Scalable Learning of Intrusion Response
through Recursive Decomposition
GameSec 2023, Avignon, France

Conference on Decision and Game Theory for Security

Kim Hammar & Rolf Stadler

kimham@kth.se
Division of Network and Systems Engineering

KTH Royal Institute of Technology

Oct 18, 2023

iy

S,
FKTHE

VETENSKAP
39 OCH KONST 9%

s

Use Case: Intrusion Response

» A defender owns an infrastructure

» Consists of connected components
» Components run network services
Defender defends the infrastructure
by monitoring and active defense
» Has partial observability

v

> An attacker seeks to intrude on the
infrastructure

» Has a partial view of the
infrastructure

» Wants to compromise specific
components

P Attacks by reconnaissance,
exploitation and pivoting

Attacker Clients

B

777777

=
Defender

System Model

Attacker Clients

» G = ({gw}UV,E): directed tree
representing the virtual infrastructure |

» V: finite set of virtual components.

> £: finite set of component
dependencies.

» Z: finite set of zones.

M
Defender

State Space

» Each i € V has a state
Z ! R
Vi,i = (Vt(,i)7 Vt(,i)v Vt(,i)

~ N——
D A

)

State Model

» Each i € V has a state

(2) (1) (R)
Vi,i = (Vt,i 2y Veio Vi)
—~— ——

D A

> System state sy = (V¢,j)icy ~ S¢.

State Model

» Each i € V has a state

vei = (7, vl Vi)
—

D A

> System state sy = (V¢,j)icy ~ S¢.

» Markovian time-homogeneous
dynamics:

se1~ f(- | St, At)

A= (A(tA), AgD)) are the actions.

Workflows

> Services are connected into workflows W = {wy, ..., wpy}.

Workflows

> Services are connected into workflows W = {wy, ..., wpy}.

Servers server

£
IDPS

e-0-2-0-E

.E

search
engine

Dependency graph of an example workflow representing a web
application; Gw, Fw, IDPS, LB, and DB are acronyms for gateway,
firewall, intrusion detection and prevention system, load balancer, and

database, respectively.

Workflows

» Services are connected into
workflows
W = {Wl, oo 7W|y\,v|}.

» Each w € W is realized as a
subtree Gy = ({gw} UV, Ew)
of G

A workflow tree

Workflow

» Services are connected into @
workflows /f\
W = {Wl, oo 7W|y\,v|}.

» Each w € W is realized as a

F
subtree Gy = ({gw} UV, Ew) Lone B
s @ |0
O

> W = {wi,...,w)py} induces a

partitioning A workflow tree

Y = U Vw; such that i # j = VYV, N Vy; =0
w;eEW

Clients

Arrival rate A ‘ Q Q ‘ Departure
Service time p

O

W2 w|

=

Workflows (Markov processes)

» Homogeneous client population
» Clients arrive according to Po(\), Service times Exp(%l)
> Workflow selection: uniform

» Workflow interaction: Markov process

Observations

Attcker Clients
v « e .

» IDPSs inspect network traffic and
generate alert vectors:

A vV
Ot = (OL]_, .. .,0t7lv‘> € N(‘) |

)

0;,; is the number of alerts related to
node i € V at time-step t. :

M
Defender

Observations

Attcker Clients
v « e .

» IDPSs inspect network traffic and
generate alert vectors:

A vV
Ot = (OL]_, .. .,0t7lv‘> € N(‘) |

)

0;,; is the number of alerts related to
node i € V at time-step t. :

» 0; = (01,1,---,0)y|) is a realization
of the random vector O; with joint
distribution Z

M
Defender

Distributions of # alerts weighted by priority Zo,(0; | Si", A{") per node i € V
Z

probability

250 500 750 25 750 250 500 750 2 L 0 £ 5 250 0 250 500
[} (@} o (@ o o [}

I 10 intrusion FEEE intrusion

Defender 1) Server migration 2) Flow migration and blocking
---> Old path

» Defender action: —> New path
al® € {0,1,2,3,4}

» 0 means do nothing. 1 — 4 correspond

to defensive actions (see fig) Honeypot App server
4) A trol
cceses‘/:kc;n ro
V\gertiﬁcates
\’\\Defender
52
',—E

“é};;k/fst
g IP

Defender 1) Server migration 2) Flow migration and blocking
---> Old path

» Defender action: — New path
al” € {0,1,2,3,4}1

» 0 means do nothing. 1 — 4 correspond
to defensive actions (see fig)

Honeypot App server
4) Access control
NS Revoke
V\gertiﬁcates
\’\\Defender

. & “Blacklist
E P

» A defender strategy is a function
7mp € MNp : Hp — A(Ap), where

h{P®) = (sgD),agD),Ol, . ',3513)1759))’00 € Hp

Defender 1) Server migration 2) Flow migration and blocking

>

>

---> Old path
Defender action: — New path
al” € {0,1,2,3,4}1

0 means do nothing. 1 — 4 correspond
to defensive actions (see fig)

Honeypot App server

4) Access control
N Revoke

V\gertiﬁcates
“~~._ Defender

“‘B‘I“I;I' t
.E aIcP ist

A defender strategy is a function
7mp € MNp : Hp — A(Ap), where

th) = (sgD), a:(lD), o1,..., aglz)l, sgD), o;
Objective: (i) maintain workflows; and

(ii) stop a possible intrusion:

T W V|
Ji Z,yt—l (nz uw(W,', St) — (1 - 77) Z CI(St,j, at,j)>

t=1 i=1 j=1
| ——

workflows utility intrusion and defense costs

Attacker
> Attacker action: a{¥ € {0,1,2,3}V!

» 0 means do nothing. 1 — 3 correspond
to attacks (see fig)

TCP SYN
1) R i & TCP SYN ACK
“@)-port open
Attacker vp P Server
. login attempts
2) Brute-force configure @ H
Attacker Automated Server

malicious Y™ execution|
3) Code execution@ request inject code .‘E

Attacker Service Server

Attacker
> Attacker action: a{¥ € {0,1,2,3}V!

» 0 means do nothing. 1 — 3 correspond
to attacks (see fig)

» An attacker strategy is a function
A €My HA — A(AA), where Ha
is the space of all possible attacker
histories

th):(s(A) (A) (A) (A)

TCP SYN —
1) R i TCP SYN ACK O
& -‘@'—port open

Attacker Server

login attempts

2) Brute-force

Attacker Automated Server
malicious Y™ execution|
3) Code execution@ request @ inject code

Attacker Service Server

17.a7 ,01,...,a, 7,8t ,0¢) € Ha

Attacker

>
>

Attacker action: a® € {0, 12,3}V
0 means do nothing. 1 — 3 correspond
to attacks (see fig)

An attacker strategy is a function
A €My HA — A(AA), where Ha
is the space of all possible attacker
histories

th):(s(A) (A) (A) (A)

TCP SYN
1) R i & J« [P SWACK
“@-port open
Attacker P P Server
X login attempts
2) Brute-force configure @ T
Attacker Automated Server
malicious Y™ execution|
3) Code execution@ request @ inject code

Attacker Service Server

1 91 ,01,...,3;.7,5¢ 70t)€HA

Objective: (i) disrupt workflows; and
(ii) compromise nodes:

- J

The Intrusion Response Problem

mﬁg(ierHIiDze m#/r:ierpliAze E(rp,ma)] (1a)
subject to 5.2} ~ (- | AL AP)) vt (1b)
st~ fa (- | SYY,AY) Ve o (lo)

or1 ~ Z(-| 88, AMY) vt (1d)

agA) ~ Al HgA)), agA) € Aa(se) VvVt (le)

al? ~ (- | HgD)), al® e Ap vt (1)

E(rp,xs) denotes the expectation of the random vectors
(St,0¢, At)teqa,.., 7y When following the strategy profile (7p, 7a).

(1) can be formulated as a zero-sum Partially Observed Stochastic
Game with Public Observations (a PO-POSG):

= <N7 (Si)i€N7 (Ai)ie/\/> (f;')iE/\/" u,, (b(li))iENa Oa Z>

Existence of a Solution

Theorem

Given the PO-POSG [(2), the following holds:

(A)

I has a mixed Nash equilibrium and a value function
V*: Bp x Bo — R that maps each possible initial pair of
belief states (bgD), bgA)) to the expected utility of the

defender in the equilibrium.

For each strategy pair (ma,mp) € Ma X MNp, the best response
sets Bp(ma) and Ba(mp) are non-empty and correspond to
optimal strategies in two Partially Observed Markov Decision
Processes (POMDPs): .#P) and .¢/\™). Further, a pair of
pure best response strategies (7p,7a) € Bp(ma) X Ba(mp)
and a pair of value functions (V5 ., VX |) exist.

The Curse of Dimensionality

» While [has a value, computing it is intractable. The state,
action, and observation spaces of the game grow
exponentially with |V|.

105 -
—— |S]
10° —— [0
P
104
vvvvvvvvvv 2 .

VI

Growth of |S|, |O], and |A;| in function of the number of nodes |V

We tackle the scability challenge with decomposition

Clients

Attacker
a
1

Intuitively..

Does not directly
depend on the state or

action of a node

down here

Gateway

quarantine

=N

|
I

zone _ _

NSkt

MOJJ310M

2\

el

Defender

The optimal

action here...

Clients

Gateway% alerts &g &IDPS

A
>
L)

Attacker

Y o
>8 3
o B2
Qo o 9
= o)
dtr.nlv
2 c
o 5 c £
c s 3
n T 529
o £ 0 ©
Oam.a
O o «
- ©
e ¥
= (g
wy\ & |
£\ g/
umwm w1
Il

N
o

{
2

Intuitively..

structure?

I
P
i
S
o !
5
L
T
-Lla |
e 1§]
.= > @n !
,.mm l ar.j”
IS & s
,MZ ” %”,
| |
U Q.
,q, ” a, !
F==" Y AN <, '\ B Y=
—
> 2 ¢ v
© Lo 2z
mm ake c
22 3ot 8=
o < c £ o >3
S o T© [=%
v .9 O ¢ o x
= e}
<= B o T O
= O 22 a
@ m o g
]
£

Bl

Defender

Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of I, we exploit three structural properties.

1. Additive structure across workflows.

» The game decomposes into additive subgames on the
workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.

» The subgame for each workflow decomposes into subgames on
the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
» The optimal node-level strategies for the defender exhibit
threshold structures, which means that they can be estimated
efficiently

Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of I, we exploit three structural properties.

1. Additive structure across workflows.
» The game decomposes into additive subgames on the
workflow-level, which means that the strategy for each
subgame can be optimized independently

Additive Structure Across Workflows (Intuition)

» If there is no path between i and j in G, then / and j are
independent in the following sense:

>
>

>

v

Compromising i has no affect on the state of j.
Compromising i does not make it harder or easier to
compromise j.

Compromising i does not affect the service provided by j.
Defending i does not affect the state of .

Defending i does not affect the service provided by ;.

Additive Structure Across Workflows
Definition (Transition independence)

A set of nodes Q are transition independent iff the transition
probabilities factorize as

f(st+1 ’ St>At) = H f(St+1,i ’ St,iaAt,i)
i€Q

Definition (Utility independence)

A set of nodes Q are utility independent iff there exists functions
ui, ..., ujg| such that the utility function u decomposes as

U(St, At) = f(ul(St,l, At,l)a ey ul(Stj‘Q|, A,;Q))
and

U,’SU; <~ f(ul,...,u,-,...,u‘g)gf(ul,...,u;,...,u‘g)

Additive Structure Across Workflows
Theorem (Additive structure across workflows)

(A) All nodes V in the game I are transition independent.
(B) If there is no path between i and j in the topology graph G,
then i and j are utility independent.

Corollary

I decomposes into |W)| additive subproblems that can be solved
independently and in parallel.

(k)

Ot w; ﬂ‘l((wl) Aw,
k) (k)

o (
23) (B, 3G

(1)

Ot Wyl (wpyp) AW
Vig

Additive Structure Across Workflows: Example

a) IT infrastructure

% [E——=

b) Transition dependencies
Si, A St4+1,0ep1

(D ——
O
() o)
(&)

(D ——
(>)
(&) D
()

c) Utility dependencies

Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of I, we exploit three structural properties.

2. Optimal substructure within a workflow.

» The subgame for each workflow decomposes into subgames on
the node-level that satisfy the optimal substructure property

Optimal Substructure Within a Workflow i infrastructure

» Nodes in the same workflow are utility
dependent.

Utility dependencies

» — Locally-optimal strategies for . A 7

each node can not simply be added
together to obtain an optimal strategy
for the workflow.

Optimal Substructure Within a Workflow i infrastructure

» Nodes in the same workflow are utility
dependent.

» — Locally-optimal strategies for
each node can not simply be added
together to obtain an optimal strategy
for the workflow.

> However, the locally-optimal strategies
satisfy the optimal substructure
property.

> — there exists an algorithm for
constructing an optimal workflow
strategy from locally-optimal
strategies for each node.

W

Utility dependencies
Se, At U,

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

(ﬂ'g)),‘evwi local strategies in the same workflow w € W

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

(ﬂ'g)),‘evwi local strategies in the same workflow w € W

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

Can redefine the utility function for each node i
to take into account the utility impact on its ancestors.
e.g. utility of node 6 need to include utility impact for 1,3, 5.

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

Can prove that this utility transformation makes the nodes utility independent.
= Optimal substructure.

Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of I, we exploit three structural properties.

3. Threshold properties of local defender strategies.
» The optimal node-level strategies for the defender exhibit
threshold structures, which means that they can be estimated
efficiently

Threshold Properties of Local Defender Strategies.

» The local problem of the defender can be decomposed in the
temporal domain as

T It T
maxZJ:maxZJl—i—ZJg—i—... (2)
R R t=1
where 71, 7o, ... are stopping times.

» —> (1) selection of defensive actions is simplified; and (2)
the optimal stopping times are given by a threshold strategy
that can be estimated efficiently:

Jj compromised
0,0,1

Belief space Bg)

Switching cuﬁ‘
T Stopping set

7

Continuation set /:
¢

(1,0.0) (01,0
J healthy j discovered

Threshold Properties of Local Defender Strategies.

Jj compromised
(0,0,1)

Belief space Bg)

Switching curve

T Stopping set

[=

Continuation set /.

€
(1,0,0)] (0,1,0)
J healthy j discovered

> A node can be in three attack states SEA): Healthy,

, Compromised.
» The defender has a belief state bgD)

Proof Sketch (Threshold Properties)

> Let L(ey, b) denote the line segment
that starts at the belief state
e; = (1,0,0) and ends at b, where b is
in the sub-simplex that joins e; and es.

Belief space Bg)

(the 2-dimensional unit simplex)
A &

» All beliefs on L(ey, b) are totally (0,0.1)
ordered according to the Monotone b
Likelihood Ratio (MLR) order. = a
threshold belief state o, € L(er, b)
exists where the optimal strategy
switches from C to S.

. . . Threshold
» Since the entire belief space can be belief state

covered by the union of lines £(ey, b),
the threshold belief states Qs Qs

yield a switching curve T.

Scalable Learning through Decomposition

V| = 10
T T

—_
o
T

—— linear
—a— measured

co
T

Speedup S,
= (=2}
T T

[\
T

parallel processes n

Speedup of completion time when computing best response strategies for
the decomposed game with |V| = 10 nodes and different number of
parallel processes; the subproblems in the decomposition are split evenly
across the processes; let T, denote the completion time when using n
processes, the speedup is then calculated as S, = %; the error bars
indicate standard deviations from 3 measurements.

Decompositional Fictitious Play (DFSP)

2 € Ba(m1) 7ty € By(my)
™ Tr; € BQ(TFI)
A\ A\
v v
(2]

0~ 0

1 7'rik € B](ﬂ;)

3
,_?L W:L[HE mSL

71 € Bl(wg) T € Bl(ﬂ';)

Fictitious play: iterative averaging of best responses.

P Learn best response strategies iteratively through the parallel
solving of subgames in the decomposition
P> Average best responses to approximate the equilibrium

Learning Equilibrium Strategies

Approximate exploitability 5 10 Defender utility per episode

1 T = e

\ ~ 0.5
k =04
e \
U1, . — . . — 0.0 : . . - .
0 20 40 60 80 100 0 20 40 60 80 100
running time (h) running time (h)
—=— DFSP simulation —— DFsP digital twin ----- upper bound 0;4 > 0 —— random defense

Learning curves obtained during training of DFSP to find optimal
(equilibrium) strategies in the intrusion response game; red and blue
curves relate to DFSP; black, orange and green curves relate to baselines.

Comparison with NFSP

Approximate exploitability

>—o—o—s

0 10 20 30 40 50 60 70 80
running time (h)

—*— DFSP —— NFSP

Learning curves obtained during training of DFSP and NFSP to find
optimal (equilibrium) strategies in the intrusion response game; the red
curve relate to DFSP and the purple curve relate to NFsP; all curves show
simulation results.

Conclusions

» We study an intrusion response use
SIMULATION &
case. LEARNING

Model Creation &
System Identification

I
&
L=
5
3
T
S
[
—

» We formulate the use case as a POSG

EMULATION
> We design a novel decompositional Strategy l T Selective
; . } Implementation Replication
approach to approximate equilibria
TARGET
SYSTEM

> We show that the decomposition
allows scalable approximation of
equilibria.

