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Key enabler for Deep Learning: Data growth
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Research Problem: Clothing Prediction on Instagram
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This Paper: Text Classification Without Labeled Data
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Example Instagram Post
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Challenge: Noisy Text and No Labels
A case study of a corpora with 143 fashion accounts, 200K posts, 9M comments

Challenge 1: Noisy Text with a Long-Tail Distribution
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Google-OOV words 0.46 145.02
Aspell-OOV words 0.47 147.61

Challenge 2: Lack of Expensive Labeled Training Data

Raw Instagram Text Human Annotations
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Alternative Sources of Supervision That Are Cheap but
Weak

Strong supervision:
Manual annotation by
expert

Weak supervision: A
signal that does not
have full
coverage/perfect
accuracy

Sources of Weak Supervision

Domain Heuristics

Database

APIs

Crowdworkers

Combiner Strong supervision
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Weak Supervision in the Fashion Domain

Open APIs:

Pre-trained Clothing Classificiation Models:

DeepDetect1

Text mining system based on a fashion ontology and word embeddings:

Happy Monday! Here is my outfit of

the day #streetstyle #me #canada #goals
#chic #denim

Caption

Zalando user1 user2
Tags

I love the bag! Is it Gucci?

#goals @username

I #want the #baaag

Wow! The #jeans You are suclh

an inspirationn, can you follow me back?

Comments

Ontology O

Brands

Items

Patterns

Materials

Styles

Instagram Post p ∈ P

ProBase

Word Rankings



w1,1 . . . w1,n

...
. . .

...
wn,1 . . . wn,n




Word Embeddings V

Edit-distance

tfidf (wi , p,P)

term-score t ∈
{caption, comment,
user-tag, hashtag}

Linear
Combination

Items: 〈(bag , 0.63),
(jeans, 0.3), (top, 0.1)〉
Brands:
〈(Gucci , 0.8), (Zalando, 0.3)〉
Material: 〈(Denim, 1.0)〉
...

Ranked Noisy Labels ~r

1https://github.com/jolibrain/deepdetect
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How To Combine Several Sources Of Weak Supervision?

Simplest way to combine many weak signals: Majority Vote

Recent research on combination of weak signals: Data
Programming2

2Alexander J Ratner et al. “Data Programming: Creating Large Training Sets, Quickly”. In: Advances in Neural
Information Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., 2016, pp. 3567–3575. URL:
http://papers.nips.cc/paper/6523-data-programming-creating-large-training-sets-quickly.pdf.
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Model Weak Supervision With Generative Model

unlabeled
data

Labeling functions
λ1 . . . λn

Weak labels


w1,1 . . . w1,n

...
. . .

...
wn,1 . . . wn,n




Generative Model
πα,β(Λ,Y )

Combined labels


w1
...
wn




Model weak supervision as labeling functions λi
λi (unlabeled data)→ label

Learn Generative Model πα,β(Λ,Y ) over the labeling process.
Based on conflicts between labeling functions assign the functions an
estimated accuracy αi .
Based on empirical coverage of labeling functions assign the functions
a coverage βi .

Given α and β for each labeling function, it can be used to
combine labels into a single probabilistic label

Give more weight to high-accuracy functions
If there is a lot of disagreement→ low probability label
If all labeling functions agree → high probability label
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Data Programming Intuition

Low accuracy labeling functions

x
y
x

High accuracy labeling functions

y“it is a coat”

“it is not a coat”

Probabilistic Label: 0.6 probability that it is a coat

Majority Vote: 1.0 probability that it is not a coat
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Extension of Data Programming to Multi-Label
Classification

Problem: Data programming only defined for binary
classification in original paper

To make it work for multi-class setting: model labeling function as
λi → ki ∈ {0, . . . ,N} instead of λi → ki ∈ {−1, 0, 1}.

Idea 1 for multi-label: model labeling function as
λi → ~ki = {v0, . . . , vn} ∧ vj ∈ {−1, 0, 1}

Idea 2 for multi-label: learn a separate generative model for each
class, and let each labeling function give binary output for each class
λi ,j → ki ,j ∈ {−1, 0, 1}.
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Trained Generative Models: Labeling Functions’ Accuracy
Differ Between Classes
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Figure: Multiple generative models can capture a different accuracy for labeling
functions for different classes.
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Putting Everything Together

1 Apply weak supervision to unlabeled data (open APIs, pre-trained
models, domain heuristics etc.)

2 Combine labels using majority voting or generative modelling (data
programming)

3 Use the combined labels for training a discriminative model using
supevised machine learning.
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Pipeline for Weakly Supervised Classification in Instagram

Problem: A Multi-class Multi-label classification problem with 13 output
classes (dresses, coats, blouses, jeans, ...)

Here
is my
out-
fit of
the day
#street-
style
#coat
#parka
#chic
#win-
ter

Labeling Functions λi
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...
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v13

Discriminative Model d
CNN for Text classification

Figure: A pipeline for weakly supervised text classification of Instagram posts.
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Data Programming Beats Majority Voting
Results

Data programming gives 6 F1 points improvement over majority
vote3, achieving an F1 score of 0.61 (On level with human
performance)

Model Accuracy Precision Recall Micro-F1 Macro-F1 Hamming Loss

CNN-DataProgramming 0.797± 0.01 0.566± 0.05 0.678± 0.04 0.616± 0.02 0.535± 0.01 0.195± 0.02
CNN-MajorityVote 0.739± 0.02 0.470± 0.06 0.686± 0.05 0.555± 0.03 0.465± 0.05 0.261± 0.03
DomainExpert 0.807 0.704 0.529 0.604 0.534 0.184

Main cause of error: data sparsity (can not extract clothing
items from the text if it is never mentioned in the text)

3A smaller, hand-labeled dataset by experts was used for evaluation
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Conclusion

Instagram text is jus as noisy as Twitter, has a long-tail distribution,
and is multi-lingual

In shifting data domains where accurate labeled data is a rarity, like
social media, weak supervision is a viable alternative.

Combining weak labels with generative modeling beats majority voting.

To extend Data programming to the multi-label scenario, a collection
of generative models can be used to incorporate per-class accuracy.
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Thank you
All code and most of the data is open source:
https://github.com/shatha2014/FashionRec

Questions?
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