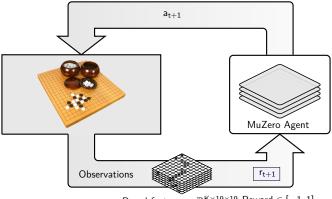
MuZero

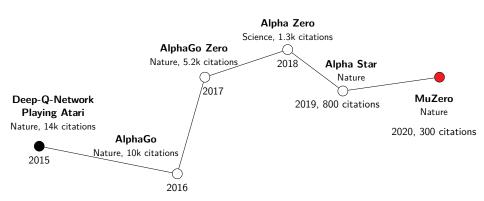
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model

NSE ML+Security Reading Group

Kim Hammar

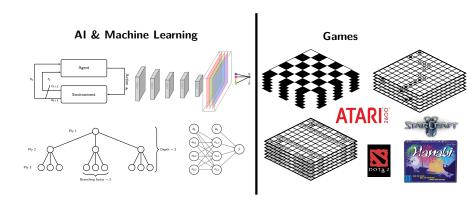

kimham@kth.se

Division of Network and Systems Engineering KTH Royal Institute of Technology

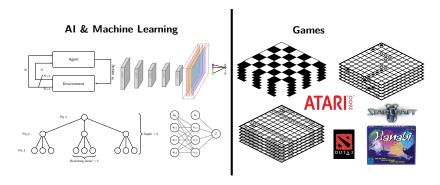

April 23, 2021

The Context and Key Points of the Paper

- MuZero is a model-based RL Algorithm
- ► Target domain: **Games** (Atari, Go, Chess..)
- ▶ A **function-approximation** approach to model-learning
- Extension to the Alpha-Series: AlphaGo, AlphaZero, ...


The Context and Key Points of the Paper

Outline

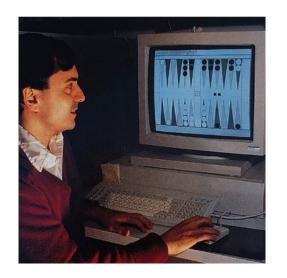

- Background
 - Why Games
 - ► The Alpha Series
 - ▶ AlphaGo▶ AlphaGo Zero
- ► The MuZero Algorithm
- Limitations
 - Limitations of MuZero
- ► Applications to Security?
- Conclusions

Background: Why Games

Why Combine the two?

Background: Why Games

Why Combine the two?

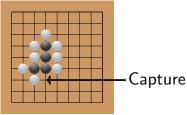

- ► AI & Games have a long history (Turing '50& Minsky 60')
- Simple to evaluate, reproducible, controllable, quick feedback loop
- Common benchmark for the research community

Background: 1997 DeepBlue¹ vs Kasparov

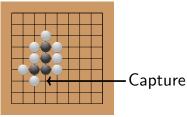
¹Murray Campbell, A. Joseph Hoane, and Feng-hsiung Hsu. "Deep Blue". In: *Artif. Intell.* 134.1–2 (Jan. 2002), 57–83. ISSN: 0004–3702. DOI: 10.1016/S0004-3702(01)00129-1. URL: https://doi.org/10.1016/S0004-3702(01)00129-1.

Background: 1992 Tesauro's TD-Gammon²

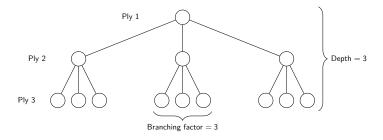
²Gerald Tesauro. "TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play". In: *Neural Comput.* 6.2 (Mar. 1994), 215–219. ISSN: 0899-7667. DOI: 10.1162/neco.1994.6.2.215. URL: https://doi.org/10.1162/neco.1994.6.2.215.


Background: 1959 Arthur Samuel's Checkers Player³

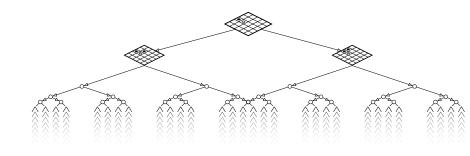
³A. L. Samuel. "Some Studies in Machine Learning Using the Game of Checkers". In: *IBM J. Res. Dev.* 3.3 (July 1959), 210–229. ISSN: 0018-8646. DOI: 10.1147/rd.33.0210. URL: https://doi.org/10.1147/rd.33.0210, A. L. Samuel. "Some Studies in Machine Learning Using the Game of Checkers". In: *IBM J. Res. Dev.* 3.3 (July 1959), 210–229. ISSN: 0018-8646. DOI: 10.1147/rd.33.0210. URL: https://doi.org/10.1147/rd.33.0210.


AlphaGo

- AlphaGo is a system that combines:
 - Imitation learning (behavioral cloning)
 - ► Reinforcement learning (self-play)
 - ► Planning (look-ahead search with MCTS)
 - ► Massive computational power (Google's data center)
- ► AlphaGo beat Lee Sedol (WC in Go) in 2016
- AlphaGo assumes access to a simulation model $(s_t, a_t) \rightarrow s_{t+1}$ that can be used for look-ahead search
 - ► This assumption will be relaxed in MuZero later...
- ► **Key Idea**: <u>Guided & truncated</u> look-ahead search using neural network predictions.

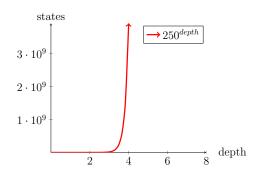

AlphaGo

- ► AlphaGo is a **system** that combines:
 - Imitation learning (behavioral cloning)
 - ► Reinforcement learning (self-play)
 - ► Planning (look-ahead search with MCTS)
 - ► Massive computational power (Google's data center)
- ► AlphaGo beat Lee Sedol (WC in Go) in 2016
- Name AlphaGo assumes access to a simulation model $(s_t, a_t) o s_{t+1}$ that can be used for look-ahead search
 - ► This assumption will be relaxed in MuZero later...
- Key Idea: <u>Guided & truncated</u> look-ahead search using neural network predictions.

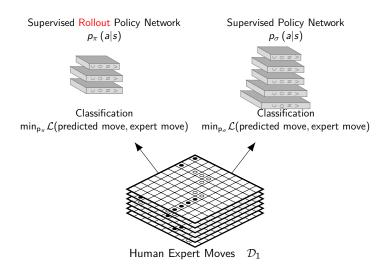


Game Trees

- How do you program a computer to play a board game?
- Simplest approach:
 - ▶ (1) Program a game tree; (2) Assume opponent think like you;
 - (3) Look-ahead and evaluate each move
 - Requires Knowledge of game rules and evaluation function



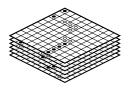
Search + Go = \checkmark



Some Numbers

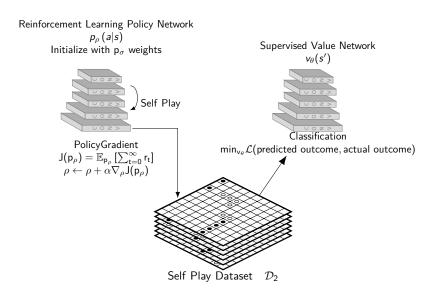
- Atoms in the universe
 - $ightharpoonup \approx 10^{80}$
- States
 - ► Go: 10¹⁷⁰, Chess: 10⁴⁷
- ► Game tree complexity
 - ightharpoonup Go: 10^{360} , Chess: 10^{123}
- Average branching factor
 - ► Go: 250, Chess: 35
- **▶** Board size (positions)
 - ► Go: 361, Chess: 64

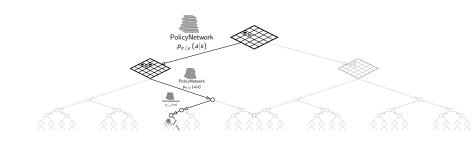
AlphaGo Training Pipeline (1/2)

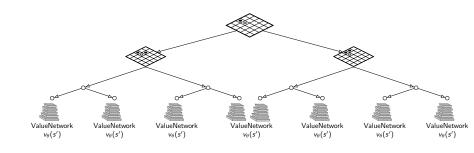


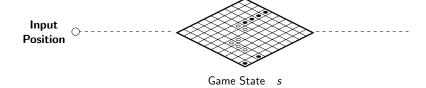
AlphaGo Training Pipeline (1/2): Imitation Learning

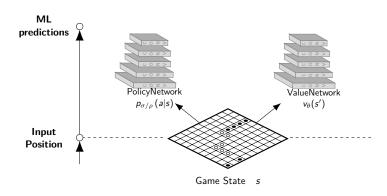

Expert Demonstrations

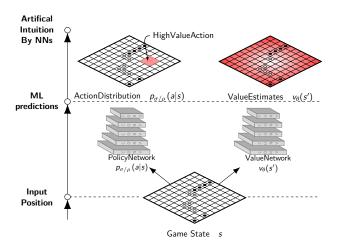

(State, Action) pairs

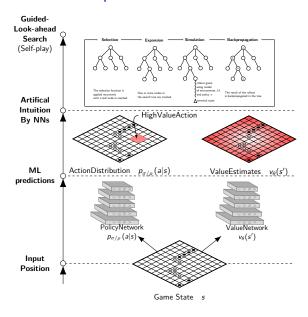

Supervised Learning

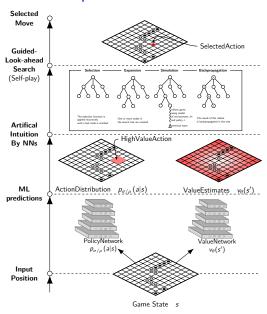

AlphaGo Training Pipeline (2/2)

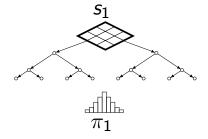


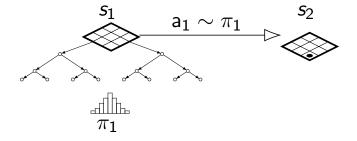

Guided Search Search Using the Policy Network

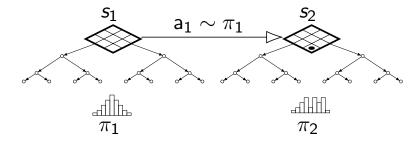


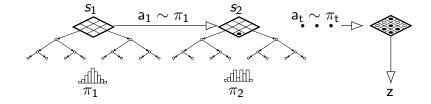

Depth-Limited Search Using the Value Network

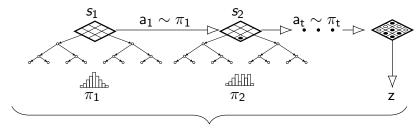


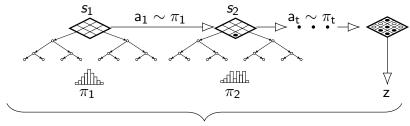

AlphaZero


- AlphaGo AlphaZero is a system that combines:
 - Imitation learning (behavioral cloning)
 - ► Reinforcement learning (self-play)
 - ► Planning (look-ahead search with MCTS)
 - Massive computational power (Google's data center)
- AlphaZero works on Chess, Go, Shogi
- AlphaGo AlphaZero assumes access to a simulation model $(s_t, a_t) \rightarrow s_{t+1}$ that can be used for look-ahead search
 - ► This assumption will be relaxed in MuZero later...
- Key Idea: <u>Guided & truncated</u> look-ahead search using neural network predictions.


AlphaZero


- ► AlphaGo AlphaZero is a **system** that combines:
 - Imitation learning (behavioral cloning)
 - ► Reinforcement learning (self-play)
 - ► Planning (look-ahead search with MCTS)
 - ► Massive computational power (Google's data center)
- AlphaZero works on Chess, Go, Shogi
- ▶ AlphaGo AlphaZero assumes access to a simulation model $(s_t, a_t) \rightarrow s_{t+1}$ that can be used for look-ahead search
 - This assumption will be relaxed in MuZero later...
- Key Idea: <u>Guided & truncated</u> look-ahead search using neural network predictions.

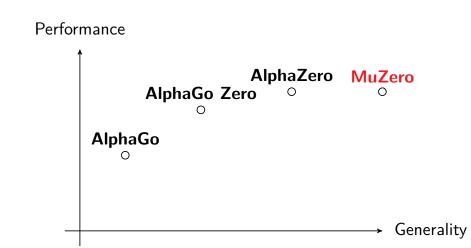




Self Play Training Data

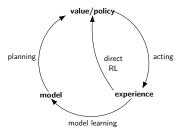
$$f_{\theta}(s_t) = (p_t, v_t)$$

$$\theta' = \theta - \alpha \nabla_{\theta} \mathcal{L}((p_t, v_t), (\pi_t, z))$$

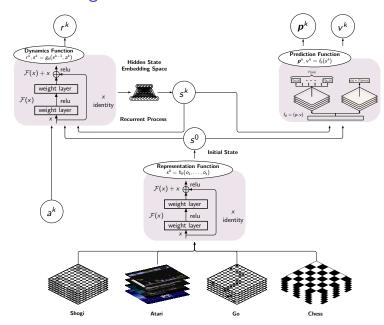


Self Play Training Data

$$f_{\theta}(s_t) = (p_t, v_t) \qquad \qquad \theta' = \theta - \alpha \nabla_{\theta} \mathcal{L}((p_t, v_t), (\pi_t, z))$$


$$\mathcal{L}(f_{\theta}(s_t), (\pi_t, z)) = \underbrace{(z - v_t)^2}_{\mathsf{MSE}} - \underbrace{\pi_t^\mathsf{T} \log p_t + c||\theta||^2}_{\mathsf{Cross-entropy loss}}$$

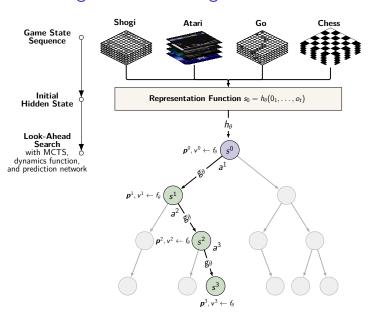
From Specialized to General



The MuZero Algorithm

- AlphaGo, AlphaZero assume access to a simulation model
- ▶ MuZero does **not** assume access to a simulation model
- ▶ MuZero is a model-based RL algorithm that **learns** a model
- ► MuZero differs from traditinal model-based RL algorithms by:
 - 1. The algorithm is based on function approximation
 - 2. The algorithm learns the model **implicitly**
 - 3. The algorithm uses look-ahead search in a novel way
 - 4. Specialized neural architecture

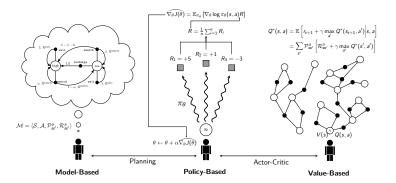
The MuZero Algorithm: Neural Network



The MuZero Algorithm: Training

Sample Trajectory From Environment

The MuZero Algorithm: Planning


Limitations of MuZero and Drawbacks of the Paper

1. Sample efficiency:

- MuZero reduces need for prior knowledge by learning a model
- However, MuZero is not sample efficient

2. Cannot learn stochastic models:

- ► This is left for future work
- Many practical models are stochastic

Applications to Security?

- Many infrastructures cannot be described by simple equations
 - Alternative approach: estimate/learn a model
- ▶ Benefit of **model-based RL**: more sample efficient (generally)
- ► Can we use MuZero to Learn the Model?
 - In principle, yes.
 - In practice, no.
 - Muzero is likely to be too sample inefficient for realistic infrastructures

Conclusions

- MuZero is a new model-based RL algorithm
- MuZero generalizes AlphaZero to not require prior knowledge about the environment dynamics
- MuZero uses implicit learning of environment dynamics
- MuZero is a new state of the art on several games
- Can we use MuZero for other domains than games?
 - MuZero reduces need for prior knowledge but does not reduce the number of samples required
 - MuZero has some interesting ideas, but needs to be developed further (IMO)