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Use Case: Intrusion Tolerance

Clients
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> A replicated system offers services to a client population.

» The system must be highly available and provide correct
service without disruption.



Use Case: Intrusion Tolerance

Attacker Clients
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P> An attacker seeks to intrude on the system and disrupt service
» The system should tolerate intrusions

» it should provide correct service
even if a fraction of replicas are compromised




Examples of Systems that Need to Tolerate Intrusions

Control planes Embedded systems
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Payment systems




Intrusion Tolerance (Simplified)
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Intrusion-Tolerant Systems - State

» State-of-the-art intrusion-tolerant
systems involve 3 building blocks:
1. a protocol for service replication
2. a scaling strategy
3. a recovery strategy

» Given N replicas, the system provides
correct service with up to f = NzL

3
compromised replicas.

» Theoretical upper bound
» f is the tolerance threshold.

Simple control strategies:

» Fixed number of replicas (no scaling)
» No recovery or periodic recovery

of The Art
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This work: Optimal intrusion recovery and scaling strategies




Can we use decision theory and learning-based methods to
automatically find effective security strategies?

Intrusion response
Decomposition.
Emulation, large-scale
Dynamic attacker. (2023)°

Intrusion response
Intrusion prevention Optimal multiple stopping.
Simulation Emulation, small-scale.
Small-scale. (2020)!, Static attacker. (2022)3
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Dynamic attacker. (2022) (This work)

Intrusion prevention
Optimal stopping.
Emulation, small-scale
Static attacker. (2021)2.
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Our Framework for Automated Security
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» Source code: https://github.com/Limmen/csle
» Documentation: http://limmen.dev/csle/

» Demo:

https://www.youtube.com/watch?v=iE2KPmtIs2A&


https://github.com/Limmen/csle
http://limmen.dev/csle/
https://www.youtube.com/watch?v=iE2KPmtIs2A&
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Background: Fault Tolerance and Intrusion Tolerance

» Seminal work made by von Neumann and

Shannon in 1956.

» Initially focused on building
fault-tolerant circuits.

» Fault tolerance includes tolerance [

Client interface

against: software bugs, malicious
attacks, operator mistakes, etc.

> Key strategy for fault tolerance:
redundancy

i Request

Replicated system

Response

[

Consensus protocol

-

» Redundancy is achieved through service
replication. Replicas are coordinated
through a consensus protocol.



Background: Consensus

» Consensus is the problem of reaching agreement on a single
value among a set of distributed nodes subject to failures.

» Fascinating problem for many reasons:
» Key problem to build practical systems
» The problem comes in many flavors
» Paradoxical cases
» Rich theory

» Turing awardees working on consensus:

[N YT

Dijkstra, 1972 Gray, 1998 Liskov, 2008  Lamport, 2013



Background: Consensus

Definition (Consensus)

We have N nodes indexed by 1,..., N. The nodes are connected
by a complete graph and communicate via message passing. Each
node starts with an input value v € V. The goal is to agree on a
single value in V.

An algorithm A solves consensus if the following hold:
1. Agreement: No two correct nodes decide on different values
2. Termination: All nodes eventually decide.
3. Validity: If all nodes start with input v then they decide on v



Consensus Example: The Two Generals Problem (Gray '78)

rr,,?

L

» Two generals are planning a coordinated attack from different
directions.

» One of the simplest consensus problems:
» Only two nodes: 1 and 2
» No process failures but link failures may occur

> Is the problem solvable?



Consensus Example: The Two Generals Problem (Gray '78)

rr,,?

L

> Two generals are planning a coordinated attack from different
directions.

» One of the simplest consensus problems:
» Only two nodes: 1 and 2
» No process failures but link failures may occur

> Is the problem solvable? No! Can be proven by
contradiction.



When Is Consensus Solvable?

» Solvability depends on synchrony and failure assumptions.

» Three synchronicity models:

» The asynchronous model: no bounds on either delays or
clock drifts.

» The partially synchronous model: an upper bound exists
but the system may have periods of instability where the upper
bound does not hold.

» The synchronous model: there is an upper bound on the
communication delay and clock drift between any two nodes.

Organization WAN

N N N N
Internet .E .E .E .. .

A ?
Synchronous system  Asynchronous system Partially synchronous system



When Is Consensus Solvable?

» Three main failure models:

» Crash-stop: nodes fail by crashing.

> Byzantine: failed nodes may behave arbitrarily (e.g., be
controlled by an attacker)

» Hybrid: Byzantine failures but each node is equipped with a
trusted component that only fails by crashing.

Virtual machine

Crash-stop failure Byzantine failure Hybrid failure



When Is Consensus Solvable?

Theorem (Summary of 40 years of research)

» Consensus is not solvable in the asynchronous model
» Consensus is solvable with a reliable network in the partially
synchronous model with N nodes and up to
> f= % Crash-stop failures
> f= % Byzantine failures
> f= % Hybrid failures (assuming authenticated
channels)
» Consensus is solvable with a reliable network in the
synchronous model with N nodes and up to
» f = N — 1 Crash-stop failures
» f = N1 Byzantine failures (assuming authenticated channels)
> = N-L Hybrid failures (assuming authenticated channels)
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Two-Level Feedback Control for Intrusion Tolerance
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» Node controllers with strategies 71, ..., 7y compute belief
states by, ..., by and make local recovery decisions; the belief
states are transmitted to a global system controller with
strategy m, which controls the replication factor

> Key insight: the control problems correspond to classical
problems studied in operations research, namely the machine
replacement problem and the inventory replenishment
problem, both of which have been studied for nearly a century.



The TOLERANCE Control Architecture

TOLERANCE: Two-level recovery and scaling control with
feedback.
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Correctness of TOLERANCE (1/2)

Definition (Correct service)

We say that a system provides correct service if the healthy
replicas satisfy the following properties:

Each replica executes the same request sequence. (Safety)
Each request is eventually executed. (Liveness)

Each executed request was sent by a client. (Validity)



Correctness of TOLERANCE (2/2)

Proposition

A system that implements the TOLERANCE architecture provides
correct service provided that:

1.

OISR CORIND

6.

The controllers can only fail by crashing.
Network links are authenticated and reliable.
An attacker can not break cryptographic codes.
The system is partially synchronous.

At most k nodes recover simultaneously and at most f nodes
are compromised or crashed simultaneously.

Ny > 2f + 1+ k at all times t.

Remark: TOLERANCE does not ensure confidentiality as a
compromised node may leak information to the attacker. By
appropriate use of cryptography and firewalls, it is possible to
extend TOLERANCE to provide confidentiality. Details omitted.
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Proposition

A system that implements the TOLERANCE architecture provides
correct service provided that:

1.

OISR CORIND

6.

The controllers can only fail by crashing.
Network links are authenticated and reliable.
An attacker can not break cryptographic codes.
The system is partially synchronous.

At most k nodes recover simultaneously and at most f
nodes are compromised or crashed simultaneously.

N: > 2f + 1+ k at all times t.

Remark: TOLERANCE does not ensure confidentiality as a
compromised node may leak information to the attacker. By
appropriate use of cryptography and firewalls, it is possible to
extend TOLERANCE to provide confidentiality. Details omitted.



The Local Level: Intrusion Recovery Control (1/4)

» Nodes NV; £ {1,2,...,N;} and controllers

7T1,t7 7T2,t7 cee )TrN,t'

» Hidden states Sy = {H, C, (} (see

flgU re)- Healthy A Compromised

» Actions: (20)ait and (9?)ecover

» Observation o;; ~ Z represents the
number of IDS alerts related to node i at
time t. Crashed

» A node controller computes
bi ¢ £ P[Si+ =C| 0j1,...] and makes
decisions aj s = 7 ¢(bj¢) € {20, R}.



The Local Level: Probability of Failure (2/4)

P[S, = CUS; = 0]

0.5

10 20 30 40 50 60 70 80 90 100
—— pp = 0.1 —— psy =0.05 .= py = 0.025
—e— pp = 0.01 —=— pp = 0.005

Probability of node compromise (S; = C) or crash (S; = () in function of
time t, assuming no recoveries.



The Local Level: Intrusion Recovery Control (3/4)

Goals: minimize the average time-to-recovery T,-(R) and minimize
the frequency of recoveries F,-(R):

P A (R) (R)
minimize J; = _’_I:*nOo [nThT + F,.7T} (1)

1 T
= Tlinoo T Z NSi.t — aitNSi,t + ait
t=1 -
Zen(si,ehaie)

We define intrusion recovery to be the problem of minimizing the
above objective subject to a bounded-time-to-recovery (BTR)
safety constraint which ensures that the time between two
recoveries of a node is bounded to by Ag, which can be configured
by the system administrator.



The Local Level: Intrusion Recovery Control (4/4)

Problem (Optimal Intrusion Recovery Control)

minimize
7ri,t€r|N

subject to

Er . [Ji | Bix = pal

ajkag = R

sit+1 ~ (- | sit, ait)
Oi,t+1 ™~ Z(-| 5i,t)

aj 41 ~ mit(bit)

ait € AN, Sit € SN, 0, € O

Vie N

Vi, k
Vi, t
Vi, t
Vi, t
Vi, t



Numerical Results for the Intrusion Recovery Problem

pa=01 pa =005 pa =0.025 pa =001 pa = 0.005
4 4
N 4
—_ — — 3 — .
i — &, L 2 2
= L5 2] e S = =
2 S~ 1 ~
0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
bia biy bia biy bia

lllustration of the optimal value function V/,(b; ;) for the local control
problem. V%, was computed using the incremental pruning algorithm;
black lines indicate the value function; red lines indicate the
alpha-vectors.



Numerical Results for the Intrusion Recovery Problem

pa=0.1 pa=0.05 pa = 0.025 pa=0.01 pa = 0.005

Vi(bia)
i
o
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0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5
1

llustration of the optimal value function V/,(b; ;) for the local control
problem. V%, was computed using the incremental pruning algorithm;
black lines mdlcate the value function; red lines indicate the
alpha-vectors.

Based on the above results we hypothesize that there exists an
optimal recovery strategy of the form:

dit = 7ri*,t(b)

(M)ecover1 +

(2W)ait 0

o w L R 1

1.0



Structure of an Optimal Intrusion Recovery Strategy (1/2)

Theorem (Optimal Threshold Recovery Strategies)
If the following holds

PA; PU, PCy s PC, € (O’ 1) (A)

pa+pu<sl (B)
pc,(pu — 1)

< pc C

pa(pc; — 1) + pc,(pu — 1) ’ ©

Z(O,"t | 5,‘715) > 0 \V/Oi’t,S,',t (D)

Z is TP-2 (E)

then there exists an optimal recovery strategy ;' for each node
i € N that satisfies

who(bie) =R < by > al Vt,at [0,  (3)



Structure of an Optimal Intrusion Recovery Strategy (2/2)

Corollary (Stationary Optimal Strategy as Ag — o)

The recovery thresholds satisfy o; ; > aj for all
t € [kARr, (k4 1)AR] and as Ar — oo, the thresholds converge to
a time-independent threshold o*.

0.95
——af
0.9 |
0.85 |
20 40 60 80 100

The thresholds were computed using the Incremental Pruning algorithm.



The Global Level: Controlling the Replication Factor (1/6)

N !‘E N
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System controller
Belief (b1, .., by)
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The Global Level: Controlling the Replication Factor (2/6)

at:() at:O at:0 at:O

ar = 1 ar = 1
35::' \;_.__',—"‘ ‘,1?

» At each time t, the system controller receives the belief
states by ¢,..., by from the node controllers and decides if
the replication factor N should be increased.

> State s;: estimated number of healthy nodes based on
bl,ta et bN,t

» Actions: a; € {0,1} = Ag, where a; = 1 means that a new
node is added to the system and a; = 0 is a passive action.

» Smax is the maximum number of nodes (needed to define the
theoretical model). In practice smax may be very large.



The Global Level (3/6): Mean Time to Failure

E[T()]

—— pp =0.1 —— py =0.05 - pa =0.025
——pa = 0.01 —e—pp = 0.005

Mean time to failure (MTTF) in function of the initial number of nodes
Ni; T() is a random variable representing the time when N; < f + 1 with
f =3 and k = 1, the curves relate to different intrusion probabilities pa .



The Global Level (4/6): Reliability Curve

R(t)
1

0.8 1
0.6 |
0.4 1
0.2 1

10 20 30 40 50 60 70 80 90 100
—— Ny =25 —— N; =50 = N; =100
e Ny = 200 —e— Ny — 400

Reliability curves for varying number of nodes N; The reliability function
is defined as R(t) 2 P[T(") > t] where T() is a random variable
representing the time when N, < f + 1 with f = 3.



The Global Level (5/6): Controlling the Replication Factor

Goal: maximize the average service availability 7(*) and
minimize the number of nodes. We model these two goals with the
following constrained objective

1T
minimize J £ lim [Tzst] (4)
t=1

T—oo

subject to TA) > €A

1 T
i — > >
:>T'l“oo thzl[[Nt_2f+1]] > ea
1 T
lim |= >f4+1]| >
zTTw[T;[St +]] = A

where €, is the minimum allowed average service availability with
respect to the tolerance threshold f.



The Global Level (6/6): Controlling the Replication Factor

Problem (Optimal Control of the Replication Factor)

minimize E.[J| S1 = N| (5a)
mellg

subject to E, [T(A)] > €p vVt (5b)

St4+1 = fS(St, dt, 51-) & SS Yt (5C)

6[- ~ PA(St) Vit (Sd)

dg+1 7Tt(5t) € AS Vvt (56)



Structure of an Optimal Scaling Strategy

Theorem
If the following holds

I € Mg such that By [T > e (A)
f5(s’ | s,a) >0 Vs',s;a  (B)
Smax Smax

Z fs(s' |8+ 1,a) > Z fs(s' | 8, a) Vs,$,a (©)

then there exists two strategies my, and m, that satisfy
(st) =1 <= st <[ Ta(st) =1 <= s < B2 Vt (6)
and an optimal randomized threshold strategy m* that satisfies
7(s¢t) = Kk (St) + (1 — K)ma,(se) YVt (7)

for some probability x € [0, 1].



Efficient Algorithms for Computing the Optimal Control
Strategies

» The problem of computing an optimal scaling strategy has
polynomial time-complexity. This follows because the problem
can be formulated as a linear program of polynomial size.

» The problem of computing the optimal intrusion recovery
strategies is in the complexity class PSPACE-HARD, and thus
no efficient (polynomial-time) algorithm for solving this
problem is known. (Note that P C NP C PSPACE.)

» To manage the high computational complexity of
computing the optimal recovery strategies we leverage
Theorem 1 and Corollary 1.



Algorithm for The Local Control Problem

Algorithm 1: Recovery Threshold Optimization (RTO)

[a—y

Input: 7, pa, PC15 PCy5 PU, Z,Agr
Parametric optimization algorithm: PO

N

w

Output: A near-optimal local control strategy 7g ¢
4 Algorithm
5 d+—1—AR if AR < oo else d + 1
6 | ©<«[0,1]¢
7 For each 0 € ©, define 7; g(b;) as

A [ if by > 0; where i = max(t, d]
71'i,e(bt) = {

0 otherwise
Jg — ETF;,& [J,']
9 7'\T9,t — PO(@, Jg)
10 return 7g ¢




Algorithm for The Global Control Problem

Algorithm 2: Linear Program for Scaling (LP-R)

1 Input: syax, ea, N, f, pa
2 Linear programming solver: LPSolver

3 Output: An optimal global control strategy 7*

4 Algorithm
5 Solve the following linear program with LPSolver
minimize SN sp(s.a) (8a)
s€Ss acAg
subject to (8b)
p(s,a) >0 Vs € Ss,a € Ag (8c)
SN pls,a) =1 (8d)
SESs acAs
Soopls,a)= > Y p(s'a)fs(s']s,a) Vs € S (8e)
acAg s'€Ss a€As
SN pls,a)lse = f+1] = ea (8f)
seSg ac Ag
6 Let p* denote the solution to the above program and define
T as
p*(s,a)
*(als) & =2 Vs € Sg,a € Ag
ESESS P*(5~ a)
return 7*




Evaluation of the RTO Algorithm (1/2)

10
Time (min) Time (min) Time (min) Time (min)
DE

Time (min) Time (min) Time (min) Time (min)

=== optimal —— CEM 3 —— Bo e PO lower bound

mean values from evaluations with 20 different random seeds; + indicate
the 95% confidence interval based on the Student’s t-distribution.

Ap =5 Ag = 15 A =25 AR = 00
Method Time (min)  J; Time (min)  J; | Time (min) J; | Time (min) J;
CEM 1.04 0.12+0.01 | 8.84 0.17 £ 0.06 | 14.48 0.19+0.08 | 11.81 0.16 +0.01
DE 2.35 0.12+0.03 | 8.98 0.17 +0.01 | 15.45 0.18 +0.02 | 22.68 0.16 +0.01
SPSA 10.78 0.184+0.01 | 88.35 0.58 £0.40 | 123.85 0.77+0.48 | 4.20 0.20 4 0.02
BO 29.18 0.1240.02 | 62.57 0.17 4 0.05 | 90.26 0.18+0.12 | 9.07 0.15 £ 0.06
PPO 28.20 0.18+0.01 | 30.01 0.19+0.02 |30.33 0.21+0.07 | 28.95 0.21 + +0.09

P 11.11 0.12 237.06 0.17 743.73 0.18 > 10000 not converged




Evaluation of the RTO Algorithm (2/2)

’E‘ —

E 17000 T E A CEM

° fope

g feso

8 500 | Bespsa

S lorp

Y1)
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£ Ilﬁn

o L mem HEe
O

5 10 15 20 25 30
Agr

Time required to compute optimal intrusion recovery strategies; the
x-axis indicate different values of Ag; the error bars indicate the 95%
confidence interval based on the Student’s t-distribution with 20
measurements.



Evaluation of the LP-R Algorithm

200

100

Time to solve (s)

B ¢
2 4 8 16 32 64 128 256 512 1024 2048 4096
Smax

Time required to compute optimal scaling strategies; the x-axis indicate
different values of sp,.x; the error bars indicate the 95% confidence
interval based on the Student’s t-distribution with 20 measurements.
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We Instantiate The TOLERANCE Control Architecture

with The Computed Control Strategies
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Experiment Setup - Physical Servers

Server Processors RAM (GB)
1, rR715 2U 2 12-core AMD OPTERON 64
2, R715 2U 2 12-core AMD OPTERON 64
3, R715 2U 2 12-core AMD OPTERON 64
4, rR715 2U 2 12-core AMD OPTERON 64
5, R715 2U 2 12-core AMD OPTERON 64
6, R715 2U 2 12-core AMD OPTERON 64
7, R715 2U 2 12-core AMD OPTERON 64
8, R715 2U 2 12-core AMD OPTERON 64
9, R715 2U 2 12-core AMD OPTERON 64
10, R630 2U 2 12-core INTEL XEON E5-2680 256
11, r740 2U 1 20-core INTEL XEON GOLD5218R 32
12, SUPERMICRO 7049 2 TESLA P100, 1 16-core INTEL XEON 126
13, SUPERMICRO 7049 4 RTX 8000, 1 24-core INTEL XEON 768

Table 1: Specifications of the physical servers.



Experiment Setup - Replica Configurations

Replica ID  Operating system  Vulnerabilities

1 UBUNTU 14 FTP weak password

2 UBUNTU 20 SSH weak password

3 UBUNTU 20 TELNET weak password

4 DEBIAN 10.2 CVE-2017-7494

5 UBUNTU 20 CVE-2014-6271

6 DEBIAN 10.2 CVE-89 on CVE

7 DEBIAN 10.2 CVE-2015-3306

8 DEBIAN 10.2 CVE-2016-10033

9 DEBIAN 10.2 CVE-2010-0426, ssH weak password
10 DEBIAN 10.2 CVE-2015-5602, ssH weak password

Table 2: Replica configurations.



Experiment Setup - Emulated Intrusions

Replica ID

Intrusion steps

= O 00 ~NO 1 WN =

TCP SYN scan, FTP brute force

TCP SYN scan, SSH brute force

TCP SYN scan, TELNET brute force

ICMP scan, exploit of CVE-2017-7494

ICMP scan, exploit of CVE-2014-6271

ICMP scan, exploit of CVE-89 on on CVE

ICMP scan, exploit of CVE-2015-3306

ICMP scan, exploit of CVE-2016-10033

ICMP scan, SSH brute force, exploit of CVE-2010-0426
ICMP scan, SSH brute force, exploit of CVE-2015-5602

Table 3: Intrusion steps



Experiment Setup - Background Traffic

Background services Replica ID(s)

FTP, SSH, MONGODB, HTTP, TEAMSPEAK 1
SSH, DNS, HTTP

SSH, TELNET, HTTP
SSH, SAMBA, NTP

SSH

CVE, IRC, SSH
TEAMSPEAK, HTTP, SSH

7,8,10

© oo AW

Table 4: Background services; each background client invokes functions
on service replicas.



Experiment Setup - Consensus Algorithm

We implement and extend the MINBFT Byzantine fault-tolerant
consensus algorithm to be reconfigurable.

a) Normal operation
I

REQUEST ! PREPARE ! COMMIT REPLY
Client \ L L
. // /
Replica 1 ‘ :
(leader) \“ |
Replica 2 \ \></
Replica 3

c) Checkpoint

CHECKPOINT

Replica 1
Replica 2
Replica 3
e) Join
JOIN-REQUEST JOIN NEW-VIEW JOIN-REPLY

|

New replica !
|

AN

Replica 1
(leader v)

Replica 2
(leader v +1)

Replica 3

b) View change

crasn | REQUEST 4oy cnancll NEW-ViEW
Replica 1 VIEW-CHANGE |
(leader v) /" /’\/
Replica 2 : ‘ :
(leader v + 1) W\
Replica 3
d) State transfer
RECovER! K?QLEM [
Controller | STATE |
| |
Replica 1 : :
(compromised) W
Replica 2 + t
N
Replica 3 !
f) Evict
S ;‘ég:ﬁ’riREQUEST: EVICT : NEW-VIEW : EXIT-REPLY
Y
controller | | //7/
Replica 1 : : )
(leader v) M |
Replica 2 f
(leader v + 1) M\/
Replica 3




Experiment Setup - Consensus Algorithm

Throughput of our implementation of MINBFT.
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System ldentification

CVE-2010-0426 ©VE-2015-3306 OVE-2015-5602 CVE-2016-10033 OWE-89
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Empirical observation distributions Z( | s),.. -,210(' | s) as estimates of
Zl, ey ZlO-

» Empirical distributions based on M = 25,000 sampIAes.
» From the Glivenko-Cantelli theorem we know that Z —23% Z
as M — oo.
» Bound:
P[Da(Z(|5) | Z(-| 5)) > ¢ < 27M(I°)

In(l\l<l/l+1) )

3 3In(25-10341)
—25-10 (6*2-10 W) — 9—5:10%(5¢—4In(25-10*+1))



Comparison with State-of-the-art Intrusion-Tolerant

Systems
_ Average availability T(4) loéyerage time-to-recovery T(®) Average recovery frequency F(RI;O Average cost J; + J
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‘ B@no-recovery [l B reriopicl BToLERANCE] BPERIODIC-ADAPTIVE

Comparison between TOLERANCE and the baselines; the columns
represent: average availability (T(4)), average time-to-recovery (T(R));
average recovery frequency (F(®)); and average cost J; + J; the bars
indicate the mean value from evaluations with 20 different random seeds;
the error bars indicate the 95% confidence interval based on the
Student's t-distribution.



Conclusions

» We present TOLERANCE: a novel
control architecture for
intrusion-tolerant systems which
improves state-of-the-art.

-
B

» We prove that the optimal control
. Belief 7r(b ..... b) )
Strateg|es have thresh0|d transmissions, /

structures and design efficient
@Dﬁbﬁb@mcw

algorithms for computing them.
Node controllers

Replicated
system

> We evaluate TOLERANCE in an
emulation environment against 10
different types of network
intrusions.



