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Use Case: Intrusion Tolerance
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> A replicated system offers a service to a client population.

P> The system should provide service without disruption.



Use Case: Intrusion Tolerance
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P An attacker seeks to intrude on the system and disrupt service.
» The system should tolerate intrusions.



Intrusion Tolerance (Simplified)
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Increasing Demand for Intrusion-Tolerant Systems

> As our reliance on online services grows, there is an
increasing demand for intrusion-tolerant systems.

» Example applications: //

/Flight control
computer

gSHpSHpsH

Power grids Safety-critical IT systems Real-time control systems
e.g., SCADA systems?. e.g., banking systems, e.g., flight control computer?.
e-commerce applications?,
healthcare systems, etc.

2Amy Babay et al. “Network-Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid". In: 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). 2018, pp. 255-266. DOI:
10.1109/DSN.2018.00036.

3 Jukka Soikkeli et al. “Redundancy Planning for Cost Efficient Resilience to Cyber Attacks". In: |EEE
Transactions on Dependable and Secure Computing 20.2 (2023), pp. 1154-1168. DOI
10.1109/TDSC.2022.3151462.

4JH. Wensley et al. “SIFT: Design and analysis of a fault-tolerant computer for aircraft control”. In:
Proceedings of the IEEE 66.10 (1978), pp. 1240-1255. poI: 10.1109/PROC.1978.11114.
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Building Blocks of An Intrusion-Tolerant System

[ Client interface
l Request

1. Intrusion-tolerant consensus protocol

Replicated system

(] j@)
Response

A quorum needs to reach agreement
to tolerate f compromised replicas.

2. Replication strategy
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Cost-reliability trade-off.
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3. Recovery strategy

Compromises will occur as t — oo.



Prior Work on Intrusion-Tolerant Systems

The Rampart Toolkit for Building
High-Integrity Services

Michael K. Reiter

AT&T Bell Laboratories, Holmdel, New Jersey, USA

reiter@research.att.com

Abstract. Rampart is a toolkit of protocols to facilitate .
ment of high-integrity services, i.e., distributed s PUbIIShed 1995

availability and correctness despite the malicio
component servers by an aLLalcker. At the Icorelo _ Fixed number Of replicas
tocols that solve several basic problems in dist

cluding asynchronous group membership, reliab] - No recoveries

agreement ), and atomic multicast. Using these p
ports the development of high-integrity services v|
machine replication, and also extends this technigire=wrrrrrewpproacT
to server output voting. In this paper we give a brief overview of Ram-
part, focusing primarily on its protocol architecture. We also sketch its
performance in our prototype implementation and ongoing work.
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The SecureRing Protocols for Securing Group Communication*

Kim Potter Kihlstrom, L. E. Moser, P. M. Melliar-Smith
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106
kimk@alph.ece.ucsb.edu, moser@ece.ucsb.edu, pmms@ece.ucsb.edu

Published 1998 sysi

Abstract
The SecureRing group communication protocals pro
reliable ordered message delivery and group members|
services despite Byzantine faults such as might be cause
modifications to the programs of a group member follo
illicit access to, or capture of, a group member.

- Fixed number of replicas feo
- No recoveries hince
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and Proactive Recovery
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tems that. provide carrect service wi

malicious attacks are a major cause

ior, that is, Byzantine faults, This arti
used to build highly available systems
to implement real services: it performy
Internet, it incorporates mechanisms

replicas proactively. The recovery

Published 2002

- Fixed number of replicas
- Periodic recoveries
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A Qualitative Analysis of the Intrusion-Tolerance Capabilities of the
MAFTIA Architecture

Robert Stroud, lan Welch', John Wame, Peter Ryan,
School of Computing Science, University of Newcastle upon Tune, UK
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MAFTIA was a three-year European resea 8- .
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- Fixed number of replicas

- Supports both periodic and reactive recoveries
- Does not provide reactive recovery strategies

Nuno Ferreira Neves *, Lau Cheuk Lung ®, Paulo Verissimo *
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Can we do better by leveraging game-theoretic strategies?




The TOLERANCE Architecture

Two-level recovery and replication control with feedback.

TOLERANCE

(

System controller
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Node 1

State estimate Evict or add
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Node controller
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Node controller
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DS Node controller

Application domain

=\ Service
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Virtualization layer

Hardware Hardware Hardware
( Consensus protocol )
Ly T x
Service requests Responses Intrusion attempts
:
Clients Attacker




Definition 1 (Correct service)

The system provides correct service if the healthy replicas satisfy
the following properties:

Each request is eventually executed. (Liveness)
Each executed request was sent by a client. (Validity)

Each replica executes the same request sequence. (Safety)



Proposition 1 (Correctness of TOLERANCE)

A system that implements the TOLERANCE architecture provides
correct service if
Network links are authenticated.

At most f nodes are compromised or crashed simultaneously.
Ny > 2f + 1.

The system is partially synchronous.



Intrusion Tolerance as a Two-Level Game

N

Belief
o System controller
transmissions g
by

: E - - '
Rig!::;ed CH([E CT2(b2 C73(133 CT4(b4 GNt(bNt)

Node controllers

i 4

Clients Attacker

]

> We formulate intrusion tolerance as a two-level game.
» The local game models intrusion recovery.
» The global game models replication control.



Assumption 1

The probability that the system controller fails is negligible.

Assumption 2

Compromise and crash events are statistically independent across
nodes.

Assumption 3

The attacker can infer the observations of the controllers.

N

Belief
transmissions

i C o G% @% @% c‘?

Node controllers

System controller
7T

Clients Attacker



The Local Recovery Game

» Partially observed stochastic game [;.
» Players: (C)ontroller and (A)ttacker.

Healthy

Crashed



Health |
The Local Recovery Game calthy ) _ 5 Comeromised

Crashed

» Partially observed stochastic game [;.
» Players: (C)ontroller and (A)ttacker.

» Controller actions: (R)ecover and (W)ait.
» Attacker actions: (A)ttack and (F)alse alarm.



Health |
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Crashed

» Partially observed stochastic game [;.
» Players: (C)ontroller and (A)ttacker.

» Controller actions: (R)ecover and (W)ait.
» Attacker actions: (A)ttack and (F)alse alarm.

> States: Sy = {H, C, (}.
pc,i: crash probability, pa ;: attack success probability.

v

» Observation o;j; ~ z,-(-\a(A)): IDS alerts at time t.



Node Controller Strategy

» The controller computes the belief

bie(s) 2 P[S;e = CIh{).

Belief

©) 2o (©) (©) ©)
ht - (bi,laai,l 7Oi,2aai,2 7Oi,37"'7ai’t_]_70i,t)- O
O

» Controller strategy:

(€)1 10,1] = AW, R}).

Controller



Node Controller Objective

» Cost: J; 2 nT,.(R) + F,-(R). (Zero-sum game)

> T,.(R) is the average time-to-recovery.

> F,.(R) is the recovery frequency.
» 7 > 1is a scaling factor.

» Bounded-time-to-recovery constraint: The time between two
recoveries can be at most Ag.

Failure (crash or compromise) probability.

A o o o o 4

1

0.5}

: ‘ ‘ : ‘ ‘ ‘ ‘ ‘ -t
10 20 30 40 50 60 70 80 90 100
——p=0.1—--p=0.05—8-p=0.025—-—p =0.01 —e— p = 0.005
p is the failure probability per time-step.



Threshold Structure of the Controller's Best Response

alpha vectors —E[J; | bj 1]

1
0.8
0.6 -
0.4 J( wait region ‘ recovery region b
1 1 L 1 : 1 1 1 1 > bj1
01 02203 04 05 06 07 08 09 1
The controller's best response value.
Theorem 2
There exists a best response strategy that satisfies
D (bie) =R < bie > al, Vt,

where o, € [0,1] is a threshold.



Efficient Computation of Best Responses

Algorithm 1: Threshold Optimization

1 Input: Objective function J;, parametric optimizer po.

2 Qutput: A approximate best response strategy 77( )

3 Algorithm
4 | ©+«1[0,1].
5 For each 6 € ©, define wfg)(b;,t) as
R ifb ;>80
(C) A 1t —

6 ; bi¢) =

Tio (bie) {W otherwise.
7 Jo  E [J]

8 ﬂ(g) — po(@ Jp).

9 return WI((;) .

» Examples of parameteric optimization algorithmns: CEM, BO,
CMA-ES, DE, SPSA, etc.



Efficient Computation of Best Responses
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Mean compute time to obtain a best reponse for different values of the
bounded-time-to-recovery constraint Ag.
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Definition 3 (Perfect Bayesian equilibrium (PBE))

Let B denote the belief operator. Then (7*,B) is a PBE iff
1. Optimality:

*

is a Nash equilibrium (NE) in F\h(c) Vh( ), where F|h(0) is
it

: c A
the subgame starting from B(h{“, ,*t( ).

2. Belief consistency:
For any h( ) with P[h,(-g) | 7, b1] > 0, then

B(h * (A))

it lt

= B(B(h{;) 1, w7 ) i O Blh{E i), o, D).

it—1 Tt hiily,miy Ot T ¢



Theorem 4 (Existence of equilibrium and best response)

1.

For each strategy pair w; in [';, there exists a pair of best
responses.

2. T; has a perfect Bayesian equilibrium (PBE).

3. Ifsjt =0 <= b;j; =0, thenT; has a unique pure PBE.

4. The value of I'; is not larger than 1.



Idea Behind the Proof of Equilibrium Existence

C
N.f-vl)

V. si1=H) A s =C

(0P s1=0)

» Fix the time horizon T. Then we can convert the game to
extensive form, and hence it has a value.

» As T — oo, the discount factor « € [0,1) implies that
lim¢—oo >; 7' C = 0, which means that a value exists.



Value of the Local Recovery Game

Game value.
A

0.8 |
——n=1—-+-n=4-—m-1=238

01 02 03 04 05 06 07 08 09 1

Game value in function of the intrusion probability pa ;.

» We can compute the game value using Heuristic Search
Value Iteration (HSVI).



The Benefit of Strategic Recovery

Ji (4) Benefit of strategic recovery
A

0.4 4 l

0.3 +

0.2 1

>

2 4 6 8 10 12 14 16 18 20

Dxr,( no intrusion || intrusion )

—o— Equilibrium strategy === Periodic strategy

Key insight

Strategic recovery can significantly reduce operational cost
given that an intrusion detection model is available.




Intrusion Tolerance as a Two-Level Game
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The Global Replication Game Belit System ol
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» Constrained stochastic game I'.
» Players: (C)ontroller and (A)ttacker.
» States: Sg ={0,1,...,Snax}, the number of healthy nodes.

A
©
()
Clients Attacker



~

The Global Replication Game Beliet

transmissions

System controller
!

b0 ) B N'b& \

Node controllers

» Constrained stochastic game I'. é .. é &
» Players: (C)ontroller and (A)ttacker. e fracter
» States: Sg ={0,1,...,Snax}, the number of healthy nodes.

Replicated
system

» Controller actions: Add at ) e {0,1} nodes.
» Attacker actions: at ) e {F, A}N:,



The Global Replication Game Belit systemntbmner

transmissions 7(b1,..., N,
/bzY / b3 \
e nie @%m Erd

Node controllers

» Constrained stochastic game I'. é ... é &
Players: (C)ontroller and (A)ttacker.
States: Sg ={0,1,..., Smax}, the number of healthy nodes.

Replicated
system

Clients Attacker

vy

v

Controller actions: Add at ) e {0,1} nodes.

v

Attacker actions: at ) e {F, A}N:,

» Markov strategies:

() Sg — A({0,1})
) Sy — A({F, A}M).



System Controller Objective

> Zero-sum game.

» Cost: J 2 limr o Yl %

(©)

T

» Constraint: T(4) > €A, Where T®) is the availability.

€A

Allowed service downtime per year
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0 minutes




System Reliability Analysis

» The Mean-time-to-failure (MTTF) is the mean hitting time
of a state where s; < f:

E[TE) | S = s1] = Egs,),o, [inf (£ > 1] S, < | S = s1].

=
A o
< 24

- - - - - - - - N
10 20 30 40 50 60 70 80 90 100 '
——pi = 0.05 —=— p; = 0.025 —— p; = 0.01

The MTTF in function of the number of initial nodes N; and failure
probability per node p;.



Theorem 5 (Best Response Existence and Computation)
Assuming

(A) The Markov chain induced by each strategy pair 7 is
unichain.

(B) The availability constraint is feasible.

Then the following holds.

1. For each strategy pair 7, there exists a pair of stationary best
responses.

2. Best responses can be computed by using linear
programming.



Efficient Computation of Best Responses
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Mean compute time to obtain a best response in the replication game.



Definition 6 (Markov perfect equilibrium (MPE))

A strategy pair 7 = (n(C)* 7(A)*) is a Markov perfect
equilibrium if each player follows a Markov behavior strategy and
7" is a Nash equilibrium regardless of the initial state.



Theorem 7 (Existence of equilibrium in the global game)
Assuming

(A) The Markov chain induced by each strategy pair 7 is
unichain.

(B) The availability constraint is feasible.

Then the following holds.

1. A constrained, stationary Markov perfect equilibrium

2. Computing the equilibrium is PPAD-complete.



Challenge

Equilibrium computation is intractable in general.




Challenge

Equilibrium computation is intractable in general.

Theorem 8

Given any attacker strategy, there exists a best response control
strategy that is decreasing in s.



Efficient Computation of Equilibria

Challenge

Equilibrium computation is intractable in general.

Theorem 9

Given any attacker strategy, there exists a best response control
strategy that is decreasing in s.
Corollary 10

Given that the controller strategy is decreasing in s, a weakly
dominating strategy for the attacker is to minimize E[S].



The Benefit of Strategic Replication

jivaﬂabﬂlty Benefit of strategic replication
1 l
0.5
200 400 600 800 1,000

N; =10

- - = Equilibrium N; =100

Key insight

Strategic replication can guarantee a high service avail-
ability in expectation. The benefit of strategic replication
is mainly prominent for long-running systems.




Summary of the Game-Theoretic Model

» Partially observed stochastic game models intrusion recovery.

» Threshold structure of best responses.
» Existence of perfect Bayesian equilibria.

» Constrained stochastic game models replication control.

» Threshold structure of best responses.
» Existence of Markov perfect equilibria.
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Experiment Setup - Testbed
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The TOLERANCE Architecture

Two-level recovery and replication control with feedback.

TOLERANCE
( System controller )
State estimate Evict or add State estimate Evict or add State estimate Evict or add
" Node 2 ) " Node N. |
Node 1 Node 2 Node N,
Privileged domain Privileged domain Privileged domain
DS Node controller DS [e8e= DS Node controller |— "0
alerts alerts: very alerts very
Application domain Application domain Application domain
ag Service ag Service ag Service
R replica 2 replica R replica
Virtualization layer Virtualization layer Virtualization layer
Hardware Hardware Hardware
( Consensus protocol )
x T x
Service requests Responses Intrusion attempts
cen S
()
Clients Attacker

» A replicated web service which offers two operations:
> A read operation that returns the service state.

P> A write operation that updates the state.




Intrusion-Tolerant Consensus

a) Normal operation

request | prepare | comwrr | repLy
AN /7/
| |
Replica 1 ‘ :
(leader) \ |
Replica 2 \ \></
Replica 3

c) Checkpoint
CHECKPOINT

Replica 1
Replica 2
Replica 3
e) Join
JOIN-REQUEST JOIN NEW-VIEW JOIN-REPLY

S ////

Replica 2
(leader v + 1)

Replica 3

Protocol (MINBFT)

b) View change

| REQUEST |
VIEW-CHANGE NEW-VIEW
VIEW-CHANGE |

CRASH

T 7 7
iy TR TN

Replica 3
d) State transfer
| REQUEST
RECOVER STATE
STATE

(compromised)

|
Controller \ |
| |
Replica 1 : :
w

Y

Replica 2 t
-\
Replica 3 L
f) Evict
EVICT-REQUEST ! EVICT ! NEW-VIEW FXIT REPLY
System | |
controller ! | / /7 /
Replica 1 : :
) N\
Replica 2 f
(leader v + 1) M\/
Replica 3



Intrusion-Tolerant Consensus Protocol

60 |

‘—e— 1 client —— 20 clients

40 |

20 1

Avg throughput (req/s)

3 4 5 6 7 8 9 10
Number of nodes (N)

Average throughput of our implementation of MINBFT.



Experiment Setup - Emulated Intrusions

Replica ID

Intrusion steps

= O 00 ~NO 1l WN =

TCP SYN scan, FTP brute force

TCP SYN scan, SSH brute force

TCP SYN scan, TELNET brute force

ICMP scan, exploit of CVE-2017-7494

ICMP scan, exploit of CVE-2014-6271

ICMP scan, exploit of CWE-89 on DVWA

ICMP scan, exploit of CVE-2015-3306

ICMP scan, exploit of CVE-2016-10033

ICMP scan, SSH brute force, exploit of CVE-2010-0426
ICMP scan, SSH brute force, exploit of CVE-2015-5602

Table 1: Intrusion steps.



Experiment Setup - Background Traffic

Background services Replica ID(s)

FTP, SSH, MONGODB, HTTP, TEAMSPEAK 1
SSH, DNS, HTTP

SSH, TELNET, HTTP
SSH, SAMBA, NTP

SSH

DVWA, IRC, SSH
TEAMSPEAK, HTTP, SSH

,7,8,10

O© OOl Wi

Table 2: Background services.



Estimated Distributions of Intrusion Alerts
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> We estimate the observation distribution z with the
empirical distribution Z based on M samples.
> Zz 2%z as M — oo (Glivenko-Cantelli theorem).



Comparison with State-of-the-art Intrusion-Tolerant
Systems

Average availability T(&) Average time-to-recovery T(R) Average recovery frequency F(®)
m’ Limm mm Nl G AfE 0.2+
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Comparison between our game-theoretic control strategies and the
baselines; x-axes indicate values of AR; rows relate to the number of
initial nodes Nj.
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We present a game-theoretic model of intrusion tolerance.
We establish structural results.

We evaluate the equilibrium strategies on a testbed.

vvyyypy

Our game-theoretic strategies have stronger theoretical
guarantees and significantly better practical performance than
the control strategies used in state-of-the-art
intrusion-tolerant systems.



