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Use Case: Intrusion Tolerance
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▶ A replicated system offers services to a client population.
▶ The system must be highly available and provide correct

service without disruption.
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Use Case: Intrusion Tolerance
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▶ An attacker seeks to intrude on the system and disrupt service
▶ The system should tolerate intrusions

▶ it should provide correct service
even if a fraction of replicas are compromised
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Examples of Systems that Need to Tolerate Intrusions

. . .

Control planes Embedded systems

SCADA systems Payment systems
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Intrusion Tolerance (Simplified)
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Intrusion-Tolerant Systems - State of The Art

▶ State-of-the-art intrusion-tolerant
systems involve 3 building blocks:

1. a protocol for service replication
2. a scaling strategy
3. a recovery strategy

▶ Given N replicas, the system provides
correct service with up to f = N−1

3
compromised replicas.
▶ Theoretical upper bound
▶ f is the tolerance threshold.

▶ Simple control strategies:
▶ Fixed number of replicas (no scaling)
▶ No recovery or periodic recovery
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This work: Optimal intrusion recovery and scaling strategies
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Can we use decision theory and learning-based methods to
automatically find effective security strategies?

Intrusion prevention
Simulation.
Small-scale. (2020)1.

Intrusion prevention
Optimal stopping.
Emulation, small-scale
Static attacker. (2021)2.

Intrusion response
Optimal multiple stopping.
Emulation, small-scale.
Static attacker. (2022)3

Intrusion response
Dynkin game.
Emulation, small-scale.
Dynamic attacker. (2022)4

Intrusion response
Decomposition.
Emulation, large-scale
Dynamic attacker. (2023)5

Intrusion tolerance
Two-level control.
Integration with bft.
Static attacker.
(This work)

1Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM 2020). Izmir, Turkey, 2020.

2Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In:
International Conference on Network and Service Management (CNSM 2021). Izmir, Turkey, 2021.

3Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

4Kim Hammar and Rolf Stadler. “Learning Near-Optimal Intrusion Responses Against Dynamic Attackers”. In:
IEEE Transactions on Network and Service Management (2023), pp. 1–1. doi: 10.1109/TNSM.2023.3293413.

5Kim Hammar and Rolf Stadler. “Scalable Learning of Intrusion Response through Recursive Decomposition”.
In: 14th International Conference on Decision and Game Theory for Security. Avignon, France, 2023.

https://doi.org/10.1109/TNSM.2022.3176781
https://doi.org/10.1109/TNSM.2023.3293413
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Our Framework for Automated Security
s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Emulation System

Target
Infrastructure
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System Identification

Strategy Mapping
π

Selective
Replication
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Implementation π

Simulation System
Learning &

Optimization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

▶ Source code: https://github.com/Limmen/csle
▶ Documentation: http://limmen.dev/csle/
▶ Demo:

https://www.youtube.com/watch?v=iE2KPmtIs2A&

https://github.com/Limmen/csle
http://limmen.dev/csle/
https://www.youtube.com/watch?v=iE2KPmtIs2A&
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Outline
▶ Use Case & Research Problem

▶ Use case: intrusion tolerance
▶ Goal: optimal control strategies for intrusion-tolerant systems

▶ Background
▶ Fault tolerance and intrusion tolerance
▶ State machine replication

▶ Our Contributions
▶ The tolerance control architecture
▶ Constrained two-level control problem
▶ Theoretical results
▶ Computational algorithms

▶ Comparison with State-of-the-art
▶ Implementation and evaluation

▶ Conclusions
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Background: Fault Tolerance and Intrusion Tolerance

▶ Seminal work made by von Neumann and
Shannon in 1956.
▶ Initially focused on building

fault-tolerant circuits.
▶ Fault tolerance includes tolerance

against: software bugs, malicious
attacks, operator mistakes, etc.

▶ Key strategy for fault tolerance:
redundancy

▶ Redundancy is achieved through service
replication. Replicas are coordinated
through a consensus protocol.

. . .
Replicated system

Client interface
Request

Re
sp

on
se

Consensus protocol

1 2 3 4 5
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Background: Consensus
▶ Consensus is the problem of reaching agreement on a single

value among a set of distributed nodes subject to failures.

▶ Fascinating problem for many reasons:
▶ Key problem to build practical systems
▶ The problem comes in many flavors
▶ Paradoxical cases
▶ Rich theory

▶ Turing awardees working on consensus:

Dijkstra, 1972 Gray, 1998 Liskov, 2008 Lamport, 2013
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Background: Consensus

Definition (Consensus)
We have N nodes indexed by 1, . . . , N. The nodes are connected
by a complete graph and communicate via message passing. Each
node starts with an input value v ∈ V. The goal is to agree on a
single value in V.

An algorithm A solves consensus if the following hold:
1. Agreement: No two correct nodes decide on different values
2. Termination: All nodes eventually decide.
3. Validity: If all nodes start with input v then they decide on v
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Consensus Example: The Two Generals Problem (Gray ’78)

▶ Two generals are planning a coordinated attack from different
directions.

▶ One of the simplest consensus problems:
▶ Only two nodes: 1 and 2
▶ No process failures but link failures may occur

▶ Is the problem solvable?
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Consensus Example: The Two Generals Problem (Gray ’78)

▶ Two generals are planning a coordinated attack from different
directions.

▶ One of the simplest consensus problems:
▶ Only two nodes: 1 and 2
▶ No process failures but link failures may occur

▶ Is the problem solvable? No! Can be proven by
contradiction.
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When Is Consensus Solvable?
▶ Solvability depends on synchrony and failure assumptions.

▶ Three synchronicity models:

▶ The asynchronous model: no bounds on either delays or
clock drifts.

▶ The partially synchronous model: an upper bound exists
but the system may have periods of instability where the upper
bound does not hold.

▶ The synchronous model: there is an upper bound on the
communication delay and clock drift between any two nodes.

. . .

Synchronous system Asynchronous system Partially synchronous system

Internet
Organization WAN
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When Is Consensus Solvable?

▶ Three main failure models:

▶ Crash-stop: nodes fail by crashing.
▶ Byzantine: failed nodes may behave arbitrarily (e.g., be

controlled by an attacker)
▶ Hybrid: Byzantine failures but each node is equipped with a

trusted component that only fails by crashing.

Byzantine failureCrash-stop failure

Virtual machine

Hybrid failure
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When Is Consensus Solvable?

Theorem (Summary of 40 years of research)

▶ Consensus is not solvable in the asynchronous model
▶ Consensus is solvable with a reliable network in the partially

synchronous model with N nodes and up to
▶ f = N−1

2 Crash-stop failures
▶ f = N−1

3 Byzantine failures
▶ f = N−1

2 Hybrid failures (assuming authenticated
channels)

▶ Consensus is solvable with a reliable network in the
synchronous model with N nodes and up to
▶ f = N − 1 Crash-stop failures
▶ f = N−1

2 Byzantine failures (assuming authenticated channels)
▶ f = N−1

2 Hybrid failures (assuming authenticated channels)
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Two-Level Feedback Control for Intrusion Tolerance

. . .
π1(b1) π2(b2) π3(b3) π4(b4) πN(bN)

Belief
transmissions

Node controllers

Replicated
system

System controller
π(b1, . . . , bN)

b1 b2 b3 b4 bN

▶ Node controllers with strategies π1, . . . , πN compute belief
states b1, . . . , bN and make local recovery decisions; the belief
states are transmitted to a global system controller with
strategy π, which controls the replication factor

▶ Key insight: the control problems correspond to classical
problems studied in operations research, namely the machine
replacement problem and the inventory replenishment
problem, both of which have been studied for nearly a century.
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The tolerance Control Architecture
tolerance: Two-level recovery and scaling control with
feedback.

tolerance

Node 1
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

Node 2
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

Node N
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

. . .

Intrusion-tolerant consensus protocol

Client interface

System controller

State estimate Scaling action State estimate Scaling action State estimate Scaling action

. . .
Service requests Responses

Clients Attacker

Intrusion attempts
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Correctness of tolerance (1/2)

Definition (Correct service)
We say that a system provides correct service if the healthy
replicas satisfy the following properties:

Each replica executes the same request sequence. (Safety)
Each request is eventually executed. (Liveness)
Each executed request was sent by a client. (Validity)
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Correctness of tolerance (2/2)

Proposition
A system that implements the tolerance architecture provides
correct service provided that:

1. The controllers can only fail by crashing.
2. Network links are authenticated and reliable.
3. An attacker can not break cryptographic codes.
4. The system is partially synchronous.
5. At most k nodes recover simultaneously and at most f nodes

are compromised or crashed simultaneously.
6. Nt ≥ 2f + 1 + k at all times t.

Remark: tolerance does not ensure confidentiality as a
compromised node may leak information to the attacker. By
appropriate use of cryptography and firewalls, it is possible to
extend tolerance to provide confidentiality. Details omitted.
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The Local Level: Intrusion Recovery Control (1/4)

▶ Nodes Nt ≜ {1, 2, . . . , Nt} and controllers
π1,t , π2,t , . . . , πN,t .

▶ Hidden states SN = {H,C, ∅} (see
figure).

▶ Actions: (W)ait and (R)ecover

▶ Observation oi ,t ∼ Z represents the
number of ids alerts related to node i at
time t.

▶ A node controller computes
bi ,t ≜ P[Si ,t = C | oi ,1, . . .] and makes
decisions ai ,t = πi ,t(bi ,t) ∈ {W,R}.

H C

∅
Crashed

Healthy Compromised

pC1 pC2

pR or a = R

pA
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The Local Level: Probability of Failure (2/4)

10 20 30 40 50 60 70 80 90 100

0.5

1

pA = 0.1 pA = 0.05 pA = 0.025
pA = 0.01 pA = 0.005

t

P[St = C ∪ St = ∅]

Probability of node compromise (St = C) or crash (St = ∅) in function of
time t, assuming no recoveries.
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The Local Level: Intrusion Recovery Control (3/4)

Goals: minimize the average time-to-recovery T (R)
i and minimize

the frequency of recoveries F (R)
i :

minimize Ji ≜ lim
T→∞

[
ηT (R)

i ,T + F (R)
i ,T

]
(1)

= lim
T→∞

[
1
T

T∑
t=1

ηsi ,t − ai ,tηsi ,t + ai ,t︸ ︷︷ ︸
≜cN(si,t ,ai,t)

]

We define intrusion recovery to be the problem of minimizing the
above objective subject to a bounded-time-to-recovery (btr)
safety constraint which ensures that the time between two
recoveries of a node is bounded to by ∆R, which can be configured
by the system administrator.
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The Local Level: Intrusion Recovery Control (4/4)

Problem (Optimal Intrusion Recovery Control)

minimize
πi,t∈ΠN

Eπi,t [Ji | Bi ,1 = pA] ∀i ∈ N (2a)

subject to ai ,k∆R = R ∀i , k (2b)
si ,t+1 ∼ fN(· | si ,t , ai ,t) ∀i , t (2c)
oi ,t+1 ∼ Z (· | si ,t) ∀i , t (2d)
ai ,t+1 ∼ πi ,t(bi ,t) ∀i , t (2e)
ai ,t ∈ AN, si ,t ∈ SN, oit, ∈ O ∀i , t (2f)
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Numerical Results for the Intrusion Recovery Problem
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Illustration of the optimal value function V ⋆
i,t(bi,t) for the local control

problem. V ⋆
i,t was computed using the incremental pruning algorithm;

black lines indicate the value function; red lines indicate the
alpha-vectors.
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Based on the above results we hypothesize that there exists an
optimal recovery strategy of the form:

0

1

10

ai ,t = π⋆
i ,t(b)

α⋆
t

b(W)ait

(R)ecover

W R
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Structure of an Optimal Intrusion Recovery Strategy (1/2)

Theorem (Optimal Threshold Recovery Strategies)
If the following holds

pA, pU, pC1 , pC2 ∈ (0, 1) (A)
pA + pU ≤ 1 (B)

pC1(pU − 1)
pA(pC1 − 1) + pC1(pU − 1) ≤ pC2 (C)

Z (oi ,t | si ,t) > 0 ∀oi ,t , si ,t (D)
Z is tp-2 (E)

then there exists an optimal recovery strategy π⋆
i ,t for each node

i ∈ N that satisfies

π⋆
i ,t(bi ,t) = R ⇐⇒ bi ,t ≥ α⋆

t ∀t, α⋆
t ∈ [0, 1] (3)
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Structure of an Optimal Intrusion Recovery Strategy (2/2)

Corollary (Stationary Optimal Strategy as ∆R →∞)
The recovery thresholds satisfy α⋆

t+1 ≥ α⋆
t for all

t ∈ [k∆R , (k + 1)∆R ] and as ∆R →∞, the thresholds converge to
a time-independent threshold α⋆.

20 40 60 80 100

0.85

0.9

0.95

α⋆
t

t

The thresholds were computed using the Incremental Pruning algorithm.
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The Global Level: Controlling the Replication Factor (1/6)

. . .
π1(b1) π2(b2) π3(b3) π4(b4) πN(bN)

Belief
transmissions

Node controllers

Replicated
system

System controller
π(b1, . . . , bN)

b1 b2 b3 b4 bN
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The Global Level: Controlling the Replication Factor (2/6)

0 1
smax
−1 smax. . .

at = 1 at = 1
at = 0 at = 0 at = 0 at = 0

▶ At each time t, the system controller receives the belief
states b1,t , . . . , bN,t from the node controllers and decides if
the replication factor N should be increased.

▶ State st : estimated number of healthy nodes based on
b1,t , . . . , bN,t

▶ Actions: at ∈ {0, 1} ≜ AS, where at = 1 means that a new
node is added to the system and at = 0 is a passive action.

▶ smax is the maximum number of nodes (needed to define the
theoretical model). In practice smax may be very large.
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The Global Level (3/6): Mean Time to Failure

10 20 30 40 50 60 70 80 90 100

200

400

600

pA = 0.1 pA = 0.05 pA = 0.025
pA = 0.01 pA = 0.005

N1

E[T (f )]

Mean time to failure (mttf) in function of the initial number of nodes
N1; T (f ) is a random variable representing the time when Nt < f + 1 with
f = 3 and k = 1; the curves relate to different intrusion probabilities pA.
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The Global Level (4/6): Reliability Curve

10 20 30 40 50 60 70 80 90 100

0.2
0.4
0.6
0.8

1

N1 = 25 N1 = 50 N1 = 100
N1 = 200 N1 = 400

t

R(t)

Reliability curves for varying number of nodes N; The reliability function
is defined as R(t) ≜ P[T (f ) > t] where T (f ) is a random variable
representing the time when Nt < f + 1 with f = 3.
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The Global Level (5/6): Controlling the Replication Factor

Goal: maximize the average service availability T (A) and
minimize the number of nodes. We model these two goals with the
following constrained objective

minimize J ≜ lim
T→∞

[
1
T

T∑
t=1

st

]
(4)

subject to T (A) ≥ ϵA

=⇒ lim
T→∞

[
1
T

T∑
t=1

JNt ≥ 2f + 1K

]
≥ ϵA

=⇒ lim
T→∞

[
1
T

T∑
t=1

Jst ≥ f + 1K

]
≥ ϵA

where ϵA is the minimum allowed average service availability with
respect to the tolerance threshold f .
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The Global Level (6/6): Controlling the Replication Factor

Problem (Optimal Control of the Replication Factor)

minimize
π∈ΠS

Eπ [J | S1 = N] (5a)

subject to Eπ

[
T (A)

]
≥ ϵA ∀t (5b)

st+1 = fS(st , at , δt) ∈ SS ∀t (5c)
δt ∼ p∆(st) ∀t (5d)
at+1 ∼ πt(st) ∈ AS ∀t (5e)
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Structure of an Optimal Scaling Strategy
Theorem
If the following holds

∃π ∈ ΠS such that Eπ

[
T (A)

]
≥ ϵA (A)

fS(s ′ | s, a) > 0 ∀s ′, s, a (B)
smax∑
s′=s

fS(s ′ | ŝ + 1, a) ≥
smax∑
s′=s

fS(s ′ | ŝ, a) ∀s, ŝ, a (C)

then there exists two strategies πλ1 and πλ1 that satisfy

πλ1(st) = 1 ⇐⇒ st ≤ β1 πλ2(st) = 1 ⇐⇒ st ≤ β2 ∀t (6)

and an optimal randomized threshold strategy π⋆ that satisfies

π⋆(st) = κπλ1(st) + (1− κ)πλ2(st) ∀t (7)

for some probability κ ∈ [0, 1].
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Efficient Algorithms for Computing the Optimal Control
Strategies

▶ The problem of computing an optimal scaling strategy has
polynomial time-complexity. This follows because the problem
can be formulated as a linear program of polynomial size.

▶ The problem of computing the optimal intrusion recovery
strategies is in the complexity class pspace-hard, and thus
no efficient (polynomial-time) algorithm for solving this
problem is known. (Note that p ⊆ np ⊆ pspace.)

▶ To manage the high computational complexity of
computing the optimal recovery strategies we leverage
Theorem 1 and Corollary 1.
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Algorithm for The Local Control Problem

Algorithm 1: Recovery Threshold Optimization (rto)
1 Input: η, pA, pC1 , pC2 , pU, Z , ∆R
2 Parametric optimization algorithm: PO
3 Output: A near-optimal local control strategy π̂θ,t

4 Algorithm
5 d ← 1−∆R if ∆R <∞ else d ← 1
6 Θ← [0, 1]d
7 For each θ ∈ Θ, define πi ,θ(bt) as

πi ,θ(bt) ≜
{
R if bt ≥ θi where i = max[t, d ]
W otherwise

8 Jθ ← Eπi,θ [Ji ]
9 π̂θ,t ← PO(Θ, Jθ)

10 return π̂θ,t
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Algorithm for The Global Control Problem
Algorithm 2: Linear Program for Scaling (lp-r)

1 Input: smax, ϵA, N, f , p∆
2 Linear programming solver: LPSolver
3 Output: An optimal global control strategy π⋆

4 Algorithm
5 Solve the following linear program with LPSolver

minimize
ρ

∑
s∈SS

∑
a∈AS

sρ(s, a) (8a)

subject to (8b)
ρ(s, a) ≥ 0 ∀s ∈ SS, a ∈ AS (8c)∑
s∈SS

∑
a∈AS

ρ(s, a) = 1 (8d)

∑
a∈AS

ρ(s, a) =
∑

s′∈SS

∑
a∈AS

ρ(s ′, a)fS(s ′|s, a) ∀s ∈ SS (8e)

∑
s∈SS

∑
a∈AS

ρ(s, a)Jst ≥ f + 1K ≥ ϵA (8f)

6 Let ρ⋆ denote the solution to the above program and define
π⋆ as

π⋆(a|s) ≜ ρ⋆(s, a)∑
s∈SS

ρ⋆(s, a) ∀s ∈ SS, a ∈ AS

return π⋆
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Evaluation of the rto Algorithm (1/2)
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mean values from evaluations with 20 different random seeds; ± indicate
the 95% confidence interval based on the Student’s t-distribution.
Method ∆R = 5 ∆R = 15 ∆R = 25 ∆R =∞

Time (min) Ji Time (min) Ji Time (min) Ji Time (min) Ji

cem 1.04 0.12 ± 0.01 8.84 0.17 ± 0.06 14.48 0.19± 0.08 11.81 0.16± 0.01
de 2.35 0.12 ± 0.03 8.98 0.17 ± 0.01 15.45 0.18 ± 0.02 22.68 0.16± 0.01
spsa 10.78 0.18± 0.01 88.35 0.58± 0.40 123.85 0.77± 0.48 4.20 0.20± 0.02
bo 29.18 0.12 ± 0.02 62.57 0.17 ± 0.05 90.26 0.18 ± 0.12 9.07 0.15 ± 0.06
ppo 28.20 0.18± 0.01 30.01 0.19± 0.02 30.33 0.21± 0.07 28.95 0.21 +±0.09
ip 11.11 0.12 237.06 0.17 743.73 0.18 > 10000 not converged
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Evaluation of the rto Algorithm (2/2)
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Time required to compute optimal intrusion recovery strategies; the
x -axis indicate different values of ∆R; the error bars indicate the 95%
confidence interval based on the Student’s t-distribution with 20
measurements.
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Evaluation of the lp-r Algorithm
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Time required to compute optimal scaling strategies; the x -axis indicate
different values of smax; the error bars indicate the 95% confidence
interval based on the Student’s t-distribution with 20 measurements.
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Outline
▶ Use Case & Research Problem

▶ Use case: intrusion tolerance
▶ Goal: optimal control strategies for intrusion-tolerant systems

▶ Background
▶ Fault tolerance and intrusion tolerance
▶ State machine replication

▶ Our Contributions
▶ The tolerance control architecture
▶ Constrained two-level control problem
▶ Theoretical results
▶ Computational algorithms

▶ Comparison with State-of-the-art
▶ Implementation and evaluation

▶ Conclusions
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We Instantiate The tolerance Control Architecture
with The Computed Control Strategies

tolerance

Node 1
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

Node 2
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

Node N
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

. . .

Intrusion-tolerant consensus protocol

Client interface

System controller

State estimate Scaling action State estimate Scaling action State estimate Scaling action

. . .
Service requests Responses

Clients Attacker

Intrusion attempts
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Experiment Setup - Physical Servers

Server Processors ram (gb)

1, r715 2u 2 12-core amd opteron 64
2, r715 2u 2 12-core amd opteron 64
3, r715 2u 2 12-core amd opteron 64
4, r715 2u 2 12-core amd opteron 64
5, r715 2u 2 12-core amd opteron 64
6, r715 2u 2 12-core amd opteron 64
7, r715 2u 2 12-core amd opteron 64
8, r715 2u 2 12-core amd opteron 64
9, r715 2u 2 12-core amd opteron 64
10, r630 2u 2 12-core intel xeon e5-2680 256
11, r740 2u 1 20-core intel xeon gold5218r 32
12, supermicro 7049 2 tesla p100, 1 16-core intel xeon 126
13, supermicro 7049 4 rtx 8000, 1 24-core intel xeon 768

Table 1: Specifications of the physical servers.
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Experiment Setup - Replica Configurations

Replica ID Operating system Vulnerabilities

1 ubuntu 14 ftp weak password
2 ubuntu 20 ssh weak password
3 ubuntu 20 telnet weak password
4 debian 10.2 cve-2017-7494
5 ubuntu 20 cve-2014-6271
6 debian 10.2 cve-89 on cve
7 debian 10.2 cve-2015-3306
8 debian 10.2 cve-2016-10033
9 debian 10.2 cve-2010-0426, ssh weak password
10 debian 10.2 cve-2015-5602, ssh weak password

Table 2: Replica configurations.
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Experiment Setup - Emulated Intrusions

Replica ID Intrusion steps

1 tcp syn scan, ftp brute force
2 tcp syn scan, ssh brute force
3 tcp syn scan, telnet brute force
4 icmp scan, exploit of cve-2017-7494
5 icmp scan, exploit of cve-2014-6271
6 icmp scan, exploit of cve-89 on on cve
7 icmp scan, exploit of cve-2015-3306
8 icmp scan, exploit of cve-2016-10033
9 icmp scan, ssh brute force, exploit of cve-2010-0426
10 icmp scan, ssh brute force, exploit of cve-2015-5602

Table 3: Intrusion steps
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Experiment Setup - Background Traffic

Background services Replica ID(s)

ftp, ssh, mongodb, http, teamspeak 1
ssh, dns, http 2
ssh, telnet, http 3
ssh, samba, ntp 4
ssh 5, 7, 8, 10
cve, irc, ssh 6
teamspeak, http, ssh 9

Table 4: Background services; each background client invokes functions
on service replicas.
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Experiment Setup - Consensus Algorithm
We implement and extend the minbft Byzantine fault-tolerant
consensus algorithm to be reconfigurable.

Client

Replica 1
(leader)

Replica 2

Replica 3

request prepare commit reply

Replica 1
(leader v)

(leader v + 1)
Replica 2

Replica 3

crash request
view-changeview-change new-view

Replica 1

Replica 2

Replica 3

checkpoint Controller

Replica 1
(compromised)

Replica 2

Replica 3

recover request
state state

New replica

Replica 1
(leader v)

(leader v + 1)
Replica 2

Replica 3

join-request join new-view join-reply System
controller
Replica 1
(leader v)

(leader v + 1)
Replica 2

Replica 3

evict-request evict new-view exit-reply

a) Normal operation b) View change

c) Checkpoint
d) State transfer

e) Join f) Evict
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Experiment Setup - Consensus Algorithm

Throughput of our implementation of minbft.
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System Identification
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Empirical observation distributions Ẑ1(· | s), . . . , Ẑ10(· | s) as estimates of
Z1, . . . , Z10.

▶ Empirical distributions based on M = 25, 000 samples.
▶ From the Glivenko-Cantelli theorem we know that Ẑ →a.s Z

as M →∞.
▶ Bound:

P
[
Dkl(Ẑ (· | s) ∥ Z (· | s)) ≥ ϵ

]
≤ 2−M

(
ϵ−|O| ln(M+1)

M

)
= 2

−25·103
(

ϵ−2·103 ln(25·103+1)
25·103

)
= 2−5·103(5ϵ−4 ln(25·103+1))
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Comparison with State-of-the-art Intrusion-Tolerant
Systems
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Comparison between tolerance and the baselines; the columns
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average recovery frequency (F (R)); and average cost Ji + J ; the bars
indicate the mean value from evaluations with 20 different random seeds;
the error bars indicate the 95% confidence interval based on the
Student’s t-distribution.
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Conclusions

▶ We present tolerance: a novel
control architecture for
intrusion-tolerant systems which
improves state-of-the-art.

▶ We prove that the optimal control
strategies have threshold
structures and design efficient
algorithms for computing them.

▶ We evaluate tolerance in an
emulation environment against 10
different types of network
intrusions.
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