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Challenges: Evolving and Automated Attacks

I Challenges:
I Evolving & automated attacks
I Complex infrastructures

Attacker Client 1 Client 2 Client 3

Defender
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Goal: Automation and Learning

I Challenges
I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods

Attacker Client 1 Client 2 Client 3

Defender

R1



4/30

Approach: Game Model & Reinforcement Learning

I Challenges:
I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods

I Our Approach:
I Model network attack and defense as

games.
I Use reinforcement learning to learn

policies.
I Incorporate learned policies in

self-learning systems.

Attacker Client 1 Client 2 Client 3

Defender

R1
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State of the Art
I Game-Learning Programs:

I TD-Gammon, AlphaGo Zero1, OpenAI Five etc.
I =⇒ Impressive empirical results of RL and self-play

I Attack Simulations:
I Automated threat modeling2, automated intrusion detection

etc.
I =⇒ Need for automation and better security tooling

I Mathematical Modeling:
I Game theory3
I Markov decision theory
I =⇒ Many security operations involves

strategic decision making

1David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550 (Oct. 2017),
pp. 354–. url: http://dx.doi.org/10.1038/nature24270.

2Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. “A Meta Language for Threat Modeling and
Attack Simulations”. In: Proceedings of the 13th International Conference on Availability, Reliability and Security.
ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. isbn: 9781450364485. doi:
10.1145/3230833.3232799. url: https://doi.org/10.1145/3230833.3232799.

3Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA:
Cambridge University Press, 2010. isbn: 0521119324.

http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799
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Our Work

I Use Case: Intrusion Prevention

I Our Method:

I Emulating computer infrastructures
I System identification and model creation
I Reinforcement learning and generalization

I Results:
I Learning to Capture The Flag
I Learning to Detect Network Intrusions

I Conclusions and Future Work
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Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and patching

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting

Attacker Client 1 Client 2 Client 3

Defender

R1
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Our Method for Finding Effective Security Strategies
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Emulation System Σ Configuration Space
σi

** *

172.18.4.0/24172.18.19.0/24172.18.61.0/24

Emulated Infrastructures

R1 R1 R1

Emulation
A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

I The set of virtualized configurations define a
configuration space Σ = 〈A,O,S,U , T ,V〉.

I A specific emulation is based on a configuration σi ∈ Σ.
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Emulation: Execution Times of Replicated Operations
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I Fundamental issue: Computational methods for policy
learning typically require samples on the order of 100k − 10M.

I =⇒ Infeasible to optimize in the emulation system



11/30

From Emulation to Simulation: System Identification
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Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉
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I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)
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System Identification: Estimated Dynamics Model
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System Identification: Estimated Dynamics Model
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System Identification: Estimated Dynamics Model
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Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=0 γ
trt+1

]
I Learning Algorithm:

I Represent π by πθ
I Define objective J(θ) = Eo∼ρπθ ,a∼πθ [R]
I Maximize J(θ) by stochastic gradient ascent with

gradient
∇θJ(θ) = Eo∼ρπθ ,a∼πθ [∇θ log πθ(a|o)Aπθ (o, a)]

I Domain-Specific Challenges:
I Partial observability
I Large state space |S| = (w + 1)|N |·m·(m+1)

I Large action space |A| = |N | · (m + 1)
I Non-stationary Environment due to presence of

adversary
I Generalization

Agent

Environment

at

st+1

rt+1
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Policy Optimization in the Simulation System
using Reinforcement Learning

I Goal:
I Approximate π∗ = arg maxπ E

[∑T
t=0

γt rt+1
]

I Learning Algorithm:
I Represent π by πθ
I Define objective J(θ) = Eo∼ρπθ ,a∼πθ

[R]
I Maximize J(θ) by stochastic gradient ascent with gradient
∇θJ(θ) = Eo∼ρπθ ,a∼πθ

[∇θ log πθ(a|o)Aπθ (o, a)]

I Domain-Specific Challenges:
I Partial observability
I Large state space |S| = (w + 1)|N|·m·(m+1)
I Large action space |A| = |N| · (m + 1)
I Non-stationary Environment due to presence of adversary
I Generalization

I Finding Effective Security Strategies through
Reinforcement Learning and Self-Playa

aKim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM 2020) (CNSM 2020). Izmir,
Turkey, Nov. 2020.

Agent
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Our Method for Finding Effective Security Strategies
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Learning Capture-the-Flag Strategies: Target Infrastructure

I Topology:
I 32 Servers, 1 IDS (Snort), 3 Clients

I Services
I 1 SNMP, 1 Cassandra, 2 Kafka, 8 HTTP, 1 DNS, 1 SMTP, 2 NTP, 5

IRC, 1 Teamspeak, 1 MongoDB, 1 Samba, 1 RethinkDB, 1
CockroachDB, 2 Postgres, 3 FTP, 15 SSH, 2 FTP

I Vulnerabilities
I 2 CVE-2010-0426, 2 CVE-2010-0426, 1 CVE-2015-3306, 1

CVE-2015-5602, 1 CVE-2016-10033, 1 CVE-2017-7494, 1
CVE-2014-6271

I 5 Brute-force vulnerabilities

I Operating Systems
I 14 Ubuntu-20, 9 Ubuntu-14, 1 Debian 9:2, 2 Debian Wheezy, 5

Debian Jessie, 1 Kali

I Traffic
I FTP, SSH, IRC, SNMP, HTTP, Telnet, IRC, Postgres, MongoDB,

Samba
I curl, ping, tracerotue, nmap..

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.
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Learning Capture-the-Flag Strategies: System Model 1/3

I A hacker (pentester) has T time-periods to
collect flags hidden in the infrastructure.

I The hacker is located at a dedicated starting
position N0 and can connect to a gateway
that exposes public-facing services in the
infrastructure.

I The hacker has a pre-defined set
(cardinality ∼ 200) of network/shell
commands available.

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.
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Learning Capture-the-Flag Strategies: System Model 2/3

I By execution of commands, the hacker
collects information
I Open ports, failed/successful exploits,

vulnerabilities, costs, OS, ...
I Sequences of commands can yield

shell-access to nodes
I Given shell access, the hacker can search

for flags
I Associated with each command is a cost c

(execution time) and noise n (IDS alerts).

I The objective is to capture all flags with the
minimal cost within the fixed time horizon T .
What strategy achieves this end?

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.
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Learning Capture-the-Flag Strategies: System Model 3/3
I Contextual Stochastic CTF with Partial

Information
I Model infrastructure as a graph G = 〈N , E〉
I There are k flags at nodes C ⊆ N
I Ni ∈ N has a node state si of m attributes
I Network state

s = {sA, si | i ∈ N} ∈ R|N |×m+|N |

I Hacker observes oA ⊂ s
I Action space: A = {aA

1 , . . . , aA
k }, aA

i
(commands)

I ∀(b, a) ∈ A× S, there is a probability ~wA,(x)
i,j of

failure & a probability of detection
ϕ(det(si ) · nA,(x)

i,j )
I State transitions s → s ′ are decided by a

discrete dynamical system s ′ = F (s, a)

I Exact dynamics (F , cA, nA,wA, det(·), ϕ(·)),
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Learning Capture-the-Flag Strategies: System Model 3/3
I Contextual Stochastic CTF with Partial

Information
I Model infrastructure as a graph G = 〈N , E〉
I There are k flags at nodes C ⊆ N
I Ni ∈ N has a node state si of m attributes
I Network state

s = {sA, si | i ∈ N} ∈ R|N |×m+|N |

I Hacker observes oA ⊂ s
I Action space: A = {aA
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i
(commands)
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Learning Capture-the-Flag Strategies
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Learning Capture-the-Flag Strategies
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Learning to Detect Network Intrusions: Target
Infrastructure

I Topology:
I 6 Servers, 1 IDS (Snort), 3 Clients

I Services
I 3 SSH, 2 HTTP, 1 DNS, 1 Telnet, 1 FTP, 1 MongoDB, 2

SMTP, 1 Tomcat, 1 Teamspeak3, 1 SNMP, 1 IRC, 1 Postgres,
1 NTP

I Vulnerabilities
I 1 CVE-2010-0426, 3 Brute-force vulnerabilities

I Operating Systems
I 4 Ubuntu-20, 1 Ubuntu-14, 1 Kali

I Traffic
I FTP, SSH, IRC, SNMP, HTTP, Telnet, IRC, Postgres,

MongoDB,
I curl, ping, tracerotue, nmap..

Attacker Client 1 Client 2 Client 3

Defender

R1

Evaluation infrastructure.
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Learning to Detect Network Intrusions: System Model
(1/3)

I An admin should manage the
infrastructure for T time-periods.

I The admin can monitor the
infrastructure to get a belief about it’s
state bt

I b1, . . . , bT−1 can be assumed to be
generated from some unknown
distribution ϕ.

I If the admin suspects that the
infrastructure is being intruded based on
bt , he can suspend the suspicious
user/traffic.

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.
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Learning to Detect Network Intrusions: System Model
(2/3)

I Suspending traffic from a true intrusion
yields a reward r (salary bonus)

I Not suspending traffic of a true
intrusion, incurs a cost c (admin is fired)

I Suspending traffic of a false intrusion,
incurs a cost of o (breaking the SLA)

I The objective is to to decide an optimal
response for suspending network traffic.
What strategy achieves this end?

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.
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Learning to Detect Network Intrusions: System Model
(3/3)
I Optimal Stopping Problem

I Action space A = {STOP, CONTINUE}

I Belief state space B ∈ R8+10·m

I A belief state b ∈ B contains relevant
metrics to detect intrusions

I Alerts from IDS, Entries in
/var/log/auth, logged in users, TCP
connections, processes, ...

I Reward function R
I r(bt , STOP, st) = 1intrusion

β
ti

I β is a positive constant and ti is the
number of nodes compromised by the
attacker

I =⇒ incentive to detect intrusion early.

Attacker Client 1 Client 2 Client 3

Defender

R1

Target infrastructure.
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Structural Properties of the Optimal Policy
I Assumptions: Always an intrusion before T , f (bt): probability of

intrusion given bt , bt and p are Markov, f (bt) is non-decreasing in t.
I Claim: Optimal policy is a threshold based policy

I Necessary condition for optimality (Bellman):

ut(bt) = sup
a

[
rt(bt , a) +

∑
b′∈B

pt(b′|bt , a)ut+1(b′, a)
]

(1)

I Thus I have that it is optimal to stop at state bt iff

f (bt) · βti
≥
∑
b′∈B

ϕ(b′)ut+1(b′) (2)

I Stopping threshold αt :

αt ,
ti
β

∑
b′∈B

ϕ(b′)ut+1(b′) (3)
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Learning to Detect Network Intrusions
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Conclusions & Future Work

I Conclusions:

I We develop a method to find effective strategies for intrusion
prevention

I (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement
learning and (5) domain randomization and generalization.

I We show that self-learning can be successfully applied to
network infrastructures.

I Self-play reinforcement learning in Markov security game

I Key challenges: stable convergence, sample efficiency,
complexity of emulations, large state and action spaces

I Our research plans:
I Improving the system identification algorithm & generalization
I Evaluation on real world infrastructures


