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Problem

measurements zksecurity controls uk µ

state xk

Finite partially observed Markovian decision problem (pomdp).
Hidden states i ∈ X = {1, . . . , n}, transition probability pij(u).
Observation z ∈ Z is generated with probability p(z | j, u).
Control u ∈ U.
Goal: find a policy µ that minimizes the discounted cost

E

{
∞∑

k=0

αkg(xk , uk , xk+1)

}
.
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Challenge 1: Curse of Dimensionality

Problem complexity grows exponentially with system size.

2 4 6 8 10 12 14
101

5 · 103

104 control space size |U|
state space size |X |

observation space size |Z |

K : # system components

Benchmark pomdp (cage-2) has over 1047 states and 1025 observations.

Scalability challenge
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Challenge 2: Changing Dynamics

Networked systems change on a regular basis.
▶ Components fail, bandwidth fluctuates, load patterns shift, software is updated, etc.
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Networked systems change on a regular basis.
▶ Components fail, bandwidth fluctuates, load patterns shift, software is updated, etc.
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40 System load Average load Average load non-periodic

time

Need an efficient way to adapt the security policy µ when changes occur.

Policy adaption
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Our Approximation Framework for Large-Scale POMDPs
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Achieves state-of-the-art performance on the cage-2 benchmark.
▶ pomdp with over 1047 states and 1025 observations.

Has theoretical performance guarantees.
▶ Contrasts with other approximation frameworks, e.g., deep rl and llms.
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Belief Space Formulation of the POMDP

b = (b(1), . . . , b(n)) is a probability distribution over the state space.

Belief state

Let b be the state, we then obtain perfect information problem with dynamics

bk = F (bk−1, uk−1, zk) (Belief estimator)

ĝ(b, u) =
n∑

i=1

b(i)
n∑

j=1

g(i , u, j) (Cost)

p̂(z | b, u) =
n∑

i=1

b(i)
n∑

j=1

pij(u)p(z | j, u) (Disturbance distribution).
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g(i , u, j) (Cost)

p̂(z | b, u) =
n∑

i=1

b(i)
n∑

j=1

pij(u)p(z | j, u) (Disturbance distribution).

Computing an optimal policy is pspace-hard.
Enumerating the dimension of B is intractable (|X | ≥ 1047 in cage-2).

Challenges
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Offline POMDP Approximation via Problem Simplification

Original problem Simplified problem Simplified solution
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Aggregation
Dynamic

programming

Approximation via interpolation
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Two-Level Aggregation for Offline Approximation

We use two-level aggregation to simplify the pomdp into an aggregate mdp with finite
state space, which we solve using dynamic programming.

Aggregate feature belief space Q̃Feature space FState space X

q̃
x

i
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State Aggregation (1/3)

Two main options to construct the feature space F :
▶ It can be manually designed based on engineering intuition.
▶ It can be automatically constructed via a neural network.

Feature space F

Kim Hammar Adaptive Security Policies via Aggregation and Rollout March, 2025 10 / 28



State Aggregation (2/3)

Each feature state x ∈ F is associated with a disjoint subset Ix ⊂ X .

Feature space FState space X

x

i

Ix
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State Aggregation (2/3)

State space X

ϕjy

feature state

state

y

ji
pij(u)

State aggregation
For each state j ∈ X , we associate

an aggregation probability distribution {ϕjy | y ∈ F}, where ϕjy = 1 for all j ∈ Iy .
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State Aggregation (2/3)

Feature space FState space X

x

i j

dxi

dxjIx

State aggregation
For each state j ∈ X , we associate

an aggregation probability distribution {ϕjy | y ∈ F}, where ϕjy = 1 for all j ∈ Iy .

Feature disaggregation
For every feature state x ∈ F , we associate

a disaggregation probability distribution {dxi | i ∈ X}, where dxi = 0 for all i ̸∈ Ix .
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State Aggregation (2/3)

State space X

ϕjy

feature state

state

k
dyk y

ji
pij(u)

State aggregation
For each state j ∈ X , we associate

an aggregation probability distribution {ϕjy | y ∈ F}, where ϕjy = 1 for all j ∈ Iy .

Feature disaggregation
For every feature state x ∈ F , we associate

a disaggregation probability distribution {dxi | i ∈ X}, where dxi = 0 for all i ̸∈ Ix .
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State Aggregation (3/3)

We obtain the dynamic system:

i j

x y
Feature states F

Original states X

dxi ϕjy
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State Aggregation (3/3)

i j k l

y0 y1 y2

pij(u0), g(i , u0, j) pkl(u1), g(k, u1, l)

dy0 i dy1k ϕly2ϕjy1

=⇒ Well-defined aggregate problem with state space F .
▶ We obtain the desired dimensionality reduction: |F| << |X |.
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State Aggregation (3/3)

i j k l

y0 y1 y2

pij(u0), g(i , u0, j) pkl(u1), g(k, u1, l)

dy0 i dy1k ϕly2ϕjy1

=⇒ Well-defined aggregate problem with state space F .

How can we lift this dynamic aggregation system to the belief space?
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Feature Belief Aggregation (1/3)

Belief space B Feature belief space Q

Aggregate feature
beliefs Q̃ ⊂ Q
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Feature Belief Aggregation (2/3)

For each feature belief q ∈ Q, we associate a belief aggregation probability distribution
{ψqq̃ | q̃ ∈ Q̃}, where ψq̃q̃ = 1.

Feature belief space Q

q
ψqq̃

q̃
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Feature Belief Aggregation (2/3)

Example (nearest-neighbor aggregation):

ψqq̃ = 1 ⇐⇒ q̃ = arg min
q̃∈Q̃

∥q − q̃∥.
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Feature Belief Aggregation (3/3)

Dynamic belief system:

b(i) =
∑
x∈F

q̃(x)dxi for all i ∈ X (b ← q, q̃) (1a)

q(y) =
n∑

j=1

b(j)ϕjy for all y ∈ F (b → q) (1b)

q̃ ∼ ψqq̃ (q → q̃). (1c)

i j

x y
Feature states F

Original states X

dxi ϕjy

b b′

q̃ q̃′

Aggregate beliefs Q̃

Original beliefs B

Eq. (1a) Eq. (1b) and Eq. (1c)
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POMDP Approximation

Let V ⋆ be the optimal cost-to-go of the aggregate problem.
We obtain a cost approximation of the original POMDP by

J̃(b) =
∑
q̃∈Q̃

ψΦ(b)q̃V ⋆(q̃), (interpolation formula),

where Φ : B 7→ Q is defined as

Φ(b)(y) =
n∑

j=1

b(j)ϕjy for all y ∈ F .
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POMDP Approximation

Let V ⋆ be the optimal cost-to-go of the aggregate problem.
We obtain a cost approximation of the original POMDP by

J̃(b) =
∑
q̃∈Q̃

ψΦ(b)q̃V ⋆(q̃), (interpolation formula),

where Φ : B 7→ Q is defined as

Φ(b)(y) =
n∑

j=1

b(j)ϕjy for all y ∈ F .

Similarly, a base policy µ for the pomdp can be obtained as

µ(b) ∈ arg min
u

Eb′
{

ĝ(b, u) + αJ̃(b′)
}

for all b ∈ B.
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POMDP Approximation

Let V ⋆ be the optimal cost-to-go of the aggregate problem.
We obtain a cost approximation of the original POMDP by

J̃(b) =
∑
q̃∈Q̃

ψΦ(b)q̃V ⋆(q̃), (interpolation formula).

B(q̃)

B
Q̃

q̃

ψϕ(b)q̃

ϵ = maximum variation
of J⋆(b) within B(q̃)
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POMDP Approximation

Let V ⋆ be the optimal cost-to-go of the aggregate problem.
We obtain a cost approximation of the original POMDP by

J̃(b) =
∑
q̃∈Q̃

ψΦ(b)q̃V ⋆(q̃), (interpolation formula).

B(q̃)

B
Q̃

q̃

ψϕ(b)q̃

ϵ = maximum variation
of J⋆(b) within B(q̃)

Proposition (Approximation error bound)

Under hard aggregation, the approximation error of J̃ is bounded as

|J̃(b)− J⋆(b)| ≤ ϵ

1− α ∀b ∈ B(q̃), q̃ ∈ Q̃.
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Experimental Illustration of the Error Bound

0.5 1

6

8
J⋆(b) J̃(b) (|Q̃| = 100) J̃(b) (|Q̃| = 5)

b(1)

Comparison between the optimal cost-to-go J⋆ of the pomdp and the approximate cost-to-go J̃
for varying |Q̃|. The numerical results are based on an example pomdp with |X | = 2, F = X , Q̃
defined via grid points, and ψ based on the nearest-neighbor mapping.
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Particle Filtering

Exact computation of the belief b has complexity O(|X |2), which is intractable
for realistic systems. (In cage-2, |X | ≥ 1047.)

Challenge
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Particle Filtering

Exact computation of the belief b has complexity O(|X |2), which is intractable
for realistic systems. (In cage-2, |X | ≥ 1047.)

Challenge

To manage this complexity, we use a particle filter to estimate b as

b̂k(xk) = 1
M

M∑
i=1

1xk =̂x(i)
k
, (2)

where {x̂1
k , . . . , x̂M

k } are particles sampled with probability proportional to p(zk | x̂ i
k , uk−1).

particle
probability

The complexity of Eq. (2) can be adjusted to available compute resources by tuning
M. Strong law of large numbers implies asymptotic consistency,

lim
M→∞

b̂ = b.
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Rollout and Lookahead Optimization for Online Policy Adaption

u1,k u2,k

ĝ(bk+1, u1,k)

bk

bk+1

bk+2

2-step lookahead optimization with
rollout and terminal cost approximation

J̃(bk+2+m)
Terminal cost approximation

Rollout with
base policy µ
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ĝ(bk+1, u1,k)

bk

bk+1

bk+2

2-step lookahead optimization with
rollout and terminal cost approximation

J̃(bk+2+m)
Terminal cost approximation

Rollout with
base policy µ

Kim Hammar Adaptive Security Policies via Aggregation and Rollout March, 2025 20 / 28



Rollout and Lookahead Optimization for Online Policy Adaption

u1,k u2,k
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Rollout and Lookahead Optimization for Online Policy Adaption
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Rollout and Lookahead Optimization for Online Policy Adaption

Lookahead optimization
We transform the base policy to an adapted rollout policy µ̃ via ℓ-step lookahead

µ̃(bk) ∈ arg min
uk ,µk+1,...,µk+ℓ−1

Ezk+1,...,zk+ℓ

{
ĝ(bk , uk) +

t+ℓ−1∑
j=k+1

αj−k ĝ(bj , µj(bj)) + αℓJ̃µ(bk+ℓ)
}
.

Rollout
The cost-to-go in the lookahead minimization is estimated via m-step rollout with the
base policy µ and terminal cost approximation J̃ :

J̃µ(bk) = 1
L

L∑
j=1

k+m∑
l=k

αl−k ĝ(bj
l , µ(bj

l )) + αm−k J̃(bj
k+m).
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Rollout Policy Improvement

Proposition (Bertsekas, 2019)
1 If the rollout policy evaluation is exact, i.e., if J̃µ = Jµ, then the rollout policy is

guaranteed to improve the base policy.
2 The sub-optimality of the rollout policy µ̃ is bounded as

∥Jµ̃ − J⋆∥ ≤ 2αℓ

1− α∥J̃µ − J⋆∥.
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Rollout Policy Improvement

Proposition (Bertsekas, 2019)
1 If the rollout policy evaluation is exact, i.e., if J̃µ = Jµ, then the rollout policy is

guaranteed to improve the base policy.
2 The sub-optimality of the rollout policy µ̃ is bounded as

∥Jµ̃ − J⋆∥ ≤ 2αℓ

1− α∥J̃µ − J⋆∥.

5 10 15 20 25 30
100.5

101

101.5 Base policy µ Rollout policy µ̃

Cumulative cost J(x0),N = m = 10, ℓ = 1

Number of aggregate beliefs |Q̃|

8.5x
reduction

Performance of rollout for an example pomdp.
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Framework Summary
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Experimental Evaluation Against the CAGE-2 Benchmark

Standard benchmark for comparing methods: CAGE-2.
▶ Problem: find an effective security policy to network intrusions.
▶ pomdp with over 1047 states and 1025 observations.
▶ Leaderboard with more than 35 different methods.

Current state-of-the-art: deep reinforcement learning (variants of ppo).

µθ(u5 | z)
µθ(u4 | z)
µθ(u3 | z)

µθ(u2 | z)
µθ(u1 | z)

Jθ(z)O
bs

er
va

tio
n

z
Security

controls

Parameterized security policy µθ
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Instantiation of Our Framework for CAGE-2

We define Q̃ based on intuition, where |Q̃| = 427500.
We define ψ based on the nearest-neighbor mapping.
We solve the aggregate problem using value iteration.

▶ This gives us the base policy µ and cost J̃.
We use ℓ = 2 lookahead steps and M = 50 particles.

enterprise zone operational zone

user zone

observation zk control ukµ
Security policy

Attacker Clients

2

1

3

2 3 4

1

1 2 3 4

The cage-2 system.
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Experimental Results (1/2)

Method Offline/Online compute (min/s) State estimation Cost

µ 8.5/0.01 particle filter 15.19± 0.82

ppo 1000/0.01 latest observation 280± 114
ppo 1000/0.01 particle filter 119± 58

ppg 1000/0.01 latest observation 338± 147
ppg 1000/0.01 particle filter 299± 108

dqn 1000/0.01 latest observation 479± 267
dqn 1000/0.01 particle filter 462± 244

cardiff 300/0.01 latest observation 13.69 ± 0.53
cardiff 300/0.01 particle filter 13.31 ± 0.87

pomcp 0/15 particle filter 30.88± 1.41
pomcp 0/30 particle filter 29.51± 2.00

ours (m = 0) 8.5/0.95 particle filter 13.24 ± 0.57
ours (m = 10) 8.5/8.29 particle filter 13.23 ± 0.62
ours (m = 20) 8.5/14.80 particle filter 13.23 ± 0.57

Numbers indicate the mean and the standard deviation from 1000 evaluations.
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Experimental Results (2/2)

Method Offline/Online compute (min/s) State estimation Cost

µ 8.5/0.01 particle filter 61.72± 3.96

ppo 1000/0.01 latest observation 341± 133
ppo 1000/0.01 particle filter 326± 116

ppg 1000/0.01 latest observation 328± 178
ppg 1000/0.01 particle filter 312± 163

dqn 1000/0.01 latest observation 516± 291
dqn 1000/0.01 particle filter 492± 204

cardiff 300/0.01 latest observation 57.45± 2.44
cardiff 300/0.01 particle filter 56.45± 2.81

pomcp 0/15 particle filter 53.08± 3.78
pomcp 0/30 particle filter 53.18± 3.42

ours (m = 0) 8.5/0.95 particle filter 51.87± 1.42
ours (m = 10) 8.5/8.29 particle filter 38.81 ± 1.68
ours (m = 20) 8.5/14.80 particle filter 37.89 ± 1.54

Numbers indicate the mean and the standard deviation from 1000 evaluations.
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Conclusion

We present a scalable framework for computing adaptive security policies, which
has formal performance guarantees and achieves state-of-the-art performance.
It consists of three components:

Two-Level Belief Aggregation
and Dynamic Programming

Policy Adaption via Rollout

Belief Estimation
via Particle Filtering

offline

online

online

Theoretical and experimental details will be available in preprints soon.
Source code is available at:

https://github.com/Limmen/rollout_aggregation; and
https://github.com/Limmen/csle

Work in progress! Ý
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