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from hops import featurestore
from hops import experiment
featurestore.get_features([

"average_attendance",
"average_player_age"])

experiment.collective_all_reduce(features , model)
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2 Why You Need a Feature Store
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4 Demo
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Solution: Disentangle ML Pipelines
with a Feature Store

Raw/Structured Data

Feature Store
Feature Engineering Training

Models
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ŷ

A feature store is a central vault for storing documented, curated, and
access-controlled features.

The feature store is the interface between data engineering and data
model development
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Make ML-Features A First-Class Citizen in Your Data Lakes

Traditional Feature Engineering
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Raw data lake
Feature Store

Metadata

...

Make your features first-class citizens:
Document features
Version features
Invest in a data layer specifically for features (feature store)
Make features access-controlled and searchable
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What is a Feature?

A feature is a measurable property of some data-sample

A feature could be..
An aggregate value (min, max, mean, sum)
A raw value (a pixel, a word from a piece of text)
A value from a database table (the age of a customer)
A derived representation: e.g an embedding or a cluster

Features are the fuel for AI systems:


x1
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xn



Features
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Prediction
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Loss

Gradient
∇θL(y , ŷ)
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Feature Engineering is Crucial for Model Performance
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Feature Engineering is Complex

Input Data
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Feature Engineering is Complex
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How do you make this scale?
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How do you make this scale? How to manage the feature pipelines?
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How do you make this scale? How to manage the feature pipelines?

How to make features reusable and robust?
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How do you make this scale? How to manage the feature pipelines?

How to make features reusable and robust?

Feature Engineering is Complex Yet Crucial for Model Performance

Treat your features accordingly!
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Feature Pipeline Jungles

Data Lake (Raw/Structured Data)

Feature Data (Derived Data)
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Disentangle Your ML Pipelines with a Feature Store

Data Sources Dataset 1 Dataset 2 . . . Dataset n

Feature Store
Feature Store

A data management platform for machine learning.
The interface between data engineering and data science.

Models
Models are trained using sets of features.

The features are fetched from the feature store
and can overlap between models.
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High-Level APIs and Abstractions

from hops import featurestore

features_df = featurestore.get_features(

[

"average_attendance",

"average_player_age"

])

featurestore.create_featuregroup(

f_df, "t_features",

description="...", version=2)

d_dir = featurestore.get_training_dataset_path(td_name)

tf_schema = featurestore.get_tf_record_schema(td_name)
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High-Level APIs and Abstractions

Read from the feature store

Write to the feature store

Metadata operations
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Existing Feature Stores

Uber’s feature store2

Airbnb’s feature store3

Comcast’s feature store4

Facebook’s feature store5

GO-JEK’s feature store6

Twitter’s feature store7

Branch International’s feature store8

Hopsworks’ feature store9 (the only open-source one!)
2Li Erran Li et al. “Scaling Machine Learning as a Service”. In: Proceedings of The 3rd International

Conference on Predictive Applications and APIs. Ed. by Claire Hardgrove et al. Vol. 67. Proceedings of Machine
Learning Research. Microsoft NERD, Boston, USA: PMLR, 2017, pp. 14–29. URL:
http://proceedings.mlr.press/v67/li17a.html.

3Nikhil Simha and Varant Zanoyan. Zipline: Airbnb’s Machine Learning Data Management Platform.
https://databricks.com/session/zipline-airbnbs-machine-learning-data-management-platform. 2018.

4Nabeel Sarwar. Operationalizing Machine Learning—Managing Provenance from Raw Data to Predictions.
https://databricks.com/session/operationalizing-machine-learning-managing-provenance-from-raw-data-to-
predictions. 2018.

5Kim Hazelwood et al. “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective”. In:
Feb. 2018, pp. 620–629. DOI: 10.1109/HPCA.2018.00059.

6Willem Pienaar. Building a Feature Platform to Scale Machine Learning | DataEngConf BCN ’18.
https://www.youtube.com/watch?v=0iCXY6VnpCc. 2018.

7Twitter Engineering. Embeddings@Twitter.
https://blog.twitter.com/engineering/en_us/topics/insights/2018/embeddingsattwitter.html. 2018.

8Nick Handel. Bay Area AI: Machine Learning Infrastructure at an Early Stage.
https://www.youtube.com/watch?v=PkxX05n_DCE. 2018.

9Kim Hammar and Jim Dowling. Feature Store: the missing data layer in ML pipelines?
https://www.logicalclocks.com/feature-store/. 2018.
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The Components of a Feature Store

Feature Storage
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The Components of a Feature Store

Feature Metadata

Schema Statistics Documentation Jobs

Feature Storage
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The Components of a Feature Store

Client Interface

API

from hops import featurestore
features_df = featurestore.get_features(

[
"average_attendance",
"average_player_age"
])

Feature Registry

Feature Metadata

Schema Statistics Documentation Jobs

Feature Storage

Kim Hammar (Logical Clocks) Hopsworks Feature Store May 8, 2019 15 / 17



Hopsworks Feature Store

Feature Storage

HopsFS

Feature groups Training Datasets
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Hopsworks Feature Store
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Summary

Machine learning comes with a high technical cost
Machine learning pipelines needs proper data management
A feature store is a place to store curated and documented features
The feature store serves as an interface between feature engineering
and model development, it can help disentangle complex ML pipelines
Hopsworks10 provides the world’s first open-source feature store

@hopshadoop

www.hops.io

@logicalclocks

www.logicalclocks.com

We are open source:
https://github.com/logicalclocks/hopsworks

https://github.com/hopshadoop/hops

11
10Jim Dowling. Introducing Hopsworks. https://www.logicalclocks.com/introducing-hopsworks/. 2018.
11Thanks to Logical Clocks Team: Jim Dowling, Seif Haridi, Theo Kakantousis, Fabio Buso, Gautier Berthou,

Ermias Gebremeskel, Mahmoud Ismail, Salman Niazi, Antonios Kouzoupis, Robin Andersson, Alex Ormenisan,
Rasmus Toivonen, and Steffen Grohsschmiedt
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