The local problem of the defender can be decomposed in the

temporal domain as

max
πD

T∑
t=1

J = max
πD

τ1∑
t=1

J1 +
τ2∑

t=1
J2 + . . . (2)

where τ1, τ2, . . . are stopping times.
I =⇒ (1) selection of defensive actions is simplified; and (2)

the optimal stopping times are given by a threshold strategy
that can be estimated efficiently:

Belief space B(j)
D

Switching curve
Υ

Continuation set
C

Stopping set
S

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised

27/33

Threshold Properties of Local Defender Strategies.

Belief space B(j)
D

Switching curve
Υ

Continuation set
C

Stopping set
S

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised

I A node can be in three attack states s(A)
t : Healthy,

Discovered, Compromised.
I The defender has a belief state b(D)

t

28/33

Proof Sketch (Threshold Properties)
I Let L(e1, b̂) denote the line segment

that starts at the belief state
e1 = (1, 0, 0) and ends at b̂, where b̂ is
in the sub-simplex that joins e2 and e3.

I All beliefs on L(e1, b̂) are totally
ordered according to the Monotone
Likelihood Ratio (MLR) order. =⇒ a
threshold belief state αb̂ ∈ L(e1, b̂)
exists where the optimal strategy
switches from C to S.

I Since the entire belief space can be
covered by the union of lines L(e1, b̂),
the threshold belief states αb̂1 , αb̂2 , . . .
yield a switching curve Υ.

Belief space B(j)
D

(the 2-dimensional unit simplex)

sub-simplex B(j)
D,e1

joining e2 and e3b̂5
b̂4

b̂3
b̂2

b̂1

b̂6
b̂7
b̂8
b̂9

L(e1, b̂5)

Switching curve
Υ

Threshold
belief state αb̂9

e1
(1, 0, 0)

e2
(0, 1, 0)

e3
(0, 0, 1)

29/33

Scalable Learning through Decomposition

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

linear
measured

parallel processes n

|V| = 10

Sp
ee

du
p
S
n

Speedup of completion time when computing best response strategies for
the decomposed game with |V| = 10 nodes and different number of
parallel processes; the subproblems in the decomposition are split evenly
across the processes; let Tn denote the completion time when using n
processes, the speedup is then calculated as Sn = T1

Tn
; the error bars

indicate standard deviations from 3 measurements.

30/33

Decompositional Fictitious Play (DFSP)

π̃2 ∈ B2(π1)

π2

π1

π̃1 ∈ B1(π2)

π̃′2 ∈ B2(π′1)

π′2

π′1

π̃′1 ∈ B1(π′2)

. . .

π∗2 ∈ B2(π∗1)

π∗1 ∈ B1(π∗2)

Fictitious play: iterative averaging of best responses.

I Learn best response strategies iteratively through the parallel
solving of subgames in the decomposition

I Average best responses to approximate the equilibrium

31/33

Learning Equilibrium Strategies

0 20 40 60 80 100
running time (h)

0

5

δ̂ = 0.4

Approximate exploitability δ̂

0 20 40 60 80 100
running time (h)

0.0

0.5

1.0
Defender utility per episode

dfsp simulation dfsp digital twin upper bound oi,t > 0 random defense

Learning curves obtained during training of dfsp to find optimal
(equilibrium) strategies in the intrusion response game; red and blue
curves relate to dfsp; black, orange and green curves relate to baselines.

32/33

Comparison with NFSP

0 10 20 30 40 50 60 70 80
running time (h)

0.0

2.5

5.0

7.5

Approximate exploitability

dfsp nfsp

Learning curves obtained during training of dfsp and nfsp to find
optimal (equilibrium) strategies in the intrusion response game; the red
curve relate to dfsp and the purple curve relate to nfsp; all curves show
simulation results.

33/33

Conclusions

I We study an intrusion response use
case.

I We formulate the use case as a POSG

I We design a novel decompositional
approach to approximate equilibria

I We show that the decomposition
allows scalable approximation of
equilibria.

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation

Target
System

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation &
Learning

