Adaptive Security Policies via Belief Aggregation and Rollout NETCON SEMINAR

Kim Hammar, kimham@kth.se March 3, 2025 Joint work with Yuchao Li, Tansu Alpcan, Emil Lupu, and Dimitri Bertsekas

Based on work-in-progress papers **∑**:

Adaptive Security Policies via Belief Aggregation and Rollout (K.H, Y.L, T.A, E.L) Feature-Based Belief Aggregation for POMDPs (Y.L, K.H, D.B)

- Finite partially observed Markovian decision problem (POMDP).
- Hidden states $i \in X = \{1, ..., n\}$, transition probability $p_{ij}(u)$.
- Observation $z \in Z$ is generated with probability $p(z \mid j, u)$.
- Control $u \in U$.
- Goal: find a policy μ that minimizes the discounted cost

$$E\left\{\sum_{k=0}^{\infty}\alpha^{k}g(x_{k},u_{k},x_{k+1})\right\}.$$

Problem complexity grows exponentially with system size.

• Networked systems change on a regular basis.

Components fail, bandwidth fluctuates, load patterns shift, software is updated, etc.

Challenge 2: Changing Dynamics

- Networked systems change on a regular basis.
 - Components fail, bandwidth fluctuates, load patterns shift, software is updated, etc.

Need an efficient way to adapt the security policy μ when changes occur.

Our Approximation Framework for Large-Scale POMDPs

Our Approximation Framework for Large-Scale POMDPs

Our Approximation Framework for Large-Scale POMDPs

- Achieves state-of-the-art performance on the CAGE-2 benchmark.
 - ▶ POMDP with over 10⁴⁷ states and 10²⁵ observations.
- Has theoretical performance guarantees.
 - ▶ Contrasts with other approximation frameworks, e.g., DEEP RL and LLMs.

Belief state $b = (b(1), \dots, b(n))$ is a probability distribution over the state space.

Let *b* be the state, we then obtain perfect information problem with dynamics

$$b_{k} = F(b_{k-1}, u_{k-1}, z_{k})$$
(Belief estimator)

$$\hat{g}(b, u) = \sum_{i=1}^{n} b(i) \sum_{j=1}^{n} g(i, u, j)$$
(Cost)

$$\hat{p}(z \mid b, u) = \sum_{i=1}^{n} b(i) \sum_{j=1}^{n} p_{ij}(u) p(z \mid j, u)$$
(Disturbance distribution).

Belief state
$$b = (b(1), \dots, b(n)) \in B$$
 is a probability distribution over the state space.

Let *b* be the state, we then obtain perfect information problem with dynamics

$$b_{k} = F(b_{k-1}, u_{k-1}, z_{k})$$
(Belief estimator)

$$\hat{g}(b, u) = \sum_{i=1}^{n} b(i) \sum_{j=1}^{n} g(i, u, j)$$
(Cost)

$$\hat{b}(z \mid b, u) = \sum_{i=1}^{n} b(i) \sum_{j=1}^{n} p_{ij}(u)p(z \mid j, u)$$
(Disturbance distribution).

Challenges

• Computing an optimal policy is **PSPACE-hard**.

Belief Space Formulation of the POMDP

(Belief state) $b = (b(1), \dots, b(n)) \in B \text{ is a probability distribution over the state space.}$

Let b be the state, we then obtain perfect information problem with dynamics

$$b_{k} = F(b_{k-1}, u_{k-1}, z_{k})$$
(Belief estimator)

$$\hat{g}(b, u) = \sum_{i=1}^{n} b(i) \sum_{j=1}^{n} g(i, u, j)$$
(Cost)

$$\hat{p}(z \mid b, u) = \sum_{i=1}^{n} b(i) \sum_{j=1}^{n} p_{ij}(u) p(z \mid j, u)$$
(Disturbance distribution).

Challenges

- Computing an optimal policy is **PSPACE-hard**.
- Enumerating the dimension of B is intractable ($|X| \ge 10^{47}$ in CAGE-2).

Approximation via interpolation

We use **two-level aggregation** to simplify the POMDP into an aggregate MDP with finite state space, which we solve using dynamic programming.

- Two main options to construct the feature space \mathcal{F} :
 - It can be manually designed based on engineering intuition.
 - It can be automatically constructed via a neural network.

Feature space ${\mathcal F}$

Each *feature state* $x \in \mathcal{F}$ is associated with a disjoint subset $I_x \subset X$.

State space X

Feature space ${\mathcal F}$

Each *feature state* $x \in \mathcal{F}$ is associated with a disjoint subset $I_x \subset X$.

State space X

Feature space ${\mathcal F}$

State space X

State aggregation

For each state $j \in X$, we associate

• an aggregation probability distribution $\{\phi_{jy} \mid y \in \mathcal{F}\}$, where $\phi_{jy} = 1$ for all $j \in I_y$.

State aggregation

For each state $j \in X$, we associate

• an aggregation probability distribution $\{\phi_{jy} \mid y \in \mathcal{F}\}$, where $\phi_{jy} = 1$ for all $j \in I_y$.

Feature disaggregation

For every *feature state* $x \in \mathcal{F}$, we associate

• a *disaggregation probability* distribution $\{d_{xi} \mid i \in X\}$, where $d_{xi} = 0$ for all $i \notin I_x$.

State space X

State aggregation

For each state $j \in X$, we associate

• an aggregation probability distribution $\{\phi_{jy} \mid y \in \mathcal{F}\}$, where $\phi_{jy} = 1$ for all $j \in I_y$.

Feature disaggregation

For every *feature state* $x \in \mathcal{F}$, we associate

• a *disaggregation probability* distribution $\{d_{xi} \mid i \in X\}$, where $d_{xi} = 0$ for all $i \notin I_x$.

We obtain the dynamic system:

How can we lift this dynamic aggregation system to the belief space?

• \implies Well-defined aggregate problem with state space \mathcal{F} .

For each **feature belief** $q \in Q$, we associate a *belief aggregation probability* distribution $\{\psi_{q\tilde{q}} \mid \tilde{q} \in \tilde{Q}\}$, where $\psi_{\tilde{q}\tilde{q}} = 1$.

Feature belief space Q

Example (nearest-neighbor aggregation):

$$\psi_{q\bar{q}} = 1 \iff \tilde{q} = \arg\min_{\tilde{q} \in \tilde{Q}} ||q - \tilde{q}||.$$

Dynamic belief system:

$$\begin{split} b(i) &= \sum_{x \in \mathcal{F}} \tilde{q}(x) d_{xi} & \text{for all } i \in X \quad (b \leftarrow q, \tilde{q}) & (1a) \\ q(y) &= \sum_{j=1}^{n} b(j) \phi_{jy} & \text{for all } y \in \mathcal{F} \quad (b \to q) & (1b) \\ \tilde{q} &\sim \psi_{q\tilde{q}} & (q \to \tilde{q}). & (1c) \end{split}$$

- Let V^* be the optimal cost-to-go of the aggregate problem.
- We obtain a cost approximation of the original POMDP by

$$ilde{J}(b) = \sum_{ ilde{q} \in ilde{Q}} \psi_{\Phi(b) ilde{q}} \, V^{\star}(ilde{q}), \qquad \qquad (ext{interpolation formula}),$$

where $\Phi: B \mapsto Q$ is defined as

$$\Phi(b)(y) = \sum_{j=1}^{n} b(j)\phi_{jy}$$
 for all $y \in \mathcal{F}$.

- Let V^* be the optimal cost-to-go of the aggregate problem.
- We obtain a cost approximation of the original POMDP by

$$ilde{J}(b) = \sum_{ ilde{q} \in ilde{Q}} \psi_{\Phi(b) ilde{q}} V^{\star}(ilde{q}), ext{ (interpolation formula)},$$

where $\Phi: B \mapsto Q$ is defined as

$$\Phi(b)(y) = \sum_{j=1}^n b(j) \phi_{jy}$$
 for all $y \in \mathcal{F}.$

 \bullet Similarly, a base policy μ for the <code>POMDP</code> can be obtained as

$$\mu(b) \in \operatorname*{arg\,min}_{u} E_{b'} \left\{ \hat{g}(b, u) + \alpha \tilde{J}(b') \right\} \qquad \qquad \mathsf{for all} \ b \in B.$$

- Let V^* be the optimal cost-to-go of the aggregate problem.
- We obtain a cost approximation of the original POMDP by

$$\widetilde{J}(b) = \sum_{\widetilde{q} \in \widetilde{Q}} \psi_{\Phi(b)\widetilde{q}} V^{\star}(\widetilde{q}),$$
 (interpolation formula).

- Let V^* be the optimal cost-to-go of the aggregate problem.
- We obtain a cost approximation of the original POMDP by

Proposition (Approximation error bound)

Under hard aggregation, the approximation error of \tilde{J} is bounded as

$$| ilde{J}(b)-J^{\star}(b)|\leq rac{\epsilon}{1-lpha} \qquad \qquad orall b\in B(ilde{q}), ilde{q}\in ilde{Q}.$$

Comparison between the optimal cost-to-go J^* of the POMDP and the approximate cost-to-go \tilde{J} for varying $|\tilde{Q}|$. The numerical results are based on an example POMDP with |X| = 2, $\mathcal{F} = X$, \tilde{Q} defined via grid points, and ψ based on the nearest-neighbor mapping.

The Big Picture

The Big Picture

The Big Picture

Particle Filtering

Challenge

Exact computation of the belief *b* has complexity $O(|X|^2)$, which is intractable for realistic systems. (In CAGE-2, $|X| \ge 10^{47}$.)

Particle Filtering

Challenge

Exact computation of the belief *b* has complexity $O(|X|^2)$, which is intractable for realistic systems. (In CAGE-2, $|X| \ge 10^{47}$.)

To manage this complexity, we use a **particle filter** to estimate b as

$$\widehat{b}_k(x_k) = \frac{1}{M} \sum_{i=1}^M \mathbb{1}_{x_k = \widehat{x}_k^{(i)}}, \qquad (2)$$

where $\{\hat{x}_k^1, \dots, \hat{x}_k^M\}$ are particles sampled with probability proportional to $p(z_k \mid \hat{x}_k^i, u_{k-1})$.

The complexity of Eq. (2) can be adjusted to available compute resources by tuning M. Strong law of large numbers implies asymptotic consistency,

$$\lim_{M\to\infty}\widehat{b}=b.$$

Lookahead optimization

We transform the base policy to an **adapted** rollout policy $\tilde{\mu}$ via ℓ -step lookahead

$$\tilde{\mu}(b_k) \in \argmin_{u_k,\mu_{k+1},\dots,\mu_{k+\ell-1}} E_{z_{k+1},\dots,z_{k+\ell}} \bigg\{ \hat{g}(b_k,u_k) + \sum_{j=k+1}^{t+\ell-1} \alpha^{j-k} \hat{g}(b_j,\mu_j(b_j)) + \alpha^{\ell} \tilde{J}_{\mu}(b_{k+\ell}) \bigg\}.$$

Rollout

The cost-to-go in the lookahead minimization is estimated via *m*-step rollout with the base policy μ and terminal cost approximation \tilde{J} :

$$\tilde{J}_{\mu}(b_k) = \frac{1}{L} \sum_{j=1}^{L} \sum_{l=k}^{k+m} \alpha^{l-k} \hat{g}(b_l^j, \mu(b_l^j)) + \alpha^{m-k} \tilde{J}(b_{k+m}^j).$$

Proposition (Bertsekas, 2019)

- If the rollout policy evaluation is exact, i.e., if J
 _µ = J_µ, then the rollout policy is guaranteed to improve the base policy.
- **2** The sub-optimality of the rollout policy $\tilde{\mu}$ is bounded as

$$\|J_{ ilde{\mu}} - J^{\star}\| \leq rac{2lpha^{\ell}}{1-lpha} \| ilde{J}_{\mu} - J^{\star}\|.$$

Proposition (Bertsekas, 2019)

- If the rollout policy evaluation is exact, i.e., if $\tilde{J}_{\mu} = J_{\mu}$, then the rollout policy is guaranteed to improve the base policy.
- **2** The sub-optimality of the rollout policy $\tilde{\mu}$ is bounded as

$$\|J_{\tilde{\mu}} - J^{\star}\| \leq \frac{2\alpha^{\ell}}{1-\alpha} \|\tilde{J}_{\mu} - J^{\star}\|.$$

Performance of rollout for an example POMDP.

Framework Summary

Experimental Evaluation Against the CAGE-2 Benchmark

- Standard benchmark for comparing methods: CAGE-2.
 - Problem: find an effective security policy to network intrusions.
 - ▶ POMDP with over 10⁴⁷ states and 10²⁵ observations.
 - Leaderboard with more than 35 different methods.
- Current state-of-the-art: deep reinforcement learning (variants of PPO).

Instantiation of Our Framework for CAGE-2

- We define \tilde{Q} based on intuition, where $|\tilde{Q}| = 427500$.
- \bullet We define ψ based on the nearest-neighbor mapping.
- We solve the aggregate problem using value iteration.
 - This gives us the base policy μ and cost \tilde{J} .
- We use $\ell = 2$ lookahead steps and M = 50 particles.

The CAGE-2 system.

Experimental Results (1/2)

Method	Offline/Online compute (min/s)	State estimation	Cost
μ	8.5/0.01	PARTICLE FILTER	15.19 ± 0.82
PPO	1000/0.01	LATEST OBSERVATION	$\begin{array}{c} 280\pm114\\ 119\pm58 \end{array}$
PPO	1000/0.01	PARTICLE FILTER	
PPG	1000/0.01	LATEST OBSERVATION	$\begin{array}{c} 338\pm147\\ 299\pm108\end{array}$
PPG	1000/0.01	PARTICLE FILTER	
DQN	1000/0.01	LATEST OBSERVATION	$\begin{array}{c} 479 \pm 267 \\ 462 \pm 244 \end{array}$
DQN	1000/0.01	PARTICLE FILTER	
CARDIFF	300/0.01	LATEST OBSERVATION	$\begin{array}{c} 13.69 \pm 0.53 \\ 13.31 \pm 0.87 \end{array}$
CARDIFF	300/0.01	PARTICLE FILTER	
POMCP	0/15	PARTICLE FILTER	$\begin{array}{c} 30.88 \pm 1.41 \\ 29.51 \pm 2.00 \end{array}$
POMCP	0/30	PARTICLE FILTER	
OURS $(m = 0)$	8.5/0.95	PARTICLE FILTER	$\begin{array}{c} 13.24 \pm 0.57 \\ 13.23 \pm 0.62 \\ 13.23 \pm 0.57 \end{array}$
OURS $(m = 10)$	8.5/8.29	PARTICLE FILTER	
OURS $(m = 20)$	8.5/14.80	PARTICLE FILTER	

Numbers indicate the mean and the standard deviation from 1000 evaluations.

Experimental Results (2/2)

Method	Offline/Online compute (min/s)	State estimation	Cost
μ	8.5/0.01	PARTICLE FILTER	61.72 ± 3.96
PPO	1000/0.01	LATEST OBSERVATION	$\begin{array}{c} 341\pm133\\ 326\pm116\end{array}$
PPO	1000/0.01	PARTICLE FILTER	
PPG	1000/0.01	LATEST OBSERVATION	$\begin{array}{c} 328\pm178\\ 312\pm163\end{array}$
PPG	1000/0.01	PARTICLE FILTER	
DQN	1000/0.01	LATEST OBSERVATION	$\begin{array}{c} 516\pm291\\ 492\pm204\end{array}$
DQN	1000/0.01	PARTICLE FILTER	
CARDIFF	300/0.01	LATEST OBSERVATION	57.45 ± 2.44
CARDIFF	300/0.01	PARTICLE FILTER	56.45 ± 2.81
POMCP	0/15	PARTICLE FILTER	$\begin{array}{c} 53.08 \pm 3.78 \\ 53.18 \pm 3.42 \end{array}$
POMCP	0/30	PARTICLE FILTER	
OURS $(m = 0)$	8.5/0.95	PARTICLE FILTER	$\begin{array}{c} 51.87 \pm 1.42 \\ \textbf{38.81} \pm \textbf{1.68} \\ \textbf{37.89} \pm \textbf{1.54} \end{array}$
OURS $(m = 10)$	8.5/8.29	PARTICLE FILTER	
OURS $(m = 20)$	8.5/14.80	PARTICLE FILTER	

Numbers indicate the mean and the standard deviation from 1000 evaluations.

Conclusion

- We present a scalable framework for computing adaptive security policies, which has formal performance guarantees and achieves state-of-the-art performance.
- It consists of three components:

Work in progress!

Theoretical and experimental details will be available in preprints soon. Source code is available at:

- https://github.com/Limmen/rollout_aggregation; and
- https://github.com/Limmen/csle