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Use Case: Intrusion Tolerance
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I A replicated system offers a service to a client population.
I The system should provide service without disruption.
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Use Case: Intrusion Tolerance

. . .
Attacker Clients

api gateways

Compute nodes

Storage nodes

Service
replica 1

Service
replica 2

Service
replica 3

Service
replica 4

Client interface & load balancer

I An attacker seeks to intrude on the system and disrupt service.
I The system should tolerate intrusions.
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Intrusion Tolerance (Simplified)
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Increasing Demand for Intrusion-Tolerant Systems
I As our reliance on online services grows, there is an

increasing demand for intrusion-tolerant systems.
I Example applications:

Flight control
computer

Sensors and
actuators

Power grids
e.g., scada systems2.

Safety-critical IT systems
e.g., banking systems,

e-commerce applications3,
healthcare systems, etc.

Real-time control systems
e.g., flight control computer4.

2Amy Babay et al. “Network-Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid”. In: 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). 2018, pp. 255–266. doi:
10.1109/DSN.2018.00036.

3Jukka Soikkeli et al. “Redundancy Planning for Cost Efficient Resilience to Cyber Attacks”. In: IEEE
Transactions on Dependable and Secure Computing 20.2 (2023), pp. 1154–1168. doi:
10.1109/TDSC.2022.3151462.

4J.H. Wensley et al. “SIFT: Design and analysis of a fault-tolerant computer for aircraft control”. In:
Proceedings of the IEEE 66.10 (1978), pp. 1240–1255. doi: 10.1109/PROC.1978.11114.

https://doi.org/10.1109/DSN.2018.00036
https://doi.org/10.1109/TDSC.2022.3151462
https://doi.org/10.1109/PROC.1978.11114
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Theoretical Foundations of Intrusion Tolerance
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Building Blocks of An Intrusion-Tolerant System
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1. Intrusion-tolerant consensus protocol

A quorum needs to reach agreement
to tolerate f compromised replicas.

2. Replication strategy

Cost-reliability trade-off.

3. Recovery strategy

Compromises will occur as t →∞.
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- No recoveries

Published 1995
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- No recoveries

Published 1998
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2002
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2004
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Prior Work on Intrusion-Tolerant Systems

- Adaptive replication based on heuristics
- Periodic recoveries

Published 2006
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2006
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Supports both periodic and reactive recoveries
- Does not provide reactive recovery strategies

Published 2007
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2011
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2018



8/43

Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2023
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2023

Can we do better by leveraging game-theoretic strategies?
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The tolerance Architecture

Two-level recovery and replication control with feedback.
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Definition 1 (Correct service)
The system provides correct service if the healthy replicas satisfy
the following properties:

Each request is eventually executed. (Liveness)
Each executed request was sent by a client. (Validity)
Each replica executes the same request sequence. (Safety)
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Proposition 1 (Correctness of tolerance)
A system that implements the tolerance architecture provides
correct service if

Network links are authenticated.
At most f nodes are compromised or crashed simultaneously.
Nt ≥ 2f + 1.
The system is partially synchronous.
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Intrusion Tolerance as a Two-Level Game

. . .
π1(b1) π2(b2) π3(b3) π4(b4) πNt (bNt )
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system
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. . .
AttackerClients

I We formulate intrusion tolerance as a two-level game.
I The local game models intrusion recovery.
I The global game models replication control.
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Assumption 1
The probability that the system controller fails is negligible.

Assumption 2
Compromise and crash events are statistically independent across
nodes.

Assumption 3
The attacker can infer the observations of the controllers.

. . .
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b1 b2 b3 b4 bNt

. . .
AttackerClients



13/43

The Local Recovery Game

I Partially observed stochastic game Γi .
I Players: (C)ontroller and (A)ttacker.

I Controller actions: (R)ecover and (W)ait.
I Attacker actions: (A)ttack and (F)alse alarm.

I States: SN = {H,C, ∅}.
I pC,i : crash probability, pA,i : attack success probability.
I Observation oi ,t ∼ zi (·|a(A)): ids alerts at time t.

H C

∅

Crashed

Healthy Compromised

pC,i pC,i
a(C)

i = R

a(A)
i = A
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Node Controller Strategy

I The controller computes the belief

bi ,t(s) , P[Si ,t = C|h(C)
t ].

h(C)
t , (bi ,1, a(C)

i ,1 , oi ,2, a(C)
i ,2 , oi ,3, . . . , a(C)

i ,t−1, oi ,t).

I Controller strategy:

π(C) : [0, 1]→ ∆({W,R}).
Controller

Belief
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Node Controller Objective
I Cost: Ji , ηT (R)

i + F (R)
i . (Zero-sum game)

I T (R)
i is the average time-to-recovery.

I F (R)
i is the recovery frequency.

I η > 1 is a scaling factor.

I Bounded-time-to-recovery constraint: The time between two
recoveries can be at most ∆R.

10 20 30 40 50 60 70 80 90 100

0.5

1

p = 0.1 p = 0.05 p = 0.025 p = 0.01 p = 0.005

t

Failure (crash or compromise) probability.

p is the failure probability per time-step.
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Threshold Structure of the Controller’s Best Response

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4
0.6
0.8
1

alpha vectors E[Ji | bi ,1]

bi ,1α?
wait region recovery region

The controller’s best response value.

Theorem 2
There exists a best response strategy that satisfies

π̃
(C)
i ,t (bi ,t) = R ⇐⇒ bi ,t ≥ α?i ,t ∀t,

where α?i ,t ∈ [0, 1] is a threshold.
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Efficient Computation of Best Responses
Algorithm 1: Threshold Optimization

1 Input: Objective function Ji , parametric optimizer po.
2 Output: A approximate best response strategy π̂(C)

i ,θ .
3 Algorithm
4 Θ← [0, 1].
5 For each θ ∈ Θ, define π(C)

i ,θ (bi ,t) as

6 π
(C)
i ,θ (bi ,t) ,

{
R if bi ,t ≥ θ
W otherwise.

7 Jθ ← E
π

(C)
i,θ

[Ji ].

8 π̂
(C)
i ,θ ← po(Θ, Jθ).

9 return π̂
(C)
i ,θ .

I Examples of parameteric optimization algorithmns: CEM, BO,
CMA-ES, DE, SPSA, etc.
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Efficient Computation of Best Responses
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Mean compute time to obtain a best reponse for different values of the
bounded-time-to-recovery constraint ∆R.
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Definition 3 (Perfect Bayesian equilibrium (PBE))
Let B denote the belief operator. Then (π?,B) is a pbe iff
1. Optimality:

π? is a Nash equilibrium (ne) in Γ|h(C)
i,t
∀h(C)

i ,t , where Γ|h(C)
i,t

is

the subgame starting from B(h(C)
t , π

?,(A)
i ,t ).

2. Belief consistency:
For any h(C)

i ,t with P[h(C)
i ,t | π?,b1] > 0, then

B(h(C)
i ,t , π

?,(A)
i ,t )

= B(B(h(C)
i ,t−1, π

?,(A)
i ,t ), π?,(C)

i ,t (B(h(C)
i ,t−1, π

?,(A)
i ,t )), ot , π

?,(A)
i ,t ).
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Theorem 4 (Existence of equilibrium and best response)

1. For each strategy pair πi in Γi , there exists a pair of best
responses.

2. Γi has a perfect Bayesian equilibrium (pbe).
3. If si ,t = 0 ⇐⇒ bi ,t = 0, then Γi has a unique pure pbe.
4. The value of Γi is not larger than 1.
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Idea Behind the Proof of Equilibrium Existence
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oi ,2 ∼
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oi ,2 ∼
z(·|A)

pA,i 1− pA,i

I Fix the time horizon T . Then we can convert the game to
extensive form, and hence it has a value.

I As T →∞, the discount factor γ ∈ [0, 1) implies that
limt→∞

∑
t γ

tCt = 0, which means that a value exists.
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Value of the Local Recovery Game
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Game value.

Game value in function of the intrusion probability pA,i .

I We can compute the game value using Heuristic Search
Value Iteration (hsvi).
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The Benefit of Strategic Recovery

2 4 6 8 10 12 14 16 18 20

0.2

0.3

0.4

Equilibrium strategy Periodic strategy
DKL( no intrusion ‖ intrusion )

Ji (4)
Benefit of strategic recovery

Strategic recovery can significantly reduce operational cost
given that an intrusion detection model is available.

Key insight
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Intrusion Tolerance as a Two-Level Game
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The Global Replication Game

I Constrained stochastic game Γ.
I Players: (C)ontroller and (A)ttacker.
I States: SS = {0, 1, . . . , smax}, the number of healthy nodes.

I Controller actions: Add a(C)
t ∈ {0, 1} nodes.

I Attacker actions: a(A)
t ∈ {F,A}Nt .

I Markov strategies:

π(C) : SS → ∆({0, 1})
π(A) : SS → ∆({F,A}Nt ).
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System Controller Objective
I Zero-sum game.

I Cost: J , limT→∞
∑T

t=1
a(C)

t
T .

I Constraint: T (A) ≥ εA, where T (A) is the availability.

εA Allowed service downtime per year

0.9 36 days
0.95 18 days
0.99 3 days
0.999 8 hours
0.9999 52 minutes
0.99999 5 minutes
1 0 minutes
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System Reliability Analysis
I The Mean-time-to-failure (mttf) is the mean hitting time

of a state where st ≤ f :

E[T (F) | S1 = s1] = E(St)t≥1

[
inf {t ≥ 1 | St ≤ f } | S1 = s1

]
.

10 20 30 40 50 60 70 80 90 100

100

200

300

pi = 0.05 pi = 0.025 pi = 0.01

N1

E[T (F)]

The mttf in function of the number of initial nodes N1 and failure
probability per node pi .
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Theorem 5 (Best Response Existence and Computation)
Assuming
(A) The Markov chain induced by each strategy pair π is

unichain.
(B) The availability constraint is feasible.

Then the following holds.
1. For each strategy pair π, there exists a pair of stationary best

responses.
2. Best responses can be computed by using linear

programming.
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Efficient Computation of Best Responses
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Maximum number of nodes smax
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Mean compute time to obtain a best response in the replication game.
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Definition 6 (Markov perfect equilibrium (MPE))
A strategy pair π? = (π(C),?, π(A),?) is a Markov perfect
equilibrium if each player follows a Markov behavior strategy and
π? is a Nash equilibrium regardless of the initial state.
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Theorem 7 (Existence of equilibrium in the global game)
Assuming
(A) The Markov chain induced by each strategy pair π is

unichain.
(B) The availability constraint is feasible.

Then the following holds.
1. A constrained, stationary Markov perfect equilibrium (mpe)

exists.
2. Computing the equilibrium is ppad-complete.
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Equilibrium computation is intractable in general.

Challenge
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Equilibrium computation is intractable in general.

Challenge

Theorem 8
Given any attacker strategy, there exists a best response control
strategy that is decreasing in s.
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Efficient Computation of Equilibria

Equilibrium computation is intractable in general.

Challenge

Theorem 9
Given any attacker strategy, there exists a best response control
strategy that is decreasing in s.

Corollary 10
Given that the controller strategy is decreasing in s, a weakly
dominating strategy for the attacker is to minimize E[S].
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The Benefit of Strategic Replication

200 400 600 800 1,000

0.5

1

Equilibrium N1 = 10 N1 = 100

t

Availability Benefit of strategic replication

Strategic replication can guarantee a high service avail-
ability in expectation. The benefit of strategic replication
is mainly prominent for long-running systems.

Key insight



34/43

Summary of the Game-Theoretic Model
I Partially observed stochastic game models intrusion recovery.

I Threshold structure of best responses.
I Existence of perfect Bayesian equilibria.

I Constrained stochastic game models replication control.
I Threshold structure of best responses.
I Existence of Markov perfect equilibria.

. . .
π1(b1) π2(b2) π3(b3) π4(b4) πNt (bNt )

Belief
transmissions

Node controllers

Replicated
system

System controller
π(b1, . . . , bNt )

b1 b2 b3 b4 bNt

. . .
AttackerClients
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Experiment Setup - Testbed
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The tolerance Architecture
Two-level recovery and replication control with feedback.

tolerance

Node 1
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

Node 2
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

Node Nt
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

. . .

Consensus protocol

System controller
State estimate Evict or add State estimate Evict or add State estimate Evict or add

. . .
Service requests Responses

Clients Attacker

Intrusion attempts

I A replicated web service which offers two operations:
I A read operation that returns the service state.
I A write operation that updates the state.
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Intrusion-Tolerant Consensus Protocol (minbft)

Client

Replica 1
(leader)
Replica 2

Replica 3

request prepare commit reply

Replica 1
(leader v)

(leader v + 1)
Replica 2

Replica 3

crash request
view-changeview-change new-view

Replica 1

Replica 2

Replica 3

checkpoint Controller

Replica 1
(compromised)

Replica 2

Replica 3

recover request
state state

New replica

Replica 1
(leader v)

(leader v + 1)
Replica 2

Replica 3

join-request join new-view join-reply System
controller
Replica 1
(leader v)

(leader v + 1)
Replica 2

Replica 3

evict-request evict new-view exit-reply

a) Normal operation b) View change

c) Checkpoint
d) State transfer

e) Join f) Evict
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Intrusion-Tolerant Consensus Protocol
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Average throughput of our implementation of minbft.
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Experiment Setup - Emulated Intrusions

Replica ID Intrusion steps

1 tcp syn scan, ftp brute force
2 tcp syn scan, ssh brute force
3 tcp syn scan, telnet brute force
4 icmp scan, exploit of cve-2017-7494
5 icmp scan, exploit of cve-2014-6271
6 icmp scan, exploit of cwe-89 on dvwa
7 icmp scan, exploit of cve-2015-3306
8 icmp scan, exploit of cve-2016-10033
9 icmp scan, ssh brute force, exploit of cve-2010-0426
10 icmp scan, ssh brute force, exploit of cve-2015-5602

Table 1: Intrusion steps.
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Experiment Setup - Background Traffic

Background services Replica ID(s)

ftp, ssh, mongodb, http, teamspeak 1
ssh, dns, http 2
ssh, telnet, http 3
ssh, samba, ntp 4
ssh 5, 7, 8, 10
dvwa, irc, ssh 6
teamspeak, http, ssh 9

Table 2: Background services.
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Estimated Distributions of Intrusion Alerts
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ẑ i
(o
i
|a

(A
)

i
)

cve-2015-5602

0 2000 4000 6000 8000

cve-2016-10033

0 2000 4000 6000 8000
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attack (a
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i = A) false alarms (a

(A)
i = F)

I We estimate the observation distribution z with the
empirical distribution Ẑ based on M samples.

I ẑ →a.s z as M →∞ (Glivenko-Cantelli theorem).
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Comparison with State-of-the-art Intrusion-Tolerant
Systems
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Comparison between our game-theoretic control strategies and the
baselines; x-axes indicate values of ∆R; rows relate to the number of
initial nodes N1.
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Conclusion

I We present a game-theoretic model of intrusion tolerance.
I We establish structural results.
I We evaluate the equilibrium strategies on a testbed.
I Our game-theoretic strategies have stronger theoretical

guarantees and significantly better practical performance than
the control strategies used in state-of-the-art
intrusion-tolerant systems.
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