
1/30

Self-Learning Systems for Cyber Security
NSE Seminar

Kim Hammar & Rolf Stadler

kimham@kth.se & stadler@kth.se

Division of Network and Systems Engineering
KTH Royal Institute of Technology

April 9, 2021

2/30

3/30

4/30

Challenges: Evolving and Automated Attacks

I Challenges:
I Evolving & automated attacks
I Complex infrastructures

Attacker Client 1 Client 2 Client 3

Defender

R1

4/30

Goal: Automation and Learning

I Challenges
I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods

Attacker Client 1 Client 2 Client 3

Defender

R1

4/30

Approach: Game Model & Reinforcement Learning

I Challenges:
I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods

I Our Approach:
I Model network attack and defense as

games.
I Use reinforcement learning to learn

policies.
I Incorporate learned policies in

self-learning systems.

Attacker Client 1 Client 2 Client 3

Defender

R1

5/30

State of the Art
I Game-Learning Programs:

I TD-Gammon, AlphaGo Zero1, OpenAI Five etc.
I =⇒ Impressive empirical results of RL and self-play

I Attack Simulations:
I Automated threat modeling2, automated intrusion detection

etc.
I =⇒ Need for automation and better security tooling

I Mathematical Modeling:
I Game theory3
I Markov decision theory
I =⇒ Many security operations involves

strategic decision making

1David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550 (Oct. 2017),
pp. 354–. url: http://dx.doi.org/10.1038/nature24270.

2Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. “A Meta Language for Threat Modeling and
Attack Simulations”. In: Proceedings of the 13th International Conference on Availability, Reliability and Security.
ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. isbn: 9781450364485. doi:
10.1145/3230833.3232799. url: https://doi.org/10.1145/3230833.3232799.

3Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA:
Cambridge University Press, 2010. isbn: 0521119324.

http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

5/30

State of the Art
I Game-Learning Programs:

I TD-Gammon, AlphaGo Zero4, OpenAI Five etc.
I =⇒ Impressive empirical results of RL and self-play

I Attack Simulations:
I Automated threat modeling5, automated intrusion detection

etc.
I =⇒ Need for automation and better security tooling

I Mathematical Modeling:
I Game theory6
I Markov decision theory
I =⇒ Many security operations involves

strategic decision making

4David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550 (Oct. 2017),
pp. 354–. url: http://dx.doi.org/10.1038/nature24270.

5Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. “A Meta Language for Threat Modeling and
Attack Simulations”. In: Proceedings of the 13th International Conference on Availability, Reliability and Security.
ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. isbn: 9781450364485. doi:
10.1145/3230833.3232799. url: https://doi.org/10.1145/3230833.3232799.

6Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA:
Cambridge University Press, 2010. isbn: 0521119324.

http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

5/30

State of the Art
I Game-Learning Programs:

I TD-Gammon, AlphaGo Zero7, OpenAI Five etc.
I =⇒ Impressive empirical results of RL and self-play

I Attack Simulations:
I Automated threat modeling8, automated intrusion detection

etc.
I =⇒ Need for automation and better security tooling

I Mathematical Modeling:
I Game theory9
I Markov decision theory
I =⇒ Many security operations involves

strategic decision making

7David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550 (Oct. 2017),
pp. 354–. url: http://dx.doi.org/10.1038/nature24270.

8Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. “A Meta Language for Threat Modeling and
Attack Simulations”. In: Proceedings of the 13th International Conference on Availability, Reliability and Security.
ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. isbn: 9781450364485. doi:
10.1145/3230833.3232799. url: https://doi.org/10.1145/3230833.3232799.

9Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA:
Cambridge University Press, 2010. isbn: 0521119324.

http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

6/30

Our Work

I Use Case: Intrusion Prevention

I Our Method:

I Emulating computer infrastructures
I System identification and model creation
I Reinforcement learning and generalization

I Results:
I Learning to Capture The Flag
I Learning to Detect Network Intrusions

I Conclusions and Future Work

7/30

Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and patching

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting

Attacker Client 1 Client 2 Client 3

Defender

R1

8/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

9/30

Emulation System Σ Configuration Space
σi

** *

172.18.4.0/24172.18.19.0/24172.18.61.0/24

Emulated Infrastructures

R1 R1 R1

Emulation
A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

I The set of virtualized configurations define a
configuration space Σ = 〈A,O,S,U , T ,V〉.

I A specific emulation is based on a configuration σi ∈ Σ.

9/30

Emulation System Σ Configuration Space
σi

** *

172.18.4.0/24172.18.19.0/24172.18.61.0/24

Emulated Infrastructures

R1 R1 R1

Emulation
A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

I The set of virtualized configurations define a
configuration space Σ = 〈A,O,S,U , T ,V〉.

I A specific emulation is based on a configuration σi ∈ Σ.

10/30

Emulation: Execution Times of Replicated Operations

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

F
re

q
u

en
cy

Action execution times (costs)

|N | = 25

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

Action execution times (costs)

|N | = 50

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

Action execution times (costs)

|N | = 75

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

Action execution times (costs)

|N | = 100

I Fundamental issue: Computational methods for policy
learning typically require samples on the order of 100k − 10M.

I =⇒ Infeasible to optimize in the emulation system

11/30

From Emulation to Simulation: System Identification

R1

m1m2 m3

m4

m5m6

m7

m1,1 . . . m1,k
[]

m5,1 . . . m5,k
[]

m6,1 . . . m6,k
[]

m2,1
...

m2,k




m3,1
...

m3,k




m7,1
...

m7,k




m4,1
...

m4,k




Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉

a1 a2 a3 . . .

s1 s2 s3 . . .

o1 o2 o3 . . .

I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)

11/30

From Emulation to Simulation: System Identification

R1

m1m2 m3

m4

m5m6

m7

m1,1 . . . m1,k
[]

m5,1 . . . m5,k
[]

m6,1 . . . m6,k
[]

m2,1
...

m2,k




m3,1
...

m3,k




m7,1
...

m7,k




m4,1
...

m4,k




Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉

a1 a2 a3 . . .

s1 s2 s3 . . .

o1 o2 o3 . . .

I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)

11/30

From Emulation to Simulation: System Identification

R1

m1m2 m3

m4

m5m6

m7

m1,1 . . . m1,k
[]

m5,1 . . . m5,k
[]

m6,1 . . . m6,k
[]

m2,1
...

m2,k




m3,1
...

m3,k




m7,1
...

m7,k




m4,1
...

m4,k




Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉

a1 a2 a3 . . .

s1 s2 s3 . . .

o1 o2 o3 . . .

I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)

12/30

System Identification: Estimated Dynamics Model
1
7
2
.1

8
.4

.2

Connections Failed Logins Accounts Online Users Logins Processes

1
7
2
.1

8
.4

.3
1
7
2
.1

8
.4

.1
0

1
7
2
.1

8
.4

.2
1

1
7
2
.1

8
.4

.7
9

ID
S

Alerts Alert Priorities Severe Alerts Warning Alerts

Estimated Emulation Dynamics

13/30

System Identification: Estimated Dynamics Model

−5 0 5 10 15 20

New TCP/UDP Connections

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

New TCP/UDP Connections

0 10 20 30 40 50

New Failed Login Attempts

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

New Failed Login Attempts

−30 −20 −10 0 10 20 30

Created User Accounts

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

Created User Accounts

−0.04 −0.02 0.00 0.02 0.04

New Logged in Users

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

New Logged in Users

−0.04 −0.02 0.00 0.02 0.04

Login Events

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

New Login Events

0 20 40 60 80 100 120 140

Created Processes

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

Created Processes

Node IP: 172.18.4.2

(b0, a0) (b1, a0) ...

14/30

System Identification: Estimated Dynamics Model

0 20 40 60 80 100 120
IDS Alerts

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

IDS Alerts

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Severe IDS Alerts

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

Severe IDS Alerts

0 20 40 60 80 100
Warning IDS Alerts

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

Warning IDS Alerts

0 50 100 150 200 250
IDS Alert Priorities

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

IDS Alert Priorities

IDS Dynamics

(b0, a0) (b1, a0) ...

15/30

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=0 γ
trt+1

]
I Learning Algorithm:

I Represent π by πθ
I Define objective J(θ) = Eo∼ρπθ ,a∼πθ [R]
I Maximize J(θ) by stochastic gradient ascent with

gradient
∇θJ(θ) = Eo∼ρπθ ,a∼πθ [∇θ log πθ(a|o)Aπθ (o, a)]

I Domain-Specific Challenges:
I Partial observability
I Large state space |S| = (w + 1)|N |·m·(m+1)

I Large action space |A| = |N | · (m + 1)
I Non-stationary Environment due to presence of

adversary
I Generalization

Agent

Environment

at

st+1

rt+1

15/30

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=0 γ
trt+1

]
I Learning Algorithm:

I Represent π by πθ
I Define objective J(θ) = Eo∼ρπθ ,a∼πθ [R]
I Maximize J(θ) by stochastic gradient ascent with

gradient
∇θJ(θ) = Eo∼ρπθ ,a∼πθ [∇θ log πθ(a|o)Aπθ (o, a)]

I Domain-Specific Challenges:
I Partial observability
I Large state space |S| = (w + 1)|N |·m·(m+1)

I Large action space |A| = |N | · (m + 1)
I Non-stationary Environment due to presence of

adversary
I Generalization

Agent

Environment

at

st+1

rt+1

15/30

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=0 γ
trt+1

]
I Learning Algorithm:

I Represent π by πθ
I Define objective J(θ) = Eo∼ρπθ ,a∼πθ [R]
I Maximize J(θ) by stochastic gradient ascent with

gradient
∇θJ(θ) = Eo∼ρπθ ,a∼πθ [∇θ log πθ(a|o)Aπθ (o, a)]

I Domain-Specific Challenges:
I Partial observability
I Large state space |S| = (w + 1)|N |·m·(m+1)

I Large action space |A| = |N | · (m + 1)
I Non-stationary Environment due to presence of

adversary
I Generalization

Agent

Environment

at

st+1

rt+1

15/30

Policy Optimization in the Simulation System
using Reinforcement Learning

I Goal:
I Approximate π∗ = arg maxπ E

[∑T
t=0

γt rt+1
]

I Learning Algorithm:
I Represent π by πθ
I Define objective J(θ) = Eo∼ρπθ ,a∼πθ

[R]
I Maximize J(θ) by stochastic gradient ascent with gradient
∇θJ(θ) = Eo∼ρπθ ,a∼πθ

[∇θ log πθ(a|o)Aπθ (o, a)]

I Domain-Specific Challenges:
I Partial observability
I Large state space |S| = (w + 1)|N|·m·(m+1)
I Large action space |A| = |N| · (m + 1)
I Non-stationary Environment due to presence of adversary
I Generalization

I Finding Effective Security Strategies through
Reinforcement Learning and Self-Playa

aKim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM 2020) (CNSM 2020). Izmir,
Turkey, Nov. 2020.

Agent

Environment

at

st+1

rt+1

16/30

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

17/30

Learning Capture-the-Flag Strategies: Target Infrastructure

I Topology:
I 32 Servers, 1 IDS (Snort), 3 Clients

I Services
I 1 SNMP, 1 Cassandra, 2 Kafka, 8 HTTP, 1 DNS, 1 SMTP, 2 NTP, 5

IRC, 1 Teamspeak, 1 MongoDB, 1 Samba, 1 RethinkDB, 1
CockroachDB, 2 Postgres, 3 FTP, 15 SSH, 2 FTP

I Vulnerabilities
I 2 CVE-2010-0426, 2 CVE-2010-0426, 1 CVE-2015-3306, 1

CVE-2015-5602, 1 CVE-2016-10033, 1 CVE-2017-7494, 1
CVE-2014-6271

I 5 Brute-force vulnerabilities

I Operating Systems
I 14 Ubuntu-20, 9 Ubuntu-14, 1 Debian 9:2, 2 Debian Wheezy, 5

Debian Jessie, 1 Kali

I Traffic
I FTP, SSH, IRC, SNMP, HTTP, Telnet, IRC, Postgres, MongoDB,

Samba
I curl, ping, tracerotue, nmap..

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.

18/30

Learning Capture-the-Flag Strategies: System Model 1/3

I A hacker (pentester) has T time-periods to
collect flags hidden in the infrastructure.

I The hacker is located at a dedicated starting
position N0 and can connect to a gateway
that exposes public-facing services in the
infrastructure.

I The hacker has a pre-defined set
(cardinality ∼ 200) of network/shell
commands available.

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.

19/30

Learning Capture-the-Flag Strategies: System Model 2/3

I By execution of commands, the hacker
collects information
I Open ports, failed/successful exploits,

vulnerabilities, costs, OS, ...
I Sequences of commands can yield

shell-access to nodes
I Given shell access, the hacker can search

for flags
I Associated with each command is a cost c

(execution time) and noise n (IDS alerts).

I The objective is to capture all flags with the
minimal cost within the fixed time horizon T .
What strategy achieves this end?

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.

19/30

Learning Capture-the-Flag Strategies: System Model 2/3

I By execution of commands, the hacker
collects information
I Open ports, failed/successful exploits,

vulnerabilities, costs, OS, ...
I Sequences of commands can yield

shell-access to nodes
I Given shell access, the hacker can search

for flags
I Associated with each command is a cost c

(execution time) and noise n (IDS alerts).

I The objective is to capture all flags with the
minimal cost within the fixed time horizon T .
What strategy achieves this end?

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.

20/30

Learning Capture-the-Flag Strategies: System Model 3/3
I Contextual Stochastic CTF with Partial

Information
I Model infrastructure as a graph G = 〈N , E〉
I There are k flags at nodes C ⊆ N
I Ni ∈ N has a node state si of m attributes
I Network state

s = {sA, si | i ∈ N} ∈ R|N |×m+|N |

I Hacker observes oA ⊂ s
I Action space: A = {aA

1 , . . . , aA
k }, aA

i
(commands)

I ∀(b, a) ∈ A× S, there is a probability ~wA,(x)
i,j of

failure & a probability of detection
ϕ(det(si) · nA,(x)

i,j)
I State transitions s → s ′ are decided by a

discrete dynamical system s ′ = F (s, a)

I Exact dynamics (F , cA, nA,wA, det(·), ϕ(·)),
are unknown to us!

N0, ~S0

N1, ~S1
N2, ~S2

N3, ~S3

N4, ~S4

N5, ~S5 N6, ~S6

N7, ~S7

~cA
2,3,

~nA
2,3,

~wA
2,3

~cA
3,2,

~nA
3,2,

~wA
3,2

~cA
2,1,

~nA
2,1,

~wA
2,1

~cA
1,2,

~nA
1,2,

~wA
1,2

~cA0,1
,
~nA0,1
,
~wA
0,1 ~cA

0,2,
~nA
0,2,

~wA
0,2

~cA
3,6,

~nA
3,6,

~wA
3,6

~cA
6,7,

~nA
6,7,

~wA
6,7

~cA
7,4,

~nA
7,4,

~wA
7,4

~c A4,6 , ~n A4,6 , ~w A4,6

~cA4,5
,
~nA4,5
,
~w
A
4,5

~cA5,4
,
~nA5,4
,
~w
A
5,4

~cA
1,5,

~nA
1,5,

~wA
1,5

~ cA 5,
2,

~ nA 5,
2,

~ w
A 5,
2

~c A2,4 ,
~n A2,4 ,

~w A2,4

~c A1,4 , ~n A
1,4 , ~w A1,4

Si ∈ Rm, ~cA
i ,j ∈ Rk

+

~nA
i ,j ∈ Rk

+,
~wA
i ,j ∈ [0, 1]k

~cD ∈ Rl
+,

~wD ∈ [0, 1]l

Graphical Model.

20/30

Learning Capture-the-Flag Strategies: System Model 3/3
I Contextual Stochastic CTF with Partial

Information
I Model infrastructure as a graph G = 〈N , E〉
I There are k flags at nodes C ⊆ N
I Ni ∈ N has a node state si of m attributes
I Network state

s = {sA, si | i ∈ N} ∈ R|N |×m+|N |

I Hacker observes oA ⊂ s
I Action space: A = {aA

1 , . . . , aA
k }, aA

i
(commands)

I ∀(b, a) ∈ A× S, there is a probability ~wA,(x)
i,j of

failure & a probability of detection
ϕ(det(si) · nA,(x)

i,j)
I State transitions s → s ′ are decided by a

discrete dynamical system s ′ = F (s, a)

I Exact dynamics (F , cA, nA,wA, det(·), ϕ(·)),
are unknown to us!

N0, ~S0

N1, ~S1
N2, ~S2

N3, ~S3

N4, ~S4

N5, ~S5 N6, ~S6

N7, ~S7

~cA
2,3,

~nA
2,3,

~wA
2,3

~cA
3,2,

~nA
3,2,

~wA
3,2

~cA
2,1,

~nA
2,1,

~wA
2,1

~cA
1,2,

~nA
1,2,

~wA
1,2

~cA0,1
,
~nA0,1
,
~wA
0,1 ~cA

0,2,
~nA
0,2,

~wA
0,2

~cA
3,6,

~nA
3,6,

~wA
3,6

~cA
6,7,

~nA
6,7,

~wA
6,7

~cA
7,4,

~nA
7,4,

~wA
7,4

~c A4,6 , ~n A4,6 , ~w A4,6

~cA4,5
,
~nA4,5
,
~w
A
4,5

~cA5,4
,
~nA5,4
,
~w
A
5,4

~cA
1,5,

~nA
1,5,

~wA
1,5

~ cA 5,
2,

~ nA 5,
2,

~ w
A 5,
2

~c A2,4 ,
~n A2,4 ,

~w A2,4

~c A1,4 , ~n A
1,4 , ~w A1,4

Si ∈ Rm, ~cA
i ,j ∈ Rk

+

~nA
i ,j ∈ Rk

+,
~wA
i ,j ∈ [0, 1]k

~cD ∈ Rl
+,

~wD ∈ [0, 1]l

Graphical Model.

21/30

Learning Capture-the-Flag Strategies

0 50 100 150 200 250 300 350 400

Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
vg

E
pi

so
de

R
eg

re
t

Episodic regret

Generated Simulation

Test Emulation Env

Train Emulation Env

lower bound π∗

Learning curves (simulation and emulation) of our
proposed method.

Attacker Client 1 Client 2 Client 3

Defender

R1

Evaluation infrastructure.

22/30

Learning Capture-the-Flag Strategies

0 50 100 150 200 250 300 350 400

Iteration

−0.5

0.0

0.5

1.0

Episodic rewards

0 50 100 150 200 250 300 350 400

Iteration

0

5

10

15

20

Episodic regret

0 50 100 150 200 250 300 350 400

Iteration

4

6

8

10

12

14

Episodic steps

Configuration 1 Configuration 2 Configuration 3 π∗

R1

alerts

Gateway

172.18.4.0/24

R1

alerts

Gateway

172.18.3.0/24

R1

Gateway

alerts 172.18.2.0/24

Application
server

Intrusion
detection
system

R1

Gateway Access
switch

Flag Traffic
generator

Configuration 1 Configuration 3Configuration 2

23/30

Learning to Detect Network Intrusions: Target
Infrastructure

I Topology:
I 6 Servers, 1 IDS (Snort), 3 Clients

I Services
I 3 SSH, 2 HTTP, 1 DNS, 1 Telnet, 1 FTP, 1 MongoDB, 2

SMTP, 1 Tomcat, 1 Teamspeak3, 1 SNMP, 1 IRC, 1 Postgres,
1 NTP

I Vulnerabilities
I 1 CVE-2010-0426, 3 Brute-force vulnerabilities

I Operating Systems
I 4 Ubuntu-20, 1 Ubuntu-14, 1 Kali

I Traffic
I FTP, SSH, IRC, SNMP, HTTP, Telnet, IRC, Postgres,

MongoDB,
I curl, ping, tracerotue, nmap..

Attacker Client 1 Client 2 Client 3

Defender

R1

Evaluation infrastructure.

24/30

Learning to Detect Network Intrusions: System Model
(1/3)

I An admin should manage the
infrastructure for T time-periods.

I The admin can monitor the
infrastructure to get a belief about it’s
state bt

I b1, . . . , bT−1 can be assumed to be
generated from some unknown
distribution ϕ.

I If the admin suspects that the
infrastructure is being intruded based on
bt , he can suspend the suspicious
user/traffic.

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.

24/30

Learning to Detect Network Intrusions: System Model
(1/3)

I An admin should manage the
infrastructure for T time-periods.

I The admin can monitor the
infrastructure to get a belief about it’s
state bt

I b1, . . . , bT−1 can be assumed to be
generated from some unknown
distribution ϕ.

I If the admin suspects that the
infrastructure is being intruded based on
bt , he can suspend the suspicious
user/traffic.

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.

25/30

Learning to Detect Network Intrusions: System Model
(2/3)

I Suspending traffic from a true intrusion
yields a reward r (salary bonus)

I Not suspending traffic of a true
intrusion, incurs a cost c (admin is fired)

I Suspending traffic of a false intrusion,
incurs a cost of o (breaking the SLA)

I The objective is to to decide an optimal
response for suspending network traffic.
What strategy achieves this end?

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.

25/30

Learning to Detect Network Intrusions: System Model
(2/3)

I Suspending traffic from a true intrusion
yields a reward r (salary bonus)

I Not suspending traffic of a true
intrusion, incurs a cost c (admin is fired)

I Suspending traffic of a false intrusion,
incurs a cost of o (breaking the SLA)

I The objective is to to decide an optimal
response for suspending network traffic.
What strategy achieves this end?

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.

26/30

Learning to Detect Network Intrusions: System Model
(3/3)
I Optimal Stopping Problem

I Action space A = {STOP, CONTINUE}

I Belief state space B ∈ R8+10·m

I A belief state b ∈ B contains relevant
metrics to detect intrusions

I Alerts from IDS, Entries in
/var/log/auth, logged in users, TCP
connections, processes, ...

I Reward function R
I r(bt , STOP, st) = 1intrusion

β
ti

I β is a positive constant and ti is the
number of nodes compromised by the
attacker

I =⇒ incentive to detect intrusion early.

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.

27/30

Structural Properties of the Optimal Policy
I Assumptions: Always an intrusion before T , f (bt): probability of

intrusion given bt , bt and p are Markov, f (bt) is non-decreasing in t.
I Claim: Optimal policy is a threshold based policy

I Necessary condition for optimality (Bellman):

ut(bt) = sup
a

[
rt(bt , a) +

∑
b′∈B

pt(b′|bt , a)ut+1(b′, a)
]

(1)

I Thus I have that it is optimal to stop at state bt iff

f (bt) · βti
≥
∑
b′∈B

ϕ(b′)ut+1(b′) (2)

I Stopping threshold αt :

αt ,
ti
β

∑
b′∈B

ϕ(b′)ut+1(b′) (3)

27/30

Structural Properties of the Optimal Policy
I Assumptions: Always an intrusion before T , f (bt): probability of

intrusion given bt , bt and p are Markov, f (bt) is non-decreasing in t.
I Claim: Optimal policy is a threshold based policy

I Necessary condition for optimality (Bellman):

ut(bt) = sup
a

[
rt(bt , a) +

∑
b′∈B

pt(b′|bt , a)ut+1(b′, a)
]

(4)

= max
[
f (bt) · βti

,
∑
b′∈B

ϕ(b′)ut+1(b′)
]

(5)

I Thus I have that it is optimal to stop at state bt iff

f (bt) · βti
≥
∑
b′∈B

ϕ(b′)ut+1(b′) (6)

I Stopping threshold αt :

αt ,
ti
β

∑
b′∈B

ϕ(b′)ut+1(b′) (7)

27/30

Structural Properties of the Optimal Policy
I Assumptions: Always an intrusion before T , f (bt): probability of

intrusion given bt , bt and p are Markov, f (bt) is non-decreasing in t.
I Claim: Optimal policy is a threshold based policy

I Necessary condition for optimality (Bellman):

ut(bt) = sup
a

[
rt(bt , a) +

∑
b′∈B

pt(b′|bt , a)ut+1(b′, a)
]

(8)

= max
[
f (bt) · βti

,
∑
b′∈B

ϕ(b′)ut+1(b′)
]

(9)

I Thus I have that it is optimal to stop at state bt iff

f (bt) · βti
≥
∑
b′∈B

ϕ(b′)ut+1(b′) (10)

I Stopping threshold αt :

αt ,
ti
β

∑
b′∈B

ϕ(b′)ut+1(b′) (11)

27/30

Structural Properties of the Optimal Policy
I Assumptions: Always an intrusion before T , f (bt): probability of

intrusion given bt , bt and p are Markov, f (bt) is non-decreasing in t.
I Claim: Optimal policy is a threshold based policy

I Necessary condition for optimality (Bellman):

ut(bt) = sup
a

[
rt(bt , a) +

∑
b′∈B

pt(b′|bt , a)ut+1(b′, a)
]

(12)

= max
[
f (bt) · βti

,
∑
b′∈B

ϕ(b′)ut+1(b′)
]

(13)

I Thus I have that it is optimal to stop at state bt iff

f (bt) · βti
≥
∑
b′∈B

ϕ(b′)ut+1(b′) (14)

I Stopping threshold αt :

αt ,
ti
β

∑
b′∈B

ϕ(b′)ut+1(b′) (15)

28/30

Learning to Detect Network Intrusions

0 25 50 75 100 125 150 175 200

Iteration

−2

0

2

4

6

8

10

A
v
g

E
p

is
o
d

e
R

ew
ar

d
s

Episodic rewards

πθ simulation

πθ emulation

Snort-Severe simulation

Snort-warning simulation

Snort-critical simulation

/var/log/auth simulation

Snort-Severe emulation

Snort-warning emulation

Snort-critical emulation

/var/log/auth emulation

upper bound π∗

Learning curves (simulation and emulation)
of our proposed method.

Attacker Client 1 Client 2 Client 3

Defender

R1

Evaluation infrastructure.

29/30

Learning to Detect Network Intrusions

0 25 50 75 100 125 150 175 200

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
ra

ct
io

n

TP (intrusion detected), FP (early stopping), FN (intrusion)

True Positive (TP)

False Positive (FP)

False Negative (FN)

max

Trade-off between detection and false positives

30/30

Conclusions & Future Work

I Conclusions:

I We develop a method to find effective strategies for intrusion
prevention

I (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement
learning and (5) domain randomization and generalization.

I We show that self-learning can be successfully applied to
network infrastructures.

I Self-play reinforcement learning in Markov security game

I Key challenges: stable convergence, sample efficiency,
complexity of emulations, large state and action spaces

I Our research plans:
I Improving the system identification algorithm & generalization
I Evaluation on real world infrastructures

