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Challenges: Evolving and Automated Attacks

» Challenges:

» Evolving & automated attacks
» Complex infrastructures




Goal: Automation and Learning

» Our Goal:

» Automate security tasks
» Adapt to changing attack methods




Approach: Game Model & Reinforcement Learning

Attacker Client 1 Client 2 Client 3

» QOur Approach:

» Model network attack and defense as
games.

» Use reinforcement learning to learn
policies.

» Incorporate learned policies in
self-learning systems.




State of the Art

» Game-Learning Programs:

» TD-Gammon, AlphaGo Zero!, OpenAl Five etc.
» — Impressive empirical results of RL and self-play

1David Silver et al. “Mastering the game of Go without human knowledge"”. In: Nature 550 (Oct. 2017),
pp. 354— URL: http://dx.doi.org/10.1038/nature24270.


http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

State of the Art

» Attack Simulations:
» Automated threat modeling®, automated intrusion detection
etc.
» —> Need for automation and better security tooling

5Pontus Johnson, Robert Lagerstrém, and Mathias Ekstedt. “A Meta Language for Threat Modeling and
Attack Simulations”. In: Proceedings of the 13th International Conference on Availability, Reliability and Security.
ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. 1SBN: 9781450364485. DOI
10.1145/3230833.3232799. URL: https://doi.org/10.1145/3230833.3232799.


http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

State of the Art

» Mathematical Modeling:

» Game theory®

» Markov decision theory

» — Many security operations involves
strategic decision making

9Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA
Cambridge University Press, 2010. 1SBN: 0521119324.


http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

Our Work

» Use Case: Intrusion Prevention

» Our Method:

» Emulating computer infrastructures
» System identification and model creation
» Reinforcement learning and generalization

» Results:

» Learning to Capture The Flag
» |earning to Detect Network Intrusions

» Conclusions and Future Work



Use Case: Intrusion Prevention

» A Defender owns an infrastructure

» Consists of connected components

» Components run network services

» Defender defends the infrastructure
by monitoring and patching

> An Attacker seeks to intrude on the
infrastructure

» Has a partial view of the
infrastructure

» Wants to compromise specific
components

P Attacks by reconnaissance,
exploitation and pivoting

Client 1 Client 2 Client 3
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Our Method for Finding Effective Security Strategies
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Our Method for Finding Effective Security Strategies
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Our Method for Finding Effective Security Strategies
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Emulation System

Emulation

A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.



Emulation SyStem ¥ Configuration Space

e e e
172.18.61.0/24 172.18.19.0/24 172.18.4.0/24
Emulated Infrastructures

Emulation

A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

» The set of virtualized configurations define a
configuration space ¥ = (A, O,S, U, T, V).
> A specific emulation is based on a configuration o; € ¥.



Emulation: Execution Times of Replicated Operations
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» Fundamental issue: Computational methods for policy
learning typically require samples on the order of 100k — 10M.

» — Infeasible to optimize in the emulation system



From Emulation to Simulation: System Identification

Emulated Network

[j"i




From Emulation to Simulation: System Identification

Emulated Network Abstract Model

» Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.

» Defines the static parts a POMDP model.



From Emulation to Simulation: System Identification

Emulated Network Abstract Model POMDP Model

- H (S, A,P,R,~,0,Z)
e

» Dynamics Model (P, Z) ldentified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

n(b, a, b)

M(b|b,a) & ——22 "7
(b]b,2) > n(s,aj’)



System ldentification: Estimated Dynamics Model

Estimated Emulation Dynamics
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System ldentification: Estimated Dynamics Model

P[|(bi5 ai)]

P[|(bi5 ai)]

New TCP/UDP Connections
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System ldentification: Estimated Dynamics Model
IDS Dynamics

IDS Alerts Severe IDS Alerts
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Policy Optimization in the Simulation System
using Reinforcement Learning

» Goal:
> Approximate 7* = arg max, E {Z;O ’Ytrt+1:|
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Policy Optimization in the Simulation System

using Reinforcement Learning

» Learning Algorithm:
» Represent 7w by 7y
» Define objective J(6) = Eonpmo amm, [R]
> Maximize J(6) by stochastic gradient ascent with

gradient
VJ(8) = Eonpro,ammy [V log mg(alo)A™ (0, a)]

(51
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Policy Optimization in the Simulation System
using Reinforcement Learning

» Domain-Specific Challenges:

>

vvyy

v

Partial observability

Large state space |S| = (w + 1)V Im(m+1)
Large action space |A| = [N]-(m+1)
Non-stationary Environment due to presence of
adversary

Generalization

(51

S+l

Environment

at



Policy Optimization in the Simulation System
using Reinforcement Learning

et

Environment
St+1l

» Finding Effective Security Strategies through
Reinforcement Learning and Self-Play?

?Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM 2020) (CNSM 2020). |zmir,
Turkey, Nov. 2020.
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Learning Capture-the-Flag Strategies: Target Infrastructure

Attacker Client 1 Client 2 Client 3

> Topology:

> 32 Servers, 1 IDS (Snort), 3 Clients

> Services
> SNMP, 1 Cassandra, 2 Kafka, 8 HTTP, 1 DNS, 1 SMTP, 2 NTP, 5
IRC, 1 Teamspeak, 1 MongoDB, 1 Samba, 1 RethinkDB, 1
CockroachDB, 2 Postgres, 3 FTP, 15 SSH, 2 FTP

» Vulnerabilities

> CVE-2010-0426, 2 CVE-2010-0426, 1 CVE-2015-3306, 1
CVE-2015-5602, 1 CVE-2016-10033, 1 CVE-2017-7494, 1
CVE-2014-6271

» 5 Brute-force vulnerabilities

» Operating Systems

> 14 Ubuntu-20, 9 Ubuntu-14, 1 Debian 9:2, 2 Debian Wheezy, 5
Debian Jessie, 1 Kali

» Traffic

> FTP, SSH, IRC, SNMP, HTTP, Telnet, IRC, Postgres, MongoDB,
Samba
»  curl, ping, tracerotue, nmap..

Target infrastructure.



Learning Capture-the-Flag Strategies: System Model 1/3

» A hacker (pentester) has T time-periods to
collect flags hidden in the infrastructure.

» The hacker is located at a dedicated starting
position Ny and can connect to a gateway
that exposes public-facing services in the
infrastructure.

» The hacker has a pre-defined set
(cardinality ~ 200) of network/shell
commands available.

Client 1 Client 2 Client 3

Target infrastructure.



Learning Capture-the-Flag Strategies: System Model 2/3

Client 1 Client 2 Client 3

» By execution of commands, the hacker At
collects information

> Open ports, failed/successful exploits,
vulnerabilities, costs, OS, ...

» Sequences of commands can yield
shell-access to nodes
» Given shell access, the hacker can search
for flags
» Associated with each command is a cost ¢
(execution time) and noise n (IDS alerts).

Target infrastructure.



Learning Capture-the-Flag Strategies: System Model 2/3

» The objective is to capture all flags with the
minimal cost within the fixed time horizon T.
What strategy achieves this end?

Target infrastructure.



Learning Capture-the-Flag Strategies: System Model 3/3

» Contextual Stochastic CTF with Partial
Information

» Model infrastructure as a graph G = (N, )
There are k flags at nodes C C
N; € N has a node state s; of m attributes
Network state
s={sa,s | i € N} € RWIxm+V]
Hacker observes o” C s

vvyy

v

Graphical Model.



Learning Capture-the-Flag Strategies: System Model 3/3

» Contextual Stochastic CTF with Partial
Information

» Action space: A= {af,...,a}}, a
(commands)

> Y(b,a) € A x S, there is a probability w/**) of
failure & a probability of detection
p(det(s;) - n5))

» State transitions s — s’ are decided by a
discrete dynamical system s’ = F(s, a) Graphical Model.

» Exact dynamics (F,c*, n* w?, det(-), o()),
are unknown to us!



Learning Capture-the-Flag Strategies

Episodic regret

Avg Episode Regret

0.0
0 50 100 150 200 250 300 350 400
# Iteration
—#— Generated Simulation Train Emulation Env
—8— Test Emulation Env === lower bound 7*

Learning curves (simulation and emulation) of our
proposed method.

Client 1 Client 2 Client 3

—
Defender

Evaluation infrastructure.



Learning Capture-the-Flag Strategies

Episodic rewards

Episodic regret

Episodic steps
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Learning to Detect Network Intrusions:

Infrastructure

> Topology:
P 6 Servers, 11DS (Snort), 3 Clients

» Services

3 SSH, 2 HTTP, 1 DNS, 1 Telnet, 1 FTP, 1 MongoDB, 2
SMTP, 1 Tomcat, 1 Teamspeak3, 1 SNMP, 1 IRC, 1 Postgres,
1 NTP

Vulnerabilities
4 1 CVE-2010-0426, 3 Brute-force vulnerabilities

v

» Operating Systems
P 4 Ubuntu-20, 1 Ubuntu-14, 1 Kali
» Traffic
> FTP, SSH, IRC, SNMP, HTTP, Telnet, IRC, Postgres,

MongoDB,
> curl, ping, tracerotue, nmap..

Target

Attacker Client 1 Client 2 Client 3
A\

v

A m -

_L
Defender

Evaluation infrastructure.



Learning to Detect Network Intrusions: System Model

(1/3)

» An admin should manage the
infrastructure for T time-periods.

» The admin can monitor the
infrastructure to get a belief about it's
state by

» by,...,b7_1 can be assumed to be
generated from some unknown
distribution .

Client 1 Client 2 Client 3

[E L

.E

N

i)

F—
Defender

Target infrastructure.




Learning to Detect Network Intrusions: System Model

(1/3)

Attacker Client 1 Client 2 Client 3

555

-

ErErEE
P If the admin suspects that the Deterce
infrastructure is being intruded based on Target infrastructure.

b, he can suspend the suspicious
user /traffic.



Learning to Detect Network Intrusions: System Model

(2/3)

» Suspending traffic from a true intrusion
yields a reward r (salary bonus)

» Not suspending traffic of a true
intrusion, incurs a cost ¢ (admin is fired)

» Suspending traffic of a false intrusion,
incurs a cost of o (breaking the SLA)

Attacker Client 1 Client 2 Client 3
\

5 8,

=,

Defender

Target infrastructure.




Learning to Detect Network Intrusions: System Model

(2/3)

Attacker Client 1 Client 2 Client 3
\

5 8,

» The objective is to to decide an optimal Q
response for suspending network traffic. _
What strategy achieves this end? Target infrastructure.



Learning to Detect Network Intrusions: System Model

(3/3)

» Optimal Stopping Problem
» Action space A = {STOP, CONTINUE}

> Belief state space B ¢ R&+10'm

» A belief state b € B contains relevant
metrics to detect intrusions
» Alerts from IDS, Entries in

/var/log/auth, logged in users, TCP
connections, processes, ...

» Reward function R
> r(bta ST0P7 St) = ]]-intrusiong
» [ is a positive constant and t; is the

number of nodes compromised by the
attacker

» — incentive to detect intrusion early.

e

=,

Defender

Target infrastructure.




Structural Properties of the Optimal Policy

» Assumptions: Always an intrusion before T, f(b;): probability of
intrusion given by, b; and p are Markov, f(b;) is non-decreasing in t.

» Claim: Optimal policy is a threshold based policy
> Necessary condition for optimality (Bellman):

Ut(bt) = sup I't(bt7 a) + Z pt(b/|bt7 a)Ut+1(bl, a) (1)
? b'eB



Structural Properties of the Optimal Policy

» Assumptions: Always an intrusion before T, f(b;): probability of
intrusion given by, by and p are Markov, f(b;) is non-decreasing in t.
» Claim: Optimal policy is a threshold based policy
» Necessary condition for optimality (Bellman):

ur(by) = Sl;p lrt(btv a) + Z pe(b|bt, a)ur 1 (b, 3)] (4)

b'eB

= max [f(bo XD so(b’)umw)] (5)

! b'eB



Structural Properties of the Optimal Policy

» Claim: Optimal policy is a threshold based policy
» Necessary condition for optimality (Bellman):

ug(by) = sup [rt(bt,a) + ) pe(b|be, a)uepa (b, a)

b'eB
= max [f(bt) B Z sD(b/)Ut+]_(b/)‘|
t;’
b'eB
» Thus | have that it is optimal to stop at state b; iff

f(b:) - — > Z Ut+1

ti b'eB



Structural Properties of the Optimal Policy

» Claim: Optimal policy is a threshold based policy
» Necessary condition for optimality (Bellman):

ue(be) = SUP [rt(btv + Z pe(b'|be, a)urs1(b', 3)]

b'eB
= max lf(bt) B Z SO(bI)Ut+1(b/)‘|
t;’
b'eB
» Thus | have that it is optimal to stop at state b; iff
bt - > Z Ut+1
b s
» Stopping threshold a;:

ap = 5 Z uesa(b

beB

(14)

(15)



Learning to Detect Network Intrusions

Episodic rewards

Avg Episode Rewards

—2 v T T T T T
B 0 25 50 75 100 125 150 175
# Iteration
—— 7y simulation —&— Snort-Severe emulation
—#— Ty emulation Snort-warning emulation
Snort-Severe simulation Snort-critical emulation
—&— Snort-warning simulation ~ —#— /var/log/auth emulation
—#— Snort-critical simulation === upper bound 7*
—#— /var/log/auth simulation

Learning curves (simulation and emulation)
of our proposed method.

200

Client 1 Client 2 Client 3

555

Defender

Evaluation infrastructure.




Learning to Detect Network Intrusions

TP (intrusion detected), FP (early stopping), FN (intrusion)
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Conclusions & Future Work

» Conclusions:

» We develop a method to find effective strategies for intrusion
prevention

» (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement

learning and (5) domain randomization and generalization.

» We show that self-learning can be successfully applied to
network infrastructures.

»  Self-play reinforcement learning in Markov security game

» Key challenges: stable convergence, sample efficiency,
complexity of emulations, large state and action spaces

» Our research plans:

» Improving the system identification algorithm & generalization
» Evaluation on real world infrastructures



