Reinforcement Learning Algorithms for Adaptive
Cyber Defense against Heartbleed
NSE ML+Security Reading Group

Kim Hammar

kimham@kth.se

Division of Network and Systems Engineering
KTH Royal Institute of Technology

October 22, 2021

The Context and Key Points of the Paper

» The paper proposes two reinforcement learning algorithms
for Adaptive Cyber Defense

P> Motivating use case: the Heartbleed vulnerability

Agent

ag
Fet1)

Environment

St+1

Outline

» Background
» Heartbleed

» The Paper

» Approach & Contributions
» System Model

» Proposed Algorithms

» Theoretical Analysis

> Limitations of the paper and Discussion

» Limitations of the paper
» Discussion about future work

» Conclusions

Background: Heartbleed

> A security bug in the OpenSSL library

> Released 2012
» Disclosed 2014

Background: Heartbleed

> Affected software: most implementations of TLS

Background: Heartbleed (CVE-2014-0160)

» How it works:

>

A sender in OpenSSL can send a heartbeat msg
with payload+length

The receiver allocates a memory buffer according to
the length without verifying the length

The receiver writes the payload to the buffer

The receiver sends back the content of the buffer to
the sender

Since the buffer size can be larger than the payload
(it is not verified) the sender may send back more
data than the original payload - possibly sensitive
data.

Background: Heartbleed (CVE-2014-0160)

@ Heartbeat - Normal usage

Server, send me S
this 4 letter word erver
if you are there: .
. AT bird
Client bird l

W Heartbeat — Malicious usage

Server, send me Server

this 500 letter bird. Server
word if you are 3’:‘13:;:2;:3;; o
i there: "bird" :
Client User Carol wants
to change

password to
"password 123"...

The Paper Approach and Contributions

> Approach:
» Adaptive Cyber Defense (ACD)
» Model ACD as a decision problem
» Find defender strategies through reinforcement learning

I

l

Observations e+l

RL Agent

=

The Paper Approach and Contributions

> Contributions:
> A generic system model of security problems (minor

contribution)
» Two custom reinforcement learning algorithms

P One algorithm that only works against stable attackers
P One “robust” algorithm that works against random attackers

» Convergence proofs

I

l

Observations e+l

RL Agent

=

The System Model

» The defender has n defenses:
> D2 {dy,...,d,}

The System Model

» The attacker has m attacks:
> A2 {a,... 3}

The System Model

» Utility function U:
>» U:DxA—R

The General System Model

» That's it!
> No explicit states (you can consider previous actions as state)
» No transition probabilities
» No observation function
» Not a sequential problem
» Assume non-rational attacker

The System Model of Heartbleed

Heap

Py

P>

Page 1
B; bytes

The System Model of Heartbleed

» The defender can defend pages P; on a heap of n
pages
> DE{P,...,P,}
» Each page has B; bytes of data
» Defending a subset of pages:
d(t) ={Pi,Px,...} CD

> monitor the page
P detect unwanted read operations

Heap

Py

P>

Page 1
B; bytes

The System Model of Heartbleed

» The attacker attacks by sending heartbeats:

> A2DxN

> at) =

(p(t), b(t))

Heap

Py

P>

Page 1
B; bytes

The System Model of Heartbleed

» Utility function U:
> U(a,d) =c(d) — I(a,d)
> c(d) is the cost of defenses
> /(a,d) is the number of heartbeat requests

Heap

Py

P>

Page 1
B; bytes

Defending the Heap from Heartbleed Attacks

Heap
Page 1
i B; bytes
P>
Pn—l
P

Defending the Heap from Heartbleed Attacks

Heap

Py

P>

P3 (—d(t) = P3

Defending the Heap from Heartbleed Attacks

Heap

Py

P>

(+) protect P3 from unwanted reads

10/23

Defending the Heap from Heartbleed Attacks

Heap
P1

P>

d(
(+) protect P3 from unwanted reads
(-) increase system response time c(d(t))

10/23

Defending the Heap from Heartbleed Attacks

Heap
P1

P>

(+) protect P3 from unwanted reads
(-) increase system response time c(d(t))
(-) reduce system requests /(a(t), d(t))

10/23

A Heartbleed Attack

Heap
Page 1
i B; bytes
P>
Pn—l
P

A Heartbleed Attack

a(t) = (p(t), b(t))
= (P1, B1 + B> + B3)

Heap

A Heartbleed Attack

Heap

p(t) = P

a(t) = (p(t), b(t)) Ps
= (P1,B1 + B2+ Bs) :

A Heartbleed Attack

Heap

p(t) — Py }data

sent

a(t) = (p(t), b(t)) Ps
= (P1,B1+ B2 + Bs) .

A Heartbleed Attack

a(t) = (p(t), b(t)) Ps

(P1,B1 + B> + Bs)

data
sent

b(t)

A Heartbleed Attack

Heap

P1

P>

a(t) = (p(t), b(t))

= (P1,B1 + By + Bs3)

data
sent b(t)

breached data!

may be pws, SSH keys, ...

A Heartbleed Attack

Heap
p(t) = P
P>
a(t) = (p(t), b(t)) Ps
= (P1, B1 + B> + B3) .
the attacker does Pn1
not know which
combinations (p(t), b(t)) Pn

will leak the sensitive data

data
sent b(t)

breached data!

may be pws, SSH keys, ...

A Detected and Prevented Attack

Heap

p(t) —

Py

P>

a(t) = (p(t), b(1))

= (P1,B1+ By + Bs3)

The Utility Function

Uad)= cd) ~ l(ad) (1)

response time # requests

Ula,d) = c(d) — I(a,d))

» The defender's goal is to minimize utility
» |.e. minimize response times and maximize requests between
attacks

First Proposed Algorithm: “Adaptive RL Algorithm”

> Assume attacker uses the same action w.p 1 — €,;) and
selects new action w.p €,(;) decided by ALGy4 (which is
unknown).

First Proposed Algorithm: “Adaptive RL Algorithm”

> Assume attacker uses the same action w.p 1 — €,;) and
selects new action w.p €,(;) decided by ALGy4 (which is
unknown).

> Assume lim;_ oo €a(t) = 0 and lim; €d(t) = 0

First Proposed Algorithm: “Adaptive RL Algorithm”

> Assume attacker uses the same action w.p 1 —¢,(;) and
selects new action w.p €,(;) decided by ALG (which is
unknown).

> Assume lim; o0 €5(r) = 0 and lim¢—o0 €g(¢) = 0

Algorithm 1: Adaptive reinforcement learning algo-
rithm
1 d(0) + sample(D);
2 a(0) < sample(A);
3 u(0) « U(d(0),a(0));
4 d(1) + d(0);
5 u(1) « u(0);
6 while ¢t > 2 do
7 d™® « sample(D \ {d(t), d(t — 1)}) with prob.
ea(t);
8 if u(t) < u(t —1) then
9 | d*® « d(t) with prob. (1 — ea(t));
10 else
11 | d*® < d(t — 1) with prob. (1 — ea(t));
12 | d(t+1) « d®;
13 a™ ALGaq([d(t) a(t)]") with prob. eq(t);
14 a'P < a(t) with prob. 1 — € (t);
15 a(t + 1) « a'?;
16 | u(t+1) < U(dt+1),a(t+1));

First Proposed Algorithm: “Adaptive RL Algorithm”

> In essence:
» if current defender action was better than the previous action,
use same action w.p 1 — €q4(p)
> otherwise use previous action w.p 1 — €q(y)
> Select random action w.p €t

Theoretical Analysis of the First Algorithm: TLDR;

» Given the fixed defender policy & attacker policy, the
sequence of actions forms a Markov chain P,

Theoretical Analysis of the First Algorithm: TLDR;

» Given the fixed defender policy & attacker policy, the
sequence of actions forms a Markov chain P,

» The stationary distribution with high probability will consist of
states that are optimal for the defender.

Theoretical Analysis of the First Algorithm

P Let the previous actions of each agent be the state

s = ((d(t), d(t — 1)), (a(t), a(t — 1)))

Theoretical Analysis of the First Algorithm

P Let the previous actions of each agent be the state
s = ((d(t),d(t - 1)), (a(t), a(t — 1)))

> Fix the exploration rate €; = [€5(), €4(y)]

Theoretical Analysis of the First Algorithm

P Let the previous actions of each agent be the state
s = ((d(z),d(t — 1)), (a(t), a(t — 1)))

> Fix the exploration rate €; = [€5(), €4(y)]

» Then (st)¢>1 is @ Markov chain P; (policies are fixed with €
fixed)

Theoretical Analysis of the First Algorithm

P Let the previous actions of each agent be the state
s = ((d(z),d(t — 1)), (a(t), a(t — 1)))

> Fix the exploration rate €; = [€5(), €4(y)]

» Then (st)¢>1 is @ Markov chain P; (policies are fixed with €
fixed)

» Assume that the Markov chain is irreducible and aperiodic.

Theoretical Analysis of the First Algorithm

| 4

Let the previous actions of each agent be the state
s = ((d(t),d(t - 1)), (a(t), a(t — 1)))

Fix the exploration rate e; = [e,(1), €4(1)]

Then (st)¢>1 is @ Markov chain P; (policies are fixed with ¢
fixed)

Assume that the Markov chain is irreducible and aperiodic.
Then, the Markov chain has a unique stationary distribution

Mt

Theoretical Analysis of the First Algorithm

| 4

Let the previous actions of each agent be the state
s = ((d(t),d(t - 1)), (a(t), a(t — 1)))

Fix the exploration rate e; = [e,(1), €4(1)]

Then (st)¢>1 is @ Markov chain P; (policies are fixed with ¢
fixed)

Assume that the Markov chain is irreducible and aperiodic.
Then, the Markov chain has a unique stationary distribution
Mt

Playing the game will converge to this distribution

Theoretical Analysis of the First Algorithm

> Now let € vary with t, then we get a sequence of stationary
distributions (p¢)e>1

Theoretical Analysis of the First Algorithm

> Now let € vary with t, then we get a sequence of stationary
distributions (p¢)e>1

» Since we assume lim;_o €ait) =0 and lim;_ €dq(r) = 0, we
have a unique limiting stationary distribution lim;_ . tr = p
(Lemma 4.1).

*

Theoretical Analysis of the First Algorithm

> We want to show that p* with high probability has the best
defender response.

Theoretical Analysis of the First Algorithm

> We want to show that p* with high probability has the best
defender response.

» Define the set of best responses:
Sgr = {s = (d, a) € S|U(d, a) = mingep U(d', a)}.

Theoretical Analysis of the First Algorithm

> We want to show that p* with high probability has the best
defender response.

» Define the set of best responses:
Sgr = {s =(d,a) € S|U(d, a) = mingep U(d', a)}.

Theorem
Consider the Markov chain Py induced by the RL algorithm. Then,

t|l>n;o P[St € Sgr X SBR] =1 (2)

Theoretical Analysis of the First Algorithm

Theorem
Consider the Markov chain P; induced by the RL algorithm. Then,

tlngo P[St € Sgr X SBR] =1 (3)

» The proof is based on the theory of resistance trees

P> Based on the fact that exploration diminishes and defender
always selects best action according to past

Second Proposed Algorithm: “Robust RL Algorithm”

» Drop assumption that lim;_, €a(t) = 0 and lim;_ o €d(t) = 0

Second Proposed Algorithm: “Robust RL Algorithm”

» Drop assumption that lim; €a(t) = 0 and lim;_ oo €d(t) = 0

» This means that the adaptive algorithm will not converge

Second Proposed Algorithm: “Robust RL Algorithm”

» Drop assumption that lim;_, €a(t) = 0 and lim;_ o €d(t) = 0

» This means that the adaptive algorithm will not converge

> The “robust” algorithm keeps a history

h(t) = ((u(0), a(0), d(0),. .., (u(t), a(t), d(t)).

Second Proposed Algorithm: “Robust RL Algorithm”

» Drop assumption that lim;_, €a(t) = 0 and lim;_ o €d(t) = 0

» This means that the adaptive algorithm will not converge

> The “robust” algorithm keeps a history

h(t) = ((u(0), 2(0), d(0), ..., (u(t), a(t), d(t)).
» Define Dpp(t) to be the set of minmax actions based on h(t).
> M(d, t) = maxocs<t d(s)=d U(t),

Dum(t) = {d|M(d,t) < M(d",t) Vd' € D}

Second Proposed Algorithm: “Robust RL Algorithm”

» Drop assumption that lim;_, €a(t) = 0 and lim;_oo €d(t) = 0

» This means that the adaptive algorithm will not converge

> The “robust” algorithm keeps a history
h(t) = ((u(0), a(0), d(0),. .., (u(t), a(t), d(t)).
» Define Dpp(t) to be the set of minmax actions based on h(t).
> M(d, t) £ maxg<s<t d(s)=a U(t),
Dym(t) = {d|M(d,t) < M(d',t) Vd' € D}
> At each step t, w.p 1 — €4(;) sample an action
d(t) ~ Dum(t)

Second Proposed Algorithm: “Robust RL Algorithm”

» Drop assumption that lim;_, €a(t) = 0 and lim;_ o €d(t) = 0

» This means that the adaptive algorithm will not converge

> The “robust” algorithm keeps a history
h(t) = ((u(0), a(0), d(0),. .., (u(t), a(t), d(t)).
» Define Dpp(t) to be the set of minmax actions based on h(t).
> M(d7 t) 2 MaXo<s<t,d(s)=d U(t)'
Dym(t) 2 {d|M(d,t) < M(d',t) Vd' € D}
> At each step t, w.p 1 — €4(;) sample an action
d(t) ~ Dum(t)
> w.p €4(r) Sample a random new action, i.e.

d(t) ~ D \ DMM(t).

Theoretical Analysis of the Second Algorithm

» Due to the non-diminishing exploration, the best-response
action may change

Theoretical Analysis of the Second Algorithm

» Recall: with w.p €4(;) the defender always selects a random
action

> Recall: with w.p 1 — €g(;) the defender selects an action
greedily based on the set Dy (t)

Theoretical Analysis of the Second Algorithm

» We want to show that Dyp(t) converges to the mini-max set
Duim,
> ie. w.p 1 — ¢€q() the defender selects an action that minimizes
the utility against at least one attacker action.

Theoretical Analysis of the Second Algorithm

» We want to show that Dyp(t) converges to the mini-max set
Duim,
> ie. w.p 1 — ¢€q() the defender selects an action that minimizes
the utility against at least one attacker action.

» By definition of Dpp(t), if all states of the Markov chain P;
have been visited, then Dpp(t) = Dym

» Hence it is sufficient to show that P; visits S as t — oo

Theoretical Analysis of the Second Algorithm

P Let P; be the Markov chain induced by the robust RL
algorithm.

Theoretical Analysis of the Second Algorithm

P Let P; be the Markov chain induced by the robust RL
algorithm.

» Since P; is irreducible and aperiodic by assumption, it will
visit S as t — oo

Theoretical Analysis of the Second Algorithm

P Let P; be the Markov chain induced by the robust RL
algorithm.

» Since P; is irreducible and aperiodic by assumption, it will
visit S as t — oo

» — the robust RL algorithm converges to the minimax
strategy

Strong points of the Paper

> Real-world Use Case
> Easy to relate to the model by using well known vulnerability

» The Formal Analysis
» Convergence proofs

Limitations Drawbacks of the Paper

> A bit unorthodox approach

» Minimize utility instead of maximize

» Apply RL to a non-sequential decision problem

» Custom model, does not use existing frameworks (e.g. MDP,
normal game)

» Simplifying assumptions
» Non-rational/strategic attacker
» Assume specific exploration rates
» Assume static system

> Abstract analysis only
» No attempt to evaluate in a realistic environment

Conclusions

» Adaptive Cyber Defense against Heartbleed attacks

» Custom model and very simple reinforcement learning
algorithms

» Nice theoretical guarantees

» Abstract model and evaluation

